Solution to Homework Assignment No. 6

1. (a) No. Let $\boldsymbol{v}=(1,0)$ and $\boldsymbol{w}=(0,1)$. Since

$$
\begin{array}{ccc}
T(\boldsymbol{v})=(1,0), T(\boldsymbol{w})=(0,1) & \Longrightarrow \quad T(\boldsymbol{v})+T(\boldsymbol{w})=(1,1) \\
\boldsymbol{v}+\boldsymbol{w}=(1,1) & \Longrightarrow \quad T(\boldsymbol{v}+\boldsymbol{w})=(1 / \sqrt{2}, 1 / \sqrt{2})
\end{array}
$$

we have $T(\boldsymbol{v})+T(\boldsymbol{w}) \neq T(\boldsymbol{v}+\boldsymbol{w})$ and T is not a linear transformation.
(b) Yes. Let $\boldsymbol{v}=\left(v_{1}, v_{2}, v_{3}\right)$ and $\boldsymbol{w}=\left(w_{1}, w_{2}, w_{3}\right)$. Then

$$
\begin{aligned}
& T(c \boldsymbol{v}+d \boldsymbol{w}) \\
= & T\left(c v_{1}+d w_{1}, c v_{2}+d w_{2}, c v_{3}+d w_{3}\right) \\
= & \left(c v_{1}+d w_{1}, 2 c v_{2}+2 d w_{2}, 3 c v_{3}+3 d w_{3}\right) \\
= & c\left(v_{1}, 2 v_{2}, 3 v_{3}\right)+d\left(w_{1}, 2 w_{2}, 3 w_{3}\right) \\
= & c T(\boldsymbol{v})+d T(\boldsymbol{w}) .
\end{aligned}
$$

Hence, T is a linear transformation.
(c) No. Let $\boldsymbol{v}=(1,0)$ and $\boldsymbol{w}=(0,1)$. Since

$$
\begin{array}{clc}
T(\boldsymbol{v})=1, \quad T(\boldsymbol{w})=1 & \Longrightarrow \quad T(\boldsymbol{v})+T(\boldsymbol{w})=2 \\
\boldsymbol{v}+\boldsymbol{w}=(1,1) & \Longrightarrow \quad T(\boldsymbol{v}+\boldsymbol{w})=1
\end{array}
$$

we have $T(\boldsymbol{v})+T(\boldsymbol{w}) \neq T(\boldsymbol{v}+\boldsymbol{w})$ and T is not a linear transformation.
2. (a) Let $\boldsymbol{X}, \boldsymbol{Y} \in M$. Then we can have

$$
T(a \boldsymbol{X}+b \boldsymbol{Y})=\boldsymbol{A}(a \boldsymbol{X}+b \boldsymbol{Y})=a \boldsymbol{A} \boldsymbol{X}+b \boldsymbol{A} \boldsymbol{Y}=a T(\boldsymbol{X})+b T(\boldsymbol{Y})
$$

and hence T is linear.
(b) Since $\beta=\left\{\boldsymbol{V}_{1}, \boldsymbol{V}_{2}, \boldsymbol{V}_{3}, \boldsymbol{V}_{4}\right\}$ and

$$
\begin{aligned}
& T\left(\boldsymbol{V}_{1}\right)=\left[\begin{array}{ll}
a & 0 \\
c & 0
\end{array}\right]=a \boldsymbol{V}_{1}+c \boldsymbol{V}_{3} \\
& T\left(\boldsymbol{V}_{2}\right)=\left[\begin{array}{ll}
0 & a \\
0 & c
\end{array}\right]=a \boldsymbol{V}_{2}+c \boldsymbol{V}_{4} \\
& T\left(\boldsymbol{V}_{3}\right)=\left[\begin{array}{ll}
b & 0 \\
d & 0
\end{array}\right]=b \boldsymbol{V}_{1}+d \boldsymbol{V}_{3} \\
& T\left(\boldsymbol{V}_{4}\right)=\left[\begin{array}{ll}
0 & b \\
0 & d
\end{array}\right]=b \boldsymbol{V}_{2}+d \boldsymbol{V}_{4}
\end{aligned}
$$

we can have

$$
[T]_{\beta}=\left[\begin{array}{cccc}
a & 0 & b & 0 \\
0 & a & 0 & b \\
c & 0 & d & 0 \\
0 & c & 0 & d
\end{array}\right]
$$

3. (a) Since $\beta=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}, \gamma=\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \boldsymbol{w}_{3}\right\}$, and

$$
\begin{aligned}
& T\left(\boldsymbol{v}_{1}\right)=\boldsymbol{w}_{2} \\
& T\left(\boldsymbol{v}_{2}\right)=\boldsymbol{w}_{1}+\boldsymbol{w}_{3} \\
& T\left(\boldsymbol{v}_{3}\right)=\boldsymbol{w}_{1}+\boldsymbol{w}_{3}
\end{aligned}
$$

we can obtain

$$
[T]_{\beta}^{\gamma}=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

(b) From (a), we can find that $\left\{(0,1,-1)^{T}\right\}$ forms a basis for $\mathcal{N}\left([T]_{\beta}^{\gamma}\right)$. Therefore, the kernel of T is given by the span of $\boldsymbol{v}_{2}-\boldsymbol{v}_{3}$.
(c) The dimension of the range of T is equal to that of the column space of $[T]_{\beta}^{\gamma}$, which is 2 .
4. Assume $T: V \rightarrow W$. Since $T(\boldsymbol{v})=\boldsymbol{A} \boldsymbol{v}$ and

- $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}$ is a basis for $\mathcal{C}\left(\boldsymbol{A}^{T}\right)$
- $\left\{\boldsymbol{v}_{3}, \boldsymbol{v}_{4}\right\}$ is a basis for $\mathcal{N}(\boldsymbol{A})$
- $\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}\right\}$ is a basis for $\mathcal{C}(\boldsymbol{A})$
- $\left\{\boldsymbol{w}_{3}\right\}$ is a basis for $\mathcal{N}\left(\boldsymbol{A}^{T}\right)$
we can have $\beta=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}, \boldsymbol{v}_{4}\right\}$ and $\gamma=\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \boldsymbol{w}_{3}\right\}$ form a basis for V and W, respectively. As

$$
\begin{aligned}
& T\left(\boldsymbol{v}_{1}\right)=\boldsymbol{A} \boldsymbol{v}_{1}=\boldsymbol{w}_{1} \\
& T\left(\boldsymbol{v}_{2}\right)=\boldsymbol{A} \boldsymbol{v}_{2}=\boldsymbol{w}_{2} \\
& T\left(\boldsymbol{v}_{3}\right)=\mathbf{0} \\
& T\left(\boldsymbol{v}_{4}\right)=\mathbf{0}
\end{aligned}
$$

we can then obtain

$$
[T]_{\beta}^{\gamma}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

5. Based on the standard basis, the matrix which represents this T is

$$
\left[\begin{array}{ccc}
0 & 2 & -1 \\
2 & 3 & -2 \\
-1 & -2 & 0
\end{array}\right]
$$

The eigenvectors for this matrix are $\{(-1,-2,1),(-2,1,0),(1,0,1)\}$. Therefore, we can find the basis $\{(-1,-2,1),(-2,1,0),(1,0,1)\}$ in which the matrix representation for T is a diagonal matrix.
6. (a) For all $\boldsymbol{x} \in \mathbb{R}^{n}$, we can have

$$
\boldsymbol{x}=\boldsymbol{x}_{r}+\boldsymbol{x}_{n}
$$

where $\boldsymbol{x}_{r} \in \mathcal{C}\left(\boldsymbol{A}^{T}\right)$ and $\boldsymbol{x}_{n} \in \mathcal{N}(\boldsymbol{A})$. We then have, for all $\boldsymbol{x} \in \mathbb{R}^{n}$,

$$
\begin{aligned}
\boldsymbol{A} \boldsymbol{A}^{+} \boldsymbol{A} \boldsymbol{x} & =\boldsymbol{A} \boldsymbol{A}^{+} \boldsymbol{A}\left(\boldsymbol{x}_{r}+\boldsymbol{x}_{n}\right) \\
& =\boldsymbol{A} \boldsymbol{A}^{+} \boldsymbol{A} \boldsymbol{x}_{r}+\boldsymbol{A} \boldsymbol{A}^{+} \boldsymbol{A} \boldsymbol{x}_{n} \\
& =\boldsymbol{A}\left(\boldsymbol{x}_{r}\right)+\boldsymbol{A} \boldsymbol{A}^{+} \mathbf{0} \\
& =\boldsymbol{A} \boldsymbol{x}_{r} \\
& =\boldsymbol{A}\left(\boldsymbol{x}_{r}+\boldsymbol{x}_{n}\right) \\
& =\boldsymbol{A} \boldsymbol{x}
\end{aligned}
$$

since $\boldsymbol{A}^{+} \boldsymbol{A}$ is the projection matrix onto $\mathcal{C}\left(\boldsymbol{A}^{T}\right)$ and $\boldsymbol{A} \boldsymbol{x}_{n}=\mathbf{0}$. Therefore, $\boldsymbol{A} \boldsymbol{A}^{+} \boldsymbol{A}=\boldsymbol{A}$
(b) For a projection matrix \boldsymbol{P}, we have $\boldsymbol{P}^{2}=\boldsymbol{P}$. Since $\boldsymbol{A}^{+} \boldsymbol{A}$ is the projection matrix onto $\mathcal{C}\left(\boldsymbol{A}^{T}\right)$,

$$
\left(\boldsymbol{A}^{+} \boldsymbol{A}\right)^{2}=\boldsymbol{A}^{+} \boldsymbol{A}
$$

7. (a) After some calculations, we can obtain the eigenvalues and unit eigenvectors of $\boldsymbol{A}^{T} \boldsymbol{A}$ and $\boldsymbol{A} \boldsymbol{A}^{T}$ as follows:

$$
\begin{aligned}
\boldsymbol{A}^{T} \boldsymbol{A}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 2 \\
1 & 2 & 5
\end{array}\right] & \Longrightarrow\left\{\begin{array}{lll}
\lambda_{1}=6 & \longleftrightarrow & \boldsymbol{v}_{1}=\frac{1}{\sqrt{30}}(1,2,5)^{T} \\
\lambda_{2}=1 & \longleftrightarrow & \boldsymbol{v}_{2}=\frac{1}{\sqrt{5}}(-2,1,0)^{T} \\
\lambda_{3}=0 & \longleftrightarrow & \boldsymbol{v}_{2}=\frac{1}{\sqrt{6}}(-1,-2,1)^{T}
\end{array}\right. \\
\boldsymbol{A} \boldsymbol{A}^{T}=\left[\begin{array}{ll}
5 & 2 \\
2 & 2
\end{array}\right] & \Longrightarrow\left\{\begin{array}{lll}
\lambda_{1}=6 & \longleftrightarrow & \boldsymbol{u}_{1}=\frac{1}{\sqrt{5}}(2,1)^{T} \\
\lambda_{2}=1 & \longleftrightarrow & \boldsymbol{u}_{2}=\frac{1}{\sqrt{5}}(1,-2)^{T} .
\end{array}\right.
\end{aligned}
$$

The singular value decomposition of \boldsymbol{A} is hence given by

$$
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}
$$

where

$$
\boldsymbol{U}=\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
2 & 1 \\
1 & -2
\end{array}\right], \quad \boldsymbol{\Sigma}=\left[\begin{array}{ccc}
\sqrt{6} & 0 & 0 \\
0 & 1 & 0
\end{array}\right], \quad \boldsymbol{V}=\frac{1}{\sqrt{30}}\left[\begin{array}{ccc}
1 & -2 \sqrt{6} & -\sqrt{5} \\
2 & \sqrt{6} & -2 \sqrt{5} \\
5 & 0 & \sqrt{5}
\end{array}\right]
$$

(b) The pseudoinverse of \boldsymbol{A} is given by

$$
\begin{aligned}
\boldsymbol{A}^{+} & =\boldsymbol{V} \boldsymbol{\Sigma}^{+} \boldsymbol{U}^{T} \\
& =\left[\begin{array}{cc}
-1 / 3 & 5 / 6 \\
1 / 3 & -1 / 3 \\
1 / 3 & 1 / 6
\end{array}\right] .
\end{aligned}
$$

(c) The projection matrix onto the row space of \boldsymbol{A} is given by

$$
\boldsymbol{A}^{+} \boldsymbol{A}=\left[\begin{array}{ccc}
5 / 6 & -1 / 3 & 1 / 6 \\
-1 / 3 & 1 / 3 & 1 / 3 \\
1 / 6 & 1 / 3 & 5 / 6
\end{array}\right]
$$

(d) Since \boldsymbol{A} has full row rank, there is a right inverse for \boldsymbol{A}. We can have

$$
A A^{+}=I
$$

and hence the pseudoinverse \boldsymbol{A}^{+}obtained in (b) is a right inverse for \boldsymbol{A}.
(e) The shortest least squares solution is

$$
\boldsymbol{x}=\boldsymbol{A}^{+} \boldsymbol{b}=\left[\begin{array}{c}
-5 / 6 \\
4 / 3 \\
11 / 6
\end{array}\right]
$$

