Solution to Homework Assignment No. 4

1. (a) By using row operations, we can obtain

$$
\begin{aligned}
|\boldsymbol{A}|=\left|\begin{array}{cccc}
1 & 2 & -2 & 0 \\
2 & 3 & -4 & 1 \\
-1 & -2 & 0 & 2 \\
0 & 2 & 5 & 3
\end{array}\right| & =\left|\begin{array}{cccc}
1 & 2 & -2 & 0 \\
0 & -1 & 0 & 1 \\
0 & 0 & -2 & 2 \\
0 & 2 & 5 & 3
\end{array}\right| \\
& =\left|\begin{array}{cccc}
1 & 2 & -2 & 0 \\
0 & -1 & 0 & 1 \\
0 & 0 & -2 & 2 \\
0 & 0 & 5 & 5
\end{array}\right| \\
& =\left|\begin{array}{cccc}
1 & 2 & -2 & 0 \\
0 & -1 & 0 & 1 \\
0 & 0 & -2 & 2 \\
0 & 0 & 0 & 10
\end{array}\right| \\
& =1 \cdot-1 \cdot-2 \cdot 10=20
\end{aligned}
$$

and

$$
\begin{aligned}
|\boldsymbol{B}|=\left|\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right| & =\left|\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2 \\
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & -1 & 2
\end{array}\right| \\
& =\left|\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right| \\
& =1 \cdot 1 \cdot 1 \cdot 1=1 .
\end{aligned}
$$

(b) We have $|2 \boldsymbol{A}|=2^{4} \cdot|\boldsymbol{A}|=320$ and $\left|\boldsymbol{A}^{T} \boldsymbol{B}\right|=\left|\boldsymbol{A}^{T}\right||\boldsymbol{B}|=|\boldsymbol{A}||\boldsymbol{B}|=20$.
2. (a) True. Since \boldsymbol{Q} is an orthogonal matrix, we have $\boldsymbol{Q}^{T} \boldsymbol{Q}=\boldsymbol{I}$. We can then obtain $1=|\boldsymbol{I}|=\left|\boldsymbol{Q}^{T} \boldsymbol{Q}\right|=\left|\boldsymbol{Q}^{T}\right||\boldsymbol{Q}|=|\boldsymbol{Q}||\boldsymbol{Q}|=|\boldsymbol{Q}|^{2}$. Therefore, $\operatorname{det} \boldsymbol{Q}$ is equal to 1 or -1 .
(b) True. Since \boldsymbol{A} is not invertible, we have $|\boldsymbol{A}|=0$. Then we can obtain $|\boldsymbol{A} \boldsymbol{B}|=|\boldsymbol{A}||\boldsymbol{B}|=0 \cdot|\boldsymbol{B}|=0$. Hence $\boldsymbol{A B}$ is not invertible.
(c) False. Let $\boldsymbol{A}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $\boldsymbol{B}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$. We have $|\boldsymbol{A}-\boldsymbol{B}|=\left|\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right|=$ -1. However, $|\boldsymbol{A}|-|\vec{B}|=0-0=0$. Hence $|\boldsymbol{A}-\boldsymbol{B}| \neq|\boldsymbol{A}|-|\boldsymbol{B}|$, which gives a counterexample.
(d) False. Let $\boldsymbol{A}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$. We have $\boldsymbol{A}^{T}=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]=-\boldsymbol{A}$. It is skewsymmetric. However, $\operatorname{det} \boldsymbol{A}=1$, which gives a counterexample.
3. Let $F_{n}=\left|\boldsymbol{A}_{\boldsymbol{n}}\right|$, where $\boldsymbol{A}_{\boldsymbol{n}}$ is an n by n matrix. For $n \geq 3$, we have

$$
F_{n}=\left|\begin{array}{ccccc}
1 & -1 & 0 & \cdots & 0 \\
1 & & & & \\
0 & & & \boldsymbol{A}_{n-1} \\
\vdots & & & & \\
0 & & & &
\end{array}\right|=\left|\begin{array}{ccccc}
1 & -1 & 0 & 0 \cdots & 0 \\
1 & 1 & -1 & 0 \cdots & 0 \\
0 & 1 & & & \\
0 & 0 & & \boldsymbol{A}_{n-2} & \\
\vdots & \vdots & & & \\
0 & 0 & & &
\end{array}\right| .
$$

Applying the cofactor formula to the first row, we can have

$$
\begin{aligned}
F_{n} & =1 \cdot(-1)^{1+1}\left|\boldsymbol{A}_{n-1}\right|+(-1) \cdot(-1)^{1+2}\left|\begin{array}{ccccc}
1 & -1 & 0 & \cdots & 0 \\
0 & & & & \\
0 & & \boldsymbol{A}_{n-2} \\
\vdots & & \\
0 &
\end{array}\right| \\
& =F_{n-1}+1 \cdot(-1)^{1+1}\left|\boldsymbol{A}_{n-2}\right| \quad \text { (apply the cofactor formula to the first column) } \\
& =F_{n-1}+F_{n-2} .
\end{aligned}
$$

4. (a) Let $S_{n}=\left|\boldsymbol{A}_{\boldsymbol{n}}\right|$, where $\boldsymbol{A}_{\boldsymbol{n}}$ is an n by n matrix. For $n \geq 3$, we have

Applying the cofactor formula to the first row, we can have

$$
\begin{aligned}
S_{n} & =3 \cdot(-1)^{1+1}\left|\boldsymbol{A}_{n-1}\right|+1 \cdot(-1)^{1+2}\left|\begin{array}{ccccc}
1 & 1 & 0 & \cdots & 0 \\
0 & & & \\
0 & & & \boldsymbol{A}_{n-2} \\
\vdots & & \\
0 &
\end{array}\right| \\
& =3 S_{n-1}-1 \cdot(-1)^{1+1}\left|\boldsymbol{A}_{n-2}\right| \quad \text { (apply the cofactor formula to the first column) } \\
& =3 S_{n-1}-S_{n-2} .
\end{aligned}
$$

Therefore, we can obtain $a=3$ and $b=-1$.
(b) We have

$$
\begin{aligned}
& S_{1}=3 \\
& S_{2}=8 \\
& S_{3}=3 S_{2}-S_{1}=21 \\
& S_{4}=3 S_{3}-S_{2}=55 \\
& S_{5}=3 S_{4}-S_{3}=144 .
\end{aligned}
$$

5. (a) Consider the last three rows

$$
\left[\begin{array}{lllll}
0 & 0 & 0 & x & x \\
0 & 0 & 0 & x & x \\
0 & 0 & 0 & x & x
\end{array}\right] .
$$

The rank of this submatrix is at most 2 . Therefore, the rows are dependent.
(b) The big formula states that the determinant of \boldsymbol{A} is the sum of 5 ! simple determinants, times 1 or -1 , and every simple determinant chooses one entry from each row and column. From the last three rows, we can see that if some simple determinant of \boldsymbol{A} avoids all the zero entries in \boldsymbol{A}, then it cannot choose one entry from each column. Thus every simple determinant of \boldsymbol{A} must choose at least one zero entry, and hence all the terms are zero in the big formula for $\operatorname{det} \boldsymbol{A}$.
6. (a) For the first system, we have

$$
\left[\begin{array}{ll}
2 & 5 \\
1 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right] .
$$

Using Cramer's rule, we can obtain

$$
x_{1}=\frac{\left|\begin{array}{ll}
1 & 5 \\
2 & 4
\end{array}\right|}{\left|\begin{array}{ll}
2 & 5 \\
1 & 4
\end{array}\right|}=-2 \text { and } x_{2}=\frac{\left|\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right|}{\left|\begin{array}{ll}
2 & 5 \\
1 & 4
\end{array}\right|}=1 .
$$

(b) For the second system, we have

$$
\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] .
$$

Using Cramer's rule, we can obtain

$$
x_{1}=\frac{\left|\begin{array}{lll}
1 & 1 & 0 \\
0 & 2 & 1 \\
0 & 1 & 2
\end{array}\right|}{\left|\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right|}=\frac{3}{4}, x_{2}=\frac{\left|\begin{array}{lll}
2 & 1 & 0 \\
1 & 0 & 1 \\
0 & 0 & 2
\end{array}\right|}{\left|\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right|}=-\frac{1}{2}, \text { and } x_{3}=\frac{\left|\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 0 \\
0 & 1 & 0
\end{array}\right|}{\left|\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right|}=\frac{1}{4}
$$

7. (a) We have

$$
\begin{gathered}
\boldsymbol{C}_{11}=\left|\begin{array}{ll}
2 & 2 \\
2 & 4
\end{array}\right|=4, \boldsymbol{C}_{22}=\left|\begin{array}{ll}
1 & 1 \\
1 & 4
\end{array}\right|=3, \boldsymbol{C}_{33}=\left|\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right|=1 \\
\boldsymbol{C}_{21}=\boldsymbol{C}_{12}=-\left|\begin{array}{ll}
1 & 1 \\
2 & 4
\end{array}\right|=-2, \boldsymbol{C}_{31}=\boldsymbol{C}_{13}=\left|\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right|=0, \boldsymbol{C}_{32}=\boldsymbol{C}_{23}=-\left|\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right|=-1 .
\end{gathered}
$$

Therefore, the cofactor matrix is given by

$$
\boldsymbol{C}=\left[\begin{array}{ccc}
4 & -2 & 0 \\
-2 & 3 & -1 \\
0 & -1 & 1
\end{array}\right]
$$

(b) Since $\left(\boldsymbol{C}^{T} / \operatorname{det} \boldsymbol{A}\right)=\boldsymbol{A}^{-1}$, we know that $\boldsymbol{A} \boldsymbol{C}^{T}=(\operatorname{det} \boldsymbol{A}) \boldsymbol{A} \boldsymbol{A}^{-1}=(\operatorname{det} \boldsymbol{A}) \boldsymbol{I}$. We have

$$
\boldsymbol{A} \boldsymbol{C}^{T}=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]=(\operatorname{det} \boldsymbol{A}) \boldsymbol{I}
$$

Therefore, it can be obtained that $\operatorname{det} \boldsymbol{A}=2$.
8. (a) Since the Hadamard matrix \boldsymbol{H}_{4} has orthogonal rows, the box is a hypercube and the absolute value of the volume is the multiplication of lengths of the row vectors. We know that every row vector has equal length $\sqrt{1^{2}+1^{2}+1^{2}+1^{2}}=$ 2. Therefore,

$$
\left|\operatorname{det} \boldsymbol{H}_{4}\right|=2 \cdot 2 \cdot 2 \cdot 2=16
$$

(b) For \boldsymbol{H}_{4}, from (a) we can have $\boldsymbol{H}_{4} \boldsymbol{H}_{4}^{T}=4 \boldsymbol{I}_{4}$, where \boldsymbol{I}_{n} is the n by n identity matrix. We now have

$$
\begin{aligned}
\boldsymbol{H}_{8} \boldsymbol{H}_{8}^{T} & =\left[\begin{array}{cc}
\boldsymbol{H}_{4} & \boldsymbol{H}_{4} \\
\boldsymbol{H}_{4} & -\boldsymbol{H}_{4}
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{H}_{4}^{T} & \boldsymbol{H}_{4}^{T} \\
\boldsymbol{H}_{4}^{T} & -\boldsymbol{H}_{4}^{T}
\end{array}\right] \\
& =\left[\begin{array}{cc}
2 \boldsymbol{H} \boldsymbol{H}_{4}^{T} & \boldsymbol{H}_{4} \boldsymbol{H}_{4}^{T}-\boldsymbol{H}_{4} \boldsymbol{H}_{4}^{T} \\
\boldsymbol{H}_{4} \boldsymbol{H}_{4}^{T}-\boldsymbol{H}_{4} \boldsymbol{H}_{4}^{T} & 2 \boldsymbol{H} \boldsymbol{H}_{4}^{T}
\end{array}\right] \\
& =\left[\begin{array}{cc}
8 \boldsymbol{I}_{4} & \boldsymbol{O} \\
\boldsymbol{O} & 8 \boldsymbol{I}_{4}
\end{array}\right]=8 \boldsymbol{I}_{8} .
\end{aligned}
$$

Therefore, the rows of \boldsymbol{H}_{8} are mutually orthogonal. It is still a hypercube and the absolute value of the volume is the multiplication of lengths of the row vectors. Every row vector has equal length $\sqrt{8}$. Therefore,

$$
\left|\operatorname{det} \boldsymbol{H}_{8}\right|=(\sqrt{8})^{8}=4096
$$

