Solution to Homework Assignment No. 3

1. (a) Since $\boldsymbol{v}^{T} \mathbf{0}=0, \forall \boldsymbol{v} \in \mathcal{R}^{3}$, we have $S^{\perp}=\mathcal{R}^{3}$.
(b) Let $\boldsymbol{A}_{1}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$. We can have $S=\mathcal{C}\left(\boldsymbol{A}_{1}^{T}\right)$ and

$$
S^{\perp}=\mathcal{C}\left(\boldsymbol{A}_{1}^{T}\right)^{\perp}=\mathcal{N}\left(\boldsymbol{A}_{1}\right)=\left\{\boldsymbol{x}: \boldsymbol{x}=x_{2}\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right], x_{2}, x_{3} \in \mathcal{R}\right\} .
$$

(c) Let $\boldsymbol{A}_{2}=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1 & -1\end{array}\right]$. We can have $S=\mathcal{C}\left(\boldsymbol{A}_{2}^{T}\right)$ and

$$
S^{\perp}=\mathcal{C}\left(\boldsymbol{A}_{2}^{T}\right)^{\perp}=\mathcal{N}\left(\boldsymbol{A}_{2}\right)=\left\{\boldsymbol{x}: \boldsymbol{x}=x_{2}\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right], x_{2} \in \mathcal{R}\right\} .
$$

Hence, $\left\{\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]\right\}$ is a basis for S^{\perp}.
2. (a) We can have $\mathcal{C}\left(\boldsymbol{A}^{T}\right)^{\perp}=\mathcal{N}(\boldsymbol{A})$. Since the RRE form of \boldsymbol{A} is

$$
\boldsymbol{R}_{A}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

we can obtain that $\left\{(-1,0,1)^{T}\right\}$ is a basis for the orthogonal complement of the row space of \boldsymbol{A}.
(b) In class we knew that the projection matrix onto the column space of \boldsymbol{A} is given by

$$
\begin{equation*}
\boldsymbol{P}=\boldsymbol{A}\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{T} \tag{1}
\end{equation*}
$$

where \boldsymbol{A} is assumed to have full column rank so that $\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{-1}$ exists. Unfortunately, the matrix

$$
\boldsymbol{A}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 1
\end{array}\right]
$$

does not have full column rank, and hence we cannot apply the formula (1) directly. Yet from \boldsymbol{R}_{A}, we can find that a basis for $\mathcal{C}(\boldsymbol{A})$ can be given by $\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$. Let $\hat{\boldsymbol{A}}=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$. Then we can have

$$
\boldsymbol{P}_{C}=\hat{\boldsymbol{A}}\left(\hat{\boldsymbol{A}}^{T} \hat{\boldsymbol{A}}\right)^{-1} \hat{\boldsymbol{A}}^{T}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\boldsymbol{I} .
$$

(c) The projection matrix \boldsymbol{P}_{R} onto the row space of \boldsymbol{A} can be obtained by replacing \boldsymbol{A} in (1) with \boldsymbol{A}^{T}. Hence we can have

$$
\boldsymbol{P}_{R}=\boldsymbol{A}^{T}\left(\boldsymbol{A} \boldsymbol{A}^{T}\right)^{-1} \boldsymbol{A}=\left[\begin{array}{ccc}
1 / 2 & 0 & 1 / 2 \\
0 & 1 & 0 \\
1 / 2 & 0 & 1 / 2
\end{array}\right] .
$$

(d) From (c), we can have

$$
\boldsymbol{x}_{r}=\boldsymbol{P}_{R} \boldsymbol{x}^{T}=\left[\begin{array}{l}
2 \\
2 \\
2
\end{array}\right]
$$

and

$$
\boldsymbol{x}_{n}=\boldsymbol{x}-\boldsymbol{x}_{r}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] .
$$

(e) We can have

$$
\left[\begin{array}{lll|l}
1 & 1 & 1 & 2 \\
1 & 0 & 1 & 3
\end{array}\right] \Longrightarrow\left[\begin{array}{lll|c}
1 & 0 & 1 & 3 \\
0 & 1 & 0 & -1
\end{array}\right]
$$

A particular solution \boldsymbol{x}_{p} to $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ can be given by

$$
\boldsymbol{x}_{p}=\left[\begin{array}{c}
3 \\
-1 \\
0
\end{array}\right] .
$$

Hence

$$
\boldsymbol{x}_{r}=\boldsymbol{P}_{R} \boldsymbol{x}_{p}=\left[\begin{array}{c}
3 / 2 \\
-1 \\
3 / 2
\end{array}\right] .
$$

3. (a) We can have

$$
\left\{\begin{array}{rl}
C+D+E & =3 \\
C+3 E & =6 \\
C+2 D+E & =5 \\
C & =0
\end{array} \quad \Longrightarrow \quad \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}\right.
$$

where

$$
\boldsymbol{A}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 3 \\
1 & 2 & 1 \\
1 & 0 & 0
\end{array}\right], \quad \boldsymbol{x}=\left[\begin{array}{c}
C \\
D \\
E
\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{l}
3 \\
6 \\
5 \\
0
\end{array}\right]
$$

The best least squares fit can be derived by solving $\boldsymbol{A}^{T} \boldsymbol{A} \hat{\boldsymbol{x}}=\boldsymbol{A}^{T} \boldsymbol{b}$. Hence one can obtain

$$
\hat{\boldsymbol{x}}=\left[\begin{array}{l}
C \\
D \\
E
\end{array}\right]=\left[\begin{array}{c}
-3 / 25 \\
73 / 50 \\
101 / 50
\end{array}\right] .
$$

(b) We can have

$$
\left\{\begin{array}{c}
C=y_{1} \\
C=y_{2} \\
\vdots \\
C=y_{m}
\end{array} \quad \Longrightarrow \quad \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}\right.
$$

where

$$
\boldsymbol{A}=\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right], \quad \boldsymbol{x}=C, \quad \boldsymbol{b}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right]
$$

The best least squares fit can be found by solving $\boldsymbol{A}^{T} \boldsymbol{A} \hat{\boldsymbol{x}}=\boldsymbol{A}^{T} \boldsymbol{b}$. Hence, we can obtain

$$
m C=y_{1}+y_{2}+\cdots+y_{m} \quad \Longrightarrow \quad C=\frac{y_{1}+y_{2}+\cdots+y_{m}}{m}
$$

4. (a) Let $\boldsymbol{y} \triangleq \boldsymbol{A} \boldsymbol{x}$ and $\boldsymbol{z} \triangleq \boldsymbol{A}^{T} \boldsymbol{y}$. Since

$$
\frac{\partial}{\partial x_{k}}\|\boldsymbol{A} \boldsymbol{x}\|^{2}=\frac{\partial}{\partial x_{k}}\|\boldsymbol{y}\|^{2}=\frac{\partial}{\partial x_{k}} \sum_{i=1}^{m} y_{i}^{2}=\sum_{i=1}^{m} 2 y_{i} \frac{\partial y_{i}}{\partial x_{k}}
$$

and

$$
\frac{\partial y_{i}}{\partial x_{k}}=\frac{\partial}{\partial x_{k}} \sum_{j=1}^{n} A_{i j} x_{j}=A_{i k}=A_{k i}^{T}
$$

we have

$$
\frac{\partial}{\partial x_{k}}\|\boldsymbol{A} \boldsymbol{x}\|^{2}=2 \sum_{i=1}^{m} A_{k i}^{T} y_{i}=2 z_{k}
$$

Collecting the partial derivatives yields

$$
\left[\begin{array}{c}
\frac{\partial}{\partial x_{1}}\|\boldsymbol{A} \boldsymbol{x}\|^{2} \\
\vdots \\
\frac{\partial}{\partial x_{n}}\|\boldsymbol{A} \boldsymbol{x}\|^{2}
\end{array}\right]=\left[\begin{array}{c}
2 z_{1} \\
\vdots \\
2 z_{n}
\end{array}\right]=2 \boldsymbol{z}=2 \boldsymbol{A}^{T} \boldsymbol{y}=2 \boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}
$$

(b) Let $\boldsymbol{w} \triangleq \boldsymbol{A}^{T} \boldsymbol{b}$. Then we have

$$
\frac{\partial}{\partial x_{k}}\left(2 \boldsymbol{b}^{T} \boldsymbol{A} \boldsymbol{x}\right)=\frac{\partial}{\partial x_{k}}\left(2 \sum_{i=1}^{m} b_{i} y_{i}\right)=2 \sum_{i=1}^{m} A_{k i}^{T} b_{i}=2 w_{k} .
$$

Collecting the partial derivatives yields

$$
\left[\begin{array}{c}
\frac{\partial}{\partial x_{1}}\left(2 \boldsymbol{b}^{T} \boldsymbol{A} \boldsymbol{x}\right) \\
\vdots \\
\frac{\partial}{\partial x_{n}}\left(2 \boldsymbol{b}^{T} \boldsymbol{A} \boldsymbol{x}\right)
\end{array}\right]=\left[\begin{array}{c}
2 w_{1} \\
\vdots \\
2 w_{n}
\end{array}\right]=2 \boldsymbol{w}=2 \boldsymbol{A}^{T} \boldsymbol{b}
$$

(c) Finally, we can have

$$
\frac{\partial}{\partial x_{k}}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|^{2}=\frac{\partial}{\partial x_{k}}\|\boldsymbol{A} \boldsymbol{x}\|^{2}-\frac{\partial}{\partial x_{k}}\left(2 \boldsymbol{b}^{T} \boldsymbol{A} \boldsymbol{x}\right)=2 z_{k}-2 w_{k} .
$$

Collecting the partial derivatives yields

$$
\left[\begin{array}{c}
\frac{\partial}{\partial x_{1}}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|^{2} \\
\vdots \\
\frac{\partial}{\partial x_{n}}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|^{2}
\end{array}\right]=\left[\begin{array}{c}
2 z_{1}-2 w_{1} \\
\vdots \\
2 z_{n}-2 w_{n}
\end{array}\right]=2(\boldsymbol{z}-\boldsymbol{w})=2\left(\boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}-\boldsymbol{A}^{T} \boldsymbol{b}\right) .
$$

Hence, the partial derivatives of $\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|^{2}$ are zero when $\boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{A}^{T} \boldsymbol{b}$.
5. (a) We have

$$
\begin{aligned}
\boldsymbol{Q}^{T} \boldsymbol{Q} & =\left(\boldsymbol{I}-2 \boldsymbol{u} \boldsymbol{u}^{T}\right)^{T}\left(\boldsymbol{I}-2 \boldsymbol{u} \boldsymbol{u}^{T}\right)=\left(\boldsymbol{I}-2 \boldsymbol{u} \boldsymbol{u}^{T}\right)\left(\boldsymbol{I}-2 \boldsymbol{u} \boldsymbol{u}^{T}\right) \\
& =\boldsymbol{I}-4 \boldsymbol{u} \boldsymbol{u}^{T}+4 \boldsymbol{u} \boldsymbol{u}^{T} \boldsymbol{u} \boldsymbol{u}^{T}
\end{aligned}
$$

Since \boldsymbol{u} is a unit vector, we have $\boldsymbol{u}^{T} \boldsymbol{u}=1$. And hence

$$
\boldsymbol{Q}^{T} \boldsymbol{Q}=\boldsymbol{I}-4 \boldsymbol{u} \boldsymbol{u}^{T}+4 \boldsymbol{u} \boldsymbol{u}^{T} \boldsymbol{u} \boldsymbol{u}^{T}=\boldsymbol{I}-4 \boldsymbol{u} \boldsymbol{u}^{T}+4 \boldsymbol{u} \boldsymbol{u}^{T}=\boldsymbol{I} .
$$

As a result, \boldsymbol{Q} is an orthogonal matrix.
(b) We can have

$$
\boldsymbol{Q u}=\left(\boldsymbol{I}-2 \boldsymbol{u} \boldsymbol{u}^{T}\right) \boldsymbol{u}=\boldsymbol{u}-2 \boldsymbol{u} \boldsymbol{u}^{T} \boldsymbol{u}=\boldsymbol{u}-2 \boldsymbol{u}=-\boldsymbol{u} .
$$

(c) We have

$$
\boldsymbol{Q v}=\left(\boldsymbol{I}-2 \boldsymbol{u} \boldsymbol{u}^{T}\right) \boldsymbol{v}=\boldsymbol{v}-2 \boldsymbol{u} \boldsymbol{u}^{T} \boldsymbol{v}
$$

Since \boldsymbol{v} and \boldsymbol{u} are orthogonal, $\boldsymbol{u}^{T} \boldsymbol{v}=0$. Hence

$$
\boldsymbol{Q v}=\boldsymbol{v}-2 \boldsymbol{u} \boldsymbol{u}^{T} \boldsymbol{v}=\boldsymbol{v}
$$

6. (a) Let $\boldsymbol{A}=\left[\begin{array}{lll}\boldsymbol{a}_{1} & \boldsymbol{a}_{2} & \boldsymbol{a}_{3}\end{array}\right]$, where

$$
\boldsymbol{a}_{1}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \quad \boldsymbol{a}_{2}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right], \quad \boldsymbol{a}_{3}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Applying the Gram-Schmidt process, we can have

$$
\begin{aligned}
& \boldsymbol{A}_{1}=\boldsymbol{a}_{1}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \Longrightarrow \boldsymbol{q}_{1}=\frac{\boldsymbol{A}_{1}}{\left\|\boldsymbol{A}_{1}\right\|}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
& \boldsymbol{A}_{2}=\boldsymbol{a}_{2}-\left(\boldsymbol{q}_{1}^{T} \boldsymbol{a}_{2}\right) \boldsymbol{q}_{1}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \Longrightarrow \boldsymbol{q}_{2}=\frac{\boldsymbol{A}_{2}}{\left\|\boldsymbol{A}_{2}\right\|}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \\
& \boldsymbol{A}_{3}=\boldsymbol{a}_{3}-\left(\boldsymbol{q}_{1}^{T} \boldsymbol{a}_{3}\right) \boldsymbol{q}_{1}-\left(\boldsymbol{q}_{2}^{T} \boldsymbol{a}_{3}\right) \boldsymbol{q}_{2}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \Longrightarrow \boldsymbol{q}_{3}=\frac{\boldsymbol{A}_{3}}{\left\|\boldsymbol{A}_{3}\right\|}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] .
\end{aligned}
$$

Hence, $\left\{\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, \boldsymbol{q}_{3}\right\}$ forms an orthonormal basis for the column space of \boldsymbol{A}.
(b) From (a), we can have

$$
\begin{aligned}
\boldsymbol{A} & =\left[\begin{array}{lll}
\boldsymbol{a}_{1} & \boldsymbol{a}_{2} & \boldsymbol{a}_{3}
\end{array}\right] \\
& =\left[\begin{array}{lll}
\boldsymbol{q}_{1} & \boldsymbol{q}_{2} & \boldsymbol{q}_{3}
\end{array}\right]\left[\begin{array}{ccc}
\boldsymbol{q}_{1}^{T} \boldsymbol{a}_{1} & \boldsymbol{q}_{1}^{T} \boldsymbol{a}_{2} & \boldsymbol{q}_{1}^{T} \boldsymbol{a}_{3} \\
0 & \boldsymbol{q}_{2}^{T} \boldsymbol{a}_{2} & \boldsymbol{q}_{2}^{T} \boldsymbol{a}_{3} \\
0 & 0 & \boldsymbol{q}_{3}^{T} \boldsymbol{a}_{3}
\end{array}\right] \\
& =\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]=\boldsymbol{Q} \boldsymbol{R}
\end{aligned}
$$

where

$$
\boldsymbol{Q}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right], \quad \boldsymbol{R}=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

7. (a) Let $f_{1}(x)=1, f_{2}(x)=x, f_{3}(x)=x^{2}$. Applying the Gram-Schmidt process, we can have

$$
\begin{aligned}
F_{1}(x) & =f_{1}(x)=1 \quad \Longrightarrow \quad q_{1}(x)=\frac{F_{1}(x)}{\left\|F_{1}(x)\right\|}=\frac{\sqrt{2}}{2} \\
F_{2}(x) & =f_{2}(x)-\left\langle q_{1}(x), f_{2}(x)\right\rangle q_{1}(x)=x \quad \Longrightarrow \quad q_{2}(x)=\frac{F_{2}(x)}{\left\|F_{2}(x)\right\|}=\frac{\sqrt{6}}{2} x \\
F_{3}(x) & =f_{3}(x)-\left\langle q_{1}(x), f_{3}(x)\right\rangle q_{1}(x)-\left\langle q_{2}(x), f_{3}(x)\right\rangle q_{2}(x)=x^{2}-\frac{1}{3} \\
& \Longrightarrow \quad q_{3}(x)=\frac{F_{3}(x)}{\left\|F_{3}(x)\right\|}=\frac{3 \sqrt{10}}{4}\left(x^{2}-\frac{1}{3}\right) .
\end{aligned}
$$

Hence, $\left\{q_{1}(x), q_{2}(x), q_{3}(x)\right\}$ forms an orthonormal basis for the subspace spanned by $1, x$, and x^{2}.
(b) The best least squares approximation to x^{3} by $C+D x+E x^{2}$ is the projection of x^{3} onto the subspace spanned by $1, x$, and x^{2}. In (a), we have already derived an orthonormal basis for this subspace. Since

$$
\begin{aligned}
\left\langle q_{1}, x^{3}\right\rangle & =0 \\
\left\langle q_{2}, x^{3}\right\rangle & =\frac{\sqrt{6}}{5} \\
\left\langle q_{3}, x^{3}\right\rangle & =0
\end{aligned}
$$

the best least squares approximation to x^{3} by $C+D x+E x^{2}$ is

$$
\left\langle q_{1}, x^{3}\right\rangle q_{1}+\left\langle q_{2}, x^{3}\right\rangle q_{2}+\left\langle q_{3}, x^{3}\right\rangle q_{3}=\frac{3}{5} x
$$

