Solution to Homework Assignment No. 5

1. (a) Let \boldsymbol{x} be the associated eigenvector of λ. We have

$$
\begin{array}{ll}
& \boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{x} \\
\Longrightarrow \quad & \boldsymbol{A}^{-1} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{A}^{-1} \lambda \boldsymbol{x} \\
\Longrightarrow \quad & \boldsymbol{I} \boldsymbol{x}=\lambda \boldsymbol{A}^{-1} \boldsymbol{x} \\
\Longrightarrow \quad & \boldsymbol{A}^{-1} \boldsymbol{x}=\lambda^{-1} \boldsymbol{x}
\end{array}
$$

Hence, λ^{-1} is an eigenvalue of \boldsymbol{A}^{-1}.
(b) Let λ be a eigenvalue of \boldsymbol{A}. Since

$$
\begin{array}{ll}
& \operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})=0 \\
\Longleftrightarrow & \operatorname{det}\left((\boldsymbol{A}-\lambda \boldsymbol{I})^{T}\right)=0 \\
\Longleftrightarrow & \operatorname{det}\left(\boldsymbol{A}^{T}-\lambda \boldsymbol{I}^{T}\right)=0 \\
\Longleftrightarrow & \operatorname{det}\left(\boldsymbol{A}^{T}-\lambda \boldsymbol{I}\right)=0
\end{array}
$$

we can obtain that λ is also an eigenvalue of \boldsymbol{A}^{T}, and vice versa.
(c) Let \boldsymbol{x} be the associated eigenvector of λ. Since \boldsymbol{A} is idempotent, we have

$$
\begin{aligned}
& \boldsymbol{A} \boldsymbol{x}=\boldsymbol{A}^{2} \boldsymbol{x}=\boldsymbol{A}(\boldsymbol{A} \boldsymbol{x})=\boldsymbol{A}(\lambda \boldsymbol{x})=\lambda(\boldsymbol{A} \boldsymbol{x})=\lambda^{2} \boldsymbol{x}=\lambda \boldsymbol{x} \\
& \Longrightarrow\left(\lambda^{2}-\lambda\right) \boldsymbol{x}=\mathbf{0} .
\end{aligned}
$$

Since \boldsymbol{x} is not a zero vector, we must have $\lambda^{2}-\lambda=0$, i.e., $\lambda=0$ or 1 .
2. (a) Consider

$$
\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})=\left|\begin{array}{ccc}
1-\lambda & 0 & 2 \\
0 & -1-\lambda & -2 \\
2 & -2 & -\lambda
\end{array}\right|=\lambda(3-\lambda)(3+\lambda)=0
$$

We can then find that the eigenvalues of \boldsymbol{A} are $\lambda=0,3,-3$. Since the eigenvalues are all distinct, \boldsymbol{A} is diagonalizable. We can obtain that the eigenvectors for $\lambda=0,3,-3$ are $\left[\begin{array}{c}2 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{c}2 \\ -1 \\ 2\end{array}\right],\left[\begin{array}{c}-1 \\ 2 \\ 2\end{array}\right]$, respectively. Therefore, let

$$
\boldsymbol{S}=\left[\begin{array}{ccc}
2 & 2 & -1 \\
2 & -1 & 2 \\
-1 & 2 & 2
\end{array}\right] \quad \text { and } \quad \boldsymbol{\Lambda}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & -3
\end{array}\right]
$$

and then $\boldsymbol{S}^{-1} \boldsymbol{A} \boldsymbol{S}=\boldsymbol{\Lambda}$.
(b) Consider

$$
\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})=\left|\begin{array}{ccc}
-\lambda & 1 & 2 \\
0 & -\lambda & 0 \\
0 & 0 & -\lambda
\end{array}\right|=-\lambda^{3}=0
$$

We can obtain $\lambda=0$, and its AM is 3. Since $\boldsymbol{A}-\lambda \boldsymbol{I}=\left[\begin{array}{lll}0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$, the GM of λ is 2 , which is small than the AM of λ. Therefore, this matrix is not diagonalizable, and its Jordan form is $\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$.
3. (a) First, we find the eigenvalues of \boldsymbol{B} by

$$
\operatorname{det}(\boldsymbol{B}-\lambda \boldsymbol{I})=\operatorname{det}\left(\left[\begin{array}{cc}
5-\lambda & 1 \\
0 & 4-\lambda
\end{array}\right]\right)=(5-\lambda)(4-\lambda)=0
$$

Hence $\lambda=5$ and 4. For $\lambda=5$, we have

$$
(\boldsymbol{B}-\lambda \boldsymbol{I}) \boldsymbol{x}_{1}=\left[\begin{array}{cc}
0 & 1 \\
0 & -1
\end{array}\right] \boldsymbol{x}_{1}=\mathbf{0}
$$

and the eigenvector $\boldsymbol{x}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$. For $\lambda=4$, we have

$$
(\boldsymbol{B}-\lambda \boldsymbol{I}) \boldsymbol{x}_{2}=\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] \boldsymbol{x}_{2}=\mathbf{0}
$$

and the eigenvector $\boldsymbol{x}_{2}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$. Hence, we have

$$
\boldsymbol{B}=\boldsymbol{S} \boldsymbol{A} \boldsymbol{S}^{-1}=\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right]\left[\begin{array}{ll}
5 & 0 \\
0 & 4
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right]
$$

and

$$
\begin{aligned}
\boldsymbol{B}^{k}=\left(\boldsymbol{S} \boldsymbol{A} \boldsymbol{S}^{-1}\right)^{k}=\boldsymbol{S} \boldsymbol{A}^{k} \boldsymbol{S}^{-1} & =\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
5^{k} & 0 \\
0 & 4^{k}
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
5^{k} & 5^{k} \\
0 & -4^{k}
\end{array}\right] \\
& =\left[\begin{array}{cc}
5^{k} & 5^{k}-4^{k} \\
0 & 4^{k}
\end{array}\right] .
\end{aligned}
$$

(b) Assume λ_{1} and λ_{2} are eigenvalues of $\left[\begin{array}{l}1 \\ i\end{array}\right]$ and $\left[\begin{array}{l}i \\ 1\end{array}\right]$, respectively. We can then have

$$
\begin{aligned}
{\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
1 \\
i
\end{array}\right]=\lambda_{1}\left[\begin{array}{l}
1 \\
i
\end{array}\right] } & \Longrightarrow\left[\begin{array}{c}
\cos \theta-i \sin \theta \\
\sin \theta+i \cos \theta
\end{array}\right]=\left[\begin{array}{c}
\lambda_{1} \\
i \lambda_{1}
\end{array}\right] \\
& \Longrightarrow \lambda_{1}=\cos \theta-i \sin \theta
\end{aligned}
$$

and

$$
\begin{aligned}
{\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
i \\
1
\end{array}\right]=\lambda_{2}\left[\begin{array}{l}
i \\
1
\end{array}\right] } & \Longrightarrow\left[\begin{array}{c}
i \cos \theta-\sin \theta \\
i \sin \theta+\cos \theta
\end{array}\right]=\left[\begin{array}{c}
i \lambda_{2} \\
\lambda_{2}
\end{array}\right] \\
& \Longrightarrow \lambda_{2}=\cos \theta+i \sin \theta
\end{aligned}
$$

Hence

$$
\boldsymbol{A}=\boldsymbol{S} \boldsymbol{\Lambda} \boldsymbol{S}^{-1}=\left[\begin{array}{cc}
1 & i \\
i & 1
\end{array}\right]\left[\begin{array}{cc}
\cos \theta-i \sin \theta & 0 \\
0 & \cos \theta+i \sin \theta
\end{array}\right]\left[\begin{array}{cc}
1 / 2 & -i / 2 \\
-i / 2 & 1 / 2
\end{array}\right]
$$

and

$$
\begin{aligned}
\boldsymbol{A}^{n} & =\boldsymbol{S}^{n} \boldsymbol{S}^{-1} \\
& =\left[\begin{array}{cc}
1 & i \\
i & 1
\end{array}\right]\left[\begin{array}{cc}
\cos \theta-i \sin \theta & 0 \\
0 & \cos \theta+i \sin \theta
\end{array}\right]^{n}\left[\begin{array}{cc}
1 / 2 & -i / 2 \\
-i / 2 & 1 / 2
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & i \\
i & 1
\end{array}\right]\left[\begin{array}{cc}
e^{-i \theta} & 0 \\
0 & e^{i \theta}
\end{array}\right]^{n}\left[\begin{array}{cc}
1 / 2 & -i / 2 \\
-i / 2 & 1 / 2
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & i \\
i & 1
\end{array}\right]\left[\begin{array}{cc}
e^{-i n \theta} & 0 \\
0 & e^{i n \theta}
\end{array}\right]\left[\begin{array}{cc}
1 / 2 & -i / 2 \\
-i / 2 & 1 / 2
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{1}{2} e^{-i n \theta}+\frac{1}{2} e^{i n \theta} & \frac{-i}{2} e^{-i n \theta}+\frac{i}{2} e^{i n \theta} \\
\frac{i}{2} e^{-i n \theta}+\frac{-i}{2} e^{i n \theta} & \frac{1}{2} e^{-i n \theta}+\frac{1}{2} e^{i n \theta}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos n \theta & -\sin n \theta \\
\sin n \theta & \cos n \theta
\end{array}\right] .
\end{aligned}
$$

4. (a) Assume $\boldsymbol{u}_{k}=\left[\begin{array}{c}G_{k+1} \\ G_{k}\end{array}\right]$. Then $\boldsymbol{u}_{0}=\left[\begin{array}{c}1 / 2 \\ 0\end{array}\right]$ and

$$
\boldsymbol{u}_{k+1}=\left[\begin{array}{c}
G_{k+2} \\
G_{k+1}
\end{array}\right]=\left[\begin{array}{c}
(1 / 2) G_{k+1}+(1 / 2) G_{k} \\
G_{k+1}
\end{array}\right]=\left[\begin{array}{cc}
1 / 2 & 1 / 2 \\
1 & 0
\end{array}\right] \boldsymbol{u}_{k} .
$$

Let $\boldsymbol{A}=\left[\begin{array}{cc}1 / 2 & 1 / 2 \\ 1 & 0\end{array}\right]$. We then diagonalize $\boldsymbol{A}=\boldsymbol{S} \boldsymbol{\Lambda} \boldsymbol{S}^{-1}$ where

$$
\boldsymbol{S}=\left[\begin{array}{cc}
1 & 1 \\
1 & -2
\end{array}\right], \quad \boldsymbol{\Lambda}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1 / 2
\end{array}\right], \quad \boldsymbol{S}^{-1}=\frac{1}{3}\left[\begin{array}{cc}
2 & 1 \\
1 & -1
\end{array}\right] .
$$

Hence, we can obtain

$$
\boldsymbol{u}_{k}=\boldsymbol{A}^{k} \boldsymbol{u}_{0}=\boldsymbol{S} \boldsymbol{\Lambda}^{k} \boldsymbol{S}^{-1} \boldsymbol{u}_{0}=\left[\begin{array}{c}
(1 / 3)+(1 / 6)(-1 / 2)^{k} \\
(1 / 3)-(1 / 3)(-1 / 2)^{k}
\end{array}\right]
$$

and

$$
G_{k}=(1 / 3)-(1 / 3)(-1 / 2)^{k} .
$$

(b) Assume $\boldsymbol{u}=\left[\begin{array}{l}y^{\prime} \\ y\end{array}\right], \boldsymbol{u}^{\prime}=\left[\begin{array}{l}y^{\prime \prime} \\ y^{\prime}\end{array}\right]$, and $\boldsymbol{u}_{0}=\left[\begin{array}{l}y^{\prime}(0) \\ y(0)\end{array}\right]=\left[\begin{array}{l}3 \\ 0\end{array}\right]$. Then we can have

$$
\boldsymbol{u}^{\prime}=\left[\begin{array}{c}
y^{\prime \prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{c}
5 y^{\prime}-4 y \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
5 & -4 \\
1 & 0
\end{array}\right] \boldsymbol{u} .
$$

Let $\boldsymbol{A}=\left[\begin{array}{cc}5 & -4 \\ 1 & 0\end{array}\right]$. We then diagonalize $\boldsymbol{A}=\boldsymbol{S} \boldsymbol{\Lambda} \boldsymbol{S}^{-1}$ where

$$
\boldsymbol{S}=\left[\begin{array}{ll}
1 & 4 \\
1 & 1
\end{array}\right], \quad \boldsymbol{\Lambda}=\left[\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right], \quad \boldsymbol{S}^{-1}=\frac{-1}{3}\left[\begin{array}{cc}
1 & -4 \\
-1 & 1
\end{array}\right] .
$$

Hence, we can obtain

$$
\boldsymbol{u}=e^{\boldsymbol{A} t} \boldsymbol{u}_{0}=\boldsymbol{S} e^{\boldsymbol{\Lambda}^{\boldsymbol{t}}} \boldsymbol{S}^{-1} \boldsymbol{u}_{0}=\left[\begin{array}{c}
-e^{t}+4 e^{4 t} \\
-e^{t}+e^{4 t}
\end{array}\right]
$$

and

$$
y=-e^{t}+e^{4 t} .
$$

5. (a) True. Assume \boldsymbol{A} is a negative definite matrix. Let λ be an eigenvalue of \boldsymbol{A} and \boldsymbol{x} is a corresponding unit eigenvector. Then we can have

$$
\boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{x} \quad \Longrightarrow \quad \boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{x}^{T} \lambda \boldsymbol{x}=\lambda\|\boldsymbol{x}\|^{2}=\lambda<0 .
$$

(b) True. By part (a) of Problem $1, \lambda^{-1}$ is an eigenvalue of \boldsymbol{A}^{-1} if λ is an eigenvalue of \boldsymbol{A}. Since all λ 's are positive for a positive definite matrix \boldsymbol{A}, all λ^{-1} 's are positive. Hence, \boldsymbol{A}^{-1} is positive definite.
(c) True. Since the determinant of a positive definite matrix is positive, this matrix is invertible.
(d) False. Since the determinant of this matrix is negative, it is not positive definite.
(e) True. Since \boldsymbol{A} is nonsingular, all the eigenvalues of \boldsymbol{A} are nonzero. We learned from class that λ^{2} is an eigenvalue of \boldsymbol{A}^{2} if λ is an eigenvalue of \boldsymbol{A}. Therefore, all the eigenvalues of \boldsymbol{A}^{2} are positive, which implies that \boldsymbol{A}^{2} is positive definite.
(f) False. Let

$$
\boldsymbol{A}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad \boldsymbol{B}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] .
$$

Since $\boldsymbol{A}^{2}=\boldsymbol{B}^{2}=\boldsymbol{I}_{2}, \boldsymbol{B}^{2}$ is similar to \boldsymbol{A}^{2}. However, since the eigenvalues of \boldsymbol{A} and \boldsymbol{B} are not the same, \boldsymbol{B} is not similar to \boldsymbol{A}.
6. We can find the eigenvalues of each matrix as follows.

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]: \lambda=1,1} \\
& {\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]: \lambda=1,-1} \\
& {\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]: \lambda=0,1} \\
& {\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right]: \lambda=0,1} \\
& {\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]: \lambda=0,1} \\
& {\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right]: \lambda=0,1 .}
\end{aligned}
$$

Since all 2×2 matrices with eigenvalues 0 and 1 are similar to each other (as they are all similar to a diagonal matrix with 0,1 on the diagonal), the following matrices are similar:

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right] .
$$

The matrices

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

are similar to themselves.
7. (a) After some calculations, we can obtain the eigenvalues and unit eigenvectors of $\boldsymbol{A}^{T} \boldsymbol{A}$ and $\boldsymbol{A} \boldsymbol{A}^{T}$ as follows:

$$
\begin{aligned}
& \boldsymbol{A}^{T} \boldsymbol{A}=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right] \\
& \boldsymbol{A} \boldsymbol{A}^{T}=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 1
\end{array}\right]
\end{aligned} \quad \Longrightarrow\left\{\begin{array}{lll}
\lambda_{1}=3 & \longleftrightarrow & \boldsymbol{v}_{1}=\frac{1}{\sqrt{2}}(1,1)^{T} \\
\lambda_{2}=1 & \longleftrightarrow & \boldsymbol{v}_{2}=\frac{1}{\sqrt{2}}(1,-1)^{T}
\end{array}\right] \begin{array}{lll}
\lambda_{1}=3 & \longleftrightarrow & \boldsymbol{u}_{1}=\frac{1}{\sqrt{6}}(1,2,1)^{T} \\
\lambda_{2}=1 & \longleftrightarrow & \boldsymbol{u}_{2}=\frac{1}{\sqrt{2}}(1,0,-1)^{T} \\
\lambda_{3}=0 & \longleftrightarrow & \boldsymbol{u}_{3}=\frac{1}{\sqrt{3}}(1,-1,1)^{T} .
\end{array}
$$

(b) According to (a), the singular value decomposition of \boldsymbol{A} is given by

$$
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}
$$

where

$$
\boldsymbol{U}=\frac{1}{\sqrt{6}}\left[\begin{array}{ccc}
1 & \sqrt{3} & \sqrt{2} \\
2 & 0 & -\sqrt{2} \\
1 & -\sqrt{3} & \sqrt{2}
\end{array}\right], \quad \boldsymbol{\Sigma}=\left[\begin{array}{cc}
\sqrt{3} & 0 \\
0 & 1 \\
0 & 0
\end{array}\right], \quad \boldsymbol{V}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

The decomposition can be verified by

$$
\begin{aligned}
\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T} & =\frac{1}{\sqrt{6}}\left[\begin{array}{ccc}
1 & \sqrt{3} & \sqrt{2} \\
2 & 0 & -\sqrt{2} \\
1 & -\sqrt{3} & \sqrt{2}
\end{array}\right] \cdot\left[\begin{array}{cc}
\sqrt{3} & 0 \\
0 & 1 \\
0 & 0
\end{array}\right] \cdot \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]^{T} \\
& =\frac{1}{\sqrt{6}}\left[\begin{array}{ccc}
1 & \sqrt{3} & \sqrt{2} \\
2 & 0 & -\sqrt{2} \\
1 & -\sqrt{3} & \sqrt{2}
\end{array}\right] \cdot \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
\sqrt{3} & \sqrt{3} \\
1 & -1 \\
0 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
0 & 1
\end{array}\right]=\boldsymbol{A}
\end{aligned}
$$

(c) According to what was taught in class, we know that we can use the unit eigenvectors obtained in (a) to form orthonormal bases for the four fundamental subspaces of \boldsymbol{A}. Therefore, $\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}\right\},\left\{\boldsymbol{u}_{3}\right\},\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}$, and ϕ are orthonormal bases for $\mathcal{C}(\boldsymbol{A}), \mathcal{N}\left(\boldsymbol{A}^{T}\right), \mathcal{C}\left(\boldsymbol{A}^{T}\right)$, and $\mathcal{N}(\boldsymbol{A})$, respectively. Note that the basis for the nullspace is the empty set.

