Spectral Theorem

In this note we will prove the Spectral Theorem, which is stated below.
Spectral Theorem Suppose \boldsymbol{A} is an n by n real symmetric matrix. Then \boldsymbol{A} has the factorization

$$
\boldsymbol{A}=\boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{-1}=\boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{T}
$$

where $\boldsymbol{\Lambda}$ is a diagonal matrix with real eigenvalues on the diagonal and \boldsymbol{Q} is an orthogonal matrix with columns formed by orthonormal eigenvectors.

For an n by n complex matrix $\boldsymbol{Q}, \boldsymbol{Q}$ is called a unitary matrix if $\overline{\boldsymbol{Q}}^{T}=\boldsymbol{Q}^{-1}$. If a unitary matrix is real, then it is an orthogonal matrix. For the proof of the Spectral Theorem, we need the following Schur's Theorem:
Schur's Theorem Every square matrix factors into

$$
\boldsymbol{A}=\boldsymbol{Q} \boldsymbol{T} \boldsymbol{Q}^{-1}=\boldsymbol{Q} \boldsymbol{T} \overline{\boldsymbol{Q}}^{T}
$$

where \boldsymbol{T} is upper triangular and \boldsymbol{Q} is unitary. If \boldsymbol{A} has real eigenvalues, then \boldsymbol{Q} and \boldsymbol{T} can be chosen real: $\boldsymbol{Q}^{T}=\boldsymbol{Q}^{-1}$, i.e., \boldsymbol{Q} is orthogonal.

Proof. We prove this by induction. The result is obvious if $n=1: a=1 \cdot a \cdot 1^{-1}$. Assume the hypothesis holds for k by k matrices and let \boldsymbol{A} be a $k+1$ by $k+1$ matrix. Let λ_{1} be an eigenvalue of \boldsymbol{A} and \boldsymbol{q}_{1} be a corresponding unit eigenvector. Using the Gram-Schmidt process, we can find $\boldsymbol{q}_{2}, \boldsymbol{q}_{3}, \ldots, \boldsymbol{q}_{k+1}$ such that $\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, \ldots, \boldsymbol{q}_{k+1}$ forms an orthonormal basis for \mathcal{C}^{k+1}, where \mathcal{C} is the set of complex numbers.

Let $\boldsymbol{Q}_{1}=\left[\begin{array}{llll}\boldsymbol{q}_{1} & \boldsymbol{q}_{2} & \cdots & \boldsymbol{q}_{k+1}\end{array}\right]$. Then \boldsymbol{Q}_{1} is unitary and

$$
\begin{aligned}
\overline{\boldsymbol{Q}}_{1}^{T} \boldsymbol{A} \boldsymbol{Q}_{1} & =\left[\begin{array}{c}
\overline{\boldsymbol{q}}_{1}^{T} \\
\overline{\boldsymbol{q}}_{2}^{T} \\
\vdots \\
\overline{\boldsymbol{q}}_{k+1}^{T}
\end{array}\right]\left[\begin{array}{llll}
\boldsymbol{A} \boldsymbol{q}_{1} & \boldsymbol{A} \boldsymbol{q}_{2} & \cdots & \boldsymbol{A} \boldsymbol{q}_{k+1}
\end{array}\right] \\
& =\left[\begin{array}{c}
\overline{\boldsymbol{q}}_{1}^{T} \\
\overline{\boldsymbol{q}}_{2}^{T} \\
\vdots \\
\overline{\boldsymbol{q}}_{k+1}^{T}
\end{array}\right]\left[\begin{array}{llll}
\lambda_{1} \boldsymbol{q}_{1} & \boldsymbol{A} \boldsymbol{q}_{2} & \cdots & \boldsymbol{A} \boldsymbol{q}_{k+1}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\lambda_{1} & \times & \cdots \\
0 \\
\vdots & \boldsymbol{A}_{2} & \\
0 &
\end{array}\right]
\end{aligned}
$$

where the last equality follows since $\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, \ldots, \boldsymbol{q}_{k+1}$ are orthonormal. By the induction hypothesis, since \boldsymbol{A}_{2} is k by k,

$$
\boldsymbol{A}_{2}=\boldsymbol{Q}_{2} \boldsymbol{T}_{2} \overline{\boldsymbol{Q}}_{2}^{T}
$$

where \boldsymbol{Q}_{2} is unitary and \boldsymbol{T}_{2} is upper triangular. Let

$$
\boldsymbol{Q}=\boldsymbol{Q}_{1}\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & & & \\
\vdots & & \boldsymbol{Q}_{2} & \\
0 & & &
\end{array}\right]
$$

Then \boldsymbol{Q} is unitary since

$$
\begin{aligned}
\boldsymbol{Q} \overline{\boldsymbol{Q}}^{T} & =\boldsymbol{Q}_{1}\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & & & \\
\vdots & & \boldsymbol{Q}_{2} & \\
0 & &
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & & \\
\vdots & \overline{\boldsymbol{Q}}_{2}^{T} & \\
0 & &
\end{array}\right] \overline{\boldsymbol{Q}}_{1}^{T} \\
& =\boldsymbol{Q}_{1}\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & & & \\
\vdots & & \boldsymbol{I}_{k} & \\
0 &
\end{array}\right] \overline{\boldsymbol{Q}}_{1}^{T}=\boldsymbol{Q}_{1} \boldsymbol{I}_{k+1} \overline{\boldsymbol{Q}}_{1}^{T}=\boldsymbol{Q}_{1} \overline{\boldsymbol{Q}}_{1}^{T}=\boldsymbol{I}_{k+1}
\end{aligned}
$$

where \boldsymbol{I}_{n} is the n by n identity matrix. We can have

$$
\begin{aligned}
& \overline{\boldsymbol{Q}}^{T} \boldsymbol{A} \boldsymbol{Q}=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & & & \\
\vdots & & \overline{\boldsymbol{Q}}_{2}^{T} & \\
0 & & & \left.\overline{\boldsymbol{Q}}_{1}^{T} \boldsymbol{A} \boldsymbol{Q}_{1}\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & & \\
\vdots & & \boldsymbol{Q}_{2} & \\
0 & & &
\end{array}\right], ~\right]
\end{array}\right. \\
& =\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & & & \\
\vdots & & \overline{\boldsymbol{Q}}_{2}^{T} & \\
0 & &
\end{array}\right]\left[\begin{array}{cccc}
\lambda_{1} & \times & \cdots & \times \\
0 & & & \\
\vdots & & \boldsymbol{A}_{2} & \\
0 & & &
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & & & \\
\vdots & & \boldsymbol{Q}_{2} & \\
0 & & &
\end{array}\right] \\
& =\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & & \\
\vdots & \overline{\boldsymbol{Q}}_{2}^{T} & \\
0 & &
\end{array}\right]\left[\begin{array}{cccc}
\lambda_{1} & \times & \cdots & \times \\
0 & & \\
\vdots & \boldsymbol{A}_{2} \boldsymbol{Q}_{2} \\
0 & & &
\end{array}\right] \\
& =\left[\begin{array}{cccc}
\lambda_{1} & \times & \cdots & \times \\
0 & & \\
\vdots & \overline{\boldsymbol{Q}}_{2}^{T} \boldsymbol{A}_{2} \boldsymbol{Q}_{2} \\
0 & & &
\end{array}\right]=\left[\begin{array}{cccc}
\lambda_{1} & \times & \cdots & \times \\
0 & & & \\
\vdots & & \boldsymbol{T}_{2} & \\
0 & & &
\end{array}\right]=\boldsymbol{T}
\end{aligned}
$$

where \boldsymbol{T} is upper triangular since \boldsymbol{T}_{2} is upper triangular. Therefore, $\boldsymbol{A}=\boldsymbol{Q} \boldsymbol{T} \overline{\boldsymbol{Q}}^{T}$.
If λ_{1} is a real eigenvalue, then \boldsymbol{q}_{1} and \boldsymbol{Q}_{1} can stay real. The induction step keeps everything real when \boldsymbol{A} has real eigenvalues. Induction starts with the 1 by 1 case, and there is no problem.

We can now use Schur's Theorem to prove the Spectral Theorem.

Proof of the Spectral Theorem. In class we have shown that every symmetric \boldsymbol{A} has real eigenvalues. By Schur's Theorem,

$$
\boldsymbol{A}=\boldsymbol{Q} \boldsymbol{T} \boldsymbol{Q}^{T}
$$

where \boldsymbol{Q} is orthogonal: $\boldsymbol{Q}^{T}=\boldsymbol{Q}^{-1}$ and \boldsymbol{T} is upper triangular. Then $\boldsymbol{T}=\boldsymbol{Q}^{T} \boldsymbol{A} \boldsymbol{Q}$, which is a symmetric matrix since $\boldsymbol{T}^{T}=\boldsymbol{Q}^{T} \boldsymbol{A} \boldsymbol{Q}=\boldsymbol{T}$. If \boldsymbol{T} is triangular and also symmetric, it must be diagonal: $\boldsymbol{T}=\boldsymbol{\Lambda}$. Therefore, $\boldsymbol{A}=\boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{T}$.

