Homework Assignment No. 5
 Due 10:10am, May 31, 2013

Reading: Strang, Chapter 6, Handout "Spectral Theorem."
Problems for Solution:

1. Prove each of the following statements:
(a) If λ is an eigenvalue of an invertible matrix \boldsymbol{A}, then λ^{-1} is an eigenvalue of \boldsymbol{A}^{-1}.
(b) The eigenvalues of \boldsymbol{A} are the same as the eigenvalues of \boldsymbol{A}^{T}.
(c) If λ is an eigenvalue of an idempotent matrix, then λ must be either 0 or 1 . (An n by n matrix \boldsymbol{A} is said to be idempotent if $\boldsymbol{A}^{2}=\boldsymbol{A}$.)
2. Determine if each of the following matrices is diagonalizable. If it is, find an invertible matrix \boldsymbol{S} and a diagonal matrix $\boldsymbol{\Lambda}$ such that $\boldsymbol{S}^{-1} \boldsymbol{A} \boldsymbol{S}=\boldsymbol{\Lambda}$. If it is not, find its Jordan form.
(a) $\boldsymbol{A}=\left[\begin{array}{ccc}1 & 0 & 2 \\ 0 & -1 & -2 \\ 2 & -2 & 0\end{array}\right]$.
(b) $\boldsymbol{A}=\left[\begin{array}{lll}0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$.
3. (a) Do Problem 19 of Problem Set 6.2 in p. 309 of Strang.
(b) Do Problem 36 of Problem Set 6.2 in p. 311 of Strang.
4. (a) Solve the difference equation $G_{k+2}-(1 / 2) G_{k+1}-(1 / 2) G_{k}=0$ with initial conditions $G_{0}=0$ and $G_{1}=1 / 2$.
(b) Solve the differential equation $y^{\prime \prime}-5 y^{\prime}+4 y=0$ with initial conditions $y(0)=0$ and $y^{\prime}(0)=3$.
5. (This problem counts double.) Determine if each of the following statements is true. If yes, prove it. Otherwise, show why it is not or find a counterexample.
(a) The eigenvalues of a negative definite matrix are all negative.
(b) If \boldsymbol{A} is positive definite, then \boldsymbol{A}^{-1} is positive definite.
(c) A positive definite matrix is always invertible.
(d) $\left[\begin{array}{lll}4 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 5\end{array}\right]$ is positive definite.
(e) If \boldsymbol{A} is a symmetric nonsingular matrix, then \boldsymbol{A}^{2} is positive definite.
(f) If \boldsymbol{B}^{2} is similar to \boldsymbol{A}^{2}, then \boldsymbol{B} is similar to \boldsymbol{A}.
6. Which of these six matrices are similar?

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right] .
$$

7. Consider

$$
\boldsymbol{A}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
0 & 1
\end{array}\right]
$$

(a) Compute $\boldsymbol{A}^{T} \boldsymbol{A}$ and $\boldsymbol{A} \boldsymbol{A}^{T}$. Then find their eigenvalues and unit eigenvectors.
(b) Construct the singular value decomposition and verify that \boldsymbol{A} equals $\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}$.
(c) Find orthonormal bases for the four fundamental subspaces of \boldsymbol{A}.

