Reading: Strang, Chapter 7.
Problems for Solution:

1. Is each of the following transformations linear? If yes, prove it; otherwise, find a counterexample.
(a) $T(\boldsymbol{v})=\boldsymbol{v} /\|\boldsymbol{v}\|$.
(b) $T\left(v_{1}, v_{2}, v_{3}\right)=\left(v_{1}, 2 v_{2}, 3 v_{3}\right)$.
(c) $T(\boldsymbol{v})=$ largest component of \boldsymbol{v}.
2. Consider the vector space M of all 2 by 2 real matrices. The transformation $T: M \rightarrow$ M is defined for every $\boldsymbol{X}=\left[\begin{array}{ll}x_{1} & x_{2} \\ x_{3} & x_{4}\end{array}\right] \in M$ by

$$
T(\boldsymbol{X})=\boldsymbol{A} \boldsymbol{X}
$$

where

$$
\boldsymbol{A}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

(a) Show that T is linear.
(b) In class we learned that $\beta=\left\{\boldsymbol{V}_{1}, \boldsymbol{V}_{2}, \boldsymbol{V}_{3}, \boldsymbol{V}_{4}\right\}$ form a basis for M, where

$$
\boldsymbol{V}_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \quad \boldsymbol{V}_{2}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad \boldsymbol{V}_{3}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], \quad \boldsymbol{V}_{4}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

Find the matrix representation for T (which is a 4 by 4 matrix) in this basis β.
3. Consider a linear transformation $T: V \rightarrow W$. Let $\beta=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$ and $\gamma=$ $\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \boldsymbol{w}_{3}\right\}$ be bases of V and W, respectively. Suppose $T\left(\boldsymbol{v}_{1}\right)=\boldsymbol{w}_{2}$ and $T\left(\boldsymbol{v}_{2}\right)=$ $T\left(\boldsymbol{v}_{3}\right)=\boldsymbol{w}_{1}+\boldsymbol{w}_{3}$.
(a) Find the matrix representation $[T]_{\beta}^{\gamma}$.
(b) Find the kernel of T.
(c) Find the dimension of the range of T.
4. Do Problem 38 of Problem Set 7.2 in p. 398 of Strang.
5. Define the linear operator T on \mathcal{R}^{3} by

$$
T\left(\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
2 v_{2}-v_{3} \\
2 v_{1}+3 v_{2}-2 v_{3} \\
-v_{1}-2 v_{2}
\end{array}\right]
$$

Find a basis of \mathcal{R}^{3} such that the matrix representation for T in this basis is a diagonal matrix.
6. Prove each of the following statements, where \boldsymbol{A} is an m by n matrix and \boldsymbol{A}^{+}is its pseudoinverse.
(a) $\boldsymbol{A} \boldsymbol{A}^{+} \boldsymbol{A}=\boldsymbol{A}$.
(b) $\left(\boldsymbol{A}^{+} \boldsymbol{A}\right)^{2}=\boldsymbol{A}^{+} \boldsymbol{A}$.
7. (This problem counts double.) Consider the matrix

$$
\boldsymbol{A}=\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 0 & 1
\end{array}\right]
$$

(a) Find the singular value decomposition of \boldsymbol{A}.
(b) Find the pseudoinverse \boldsymbol{A}^{+}of \boldsymbol{A}.
(c) Find the projection matrix onto the row space of \boldsymbol{A}.
(d) Find a right inverse of \boldsymbol{A}.
(e) Find the shortest leat squares solution to $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, where

$$
\boldsymbol{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \quad \text { and } \boldsymbol{b}=\left[\begin{array}{l}
5 \\
1
\end{array}\right] .
$$

