# Homework Assignment No. 4 Due 10:10am, May 1, 2013 

Reading: Strang, Chapter 5.
Problems for Solution:

1. (a) By using row operations, compute the determinants of the following matrices:

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
1 & 2 & -2 & 0 \\
2 & 3 & -4 & 1 \\
-1 & -2 & 0 & 2 \\
0 & 2 & 5 & 3
\end{array}\right] \quad \text { and } \quad \boldsymbol{B}=\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right]
$$

(b) Find the determinants of $2 \boldsymbol{A}$ and $\boldsymbol{A}^{T} \boldsymbol{B}$.
2. True or false. (If it is true, prove it. Otherwise, find a counterexample.) (All matrices are square matrices.)
(a) An orthogonal matrix $\boldsymbol{Q}$ has determinant $\operatorname{det} \boldsymbol{Q}$ equal to 1 or -1 .
(b) If $\boldsymbol{A}$ is not invertible, then $\boldsymbol{A} \boldsymbol{B}$ is not invertible.
(c) The determinant of $\boldsymbol{A}-\boldsymbol{B}$ equals $\operatorname{det} \boldsymbol{A}-\operatorname{det} \boldsymbol{B}$.
(d) If $\boldsymbol{A}$ is skew-symmetric, i.e., $\boldsymbol{A}^{T}=-\boldsymbol{A}$, then $\operatorname{det} \boldsymbol{A}=0$.
3. Do Problem 16 of Problem Set 5.2 in p. 265 of Strang.
4. Let $S_{n}$ be the determinant of the $1,3,1$ tridiagonal matrix of order $n$ :

$$
S_{1}=|3|, \quad S_{2}=\left|\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right|, \quad S_{3}=\left|\begin{array}{ccc}
3 & 1 & 0 \\
1 & 3 & 1 \\
0 & 1 & 3
\end{array}\right|, \quad S_{4}=\left|\begin{array}{cccc}
3 & 1 & 0 & 0 \\
1 & 3 & 1 & 0 \\
0 & 1 & 3 & 1 \\
0 & 0 & 1 & 3
\end{array}\right|, \quad \ldots
$$

(a) Show that $S_{n}=a S_{n-1}+b S_{n-2}$, for $n \geq 3$. Find the constants $a$ and $b$.
(b) Find $S_{1}, S_{2}, S_{3}, S_{4}$, and $S_{5}$.
5. Do Problem 34 of Problem Set 5.2 in p. 268 of Strang.
6. Use Cramer's rule to solve each of the following systems of linear equations:

$$
\begin{array}{r}
2 x_{1}+5 x_{2}=1 \\
x_{1}+4 x_{2}=2
\end{array}
$$

and

$$
\begin{aligned}
2 x_{1}+x_{2} & =1 \\
x_{1}+2 x_{2}+x_{3} & =0 \\
x_{2}+2 x_{3} & =0 .
\end{aligned}
$$

7. (a) Find the cofactor matrix $\boldsymbol{C}$ of

$$
\boldsymbol{A}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 4
\end{array}\right]
$$

(b) Multiply $\boldsymbol{A} \boldsymbol{C}^{T}$ to find $\operatorname{det} \boldsymbol{A}$.
8. A Hadamard matrix, named after the French mathematician Jacques Hadamard, is a square matrix whose entries are either 1 or -1 and whose rows are mutually orthogonal.
(a) Here is an example of a 4 by 4 Hadamard matrix:

$$
\boldsymbol{H}_{4}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
$$

Based on the volume argument, find $\left|\operatorname{det} \boldsymbol{H}_{4}\right|$ (the absolute value of $\operatorname{det} \boldsymbol{H}_{4}$ ).
(b) An 8 by 8 Hadamard matrix can be given by

$$
\boldsymbol{H}_{8}=\left[\begin{array}{cc}
\boldsymbol{H}_{4} & \boldsymbol{H}_{4} \\
\boldsymbol{H}_{4} & -\boldsymbol{H}_{4}
\end{array}\right] .
$$

First verify that the rows are mutually orthogonal. Then find $\left|\operatorname{det} \boldsymbol{H}_{8}\right|$.

