Homework Assignment No. 3
 Due 10:10am, April 19, 2013

Reading: Strang, Chapter 4, Section 8.5.
Problems for Solution:

1. Do Problem 17 of Problem Set 4.1 in p. 204 of Strang.
2. (This problem counts double.) Consider

$$
\boldsymbol{A}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 1
\end{array}\right]
$$

(a) Find a basis for the orthogonal complement of the row space of \boldsymbol{A}.
(b) Find the projection matrix \boldsymbol{P}_{C} onto the column space of \boldsymbol{A}.
(c) Find the projection matrix \boldsymbol{P}_{R} onto the row space of \boldsymbol{A}.
(d) Given $\boldsymbol{x}=(1,2,3)$, find \boldsymbol{x}_{r} and \boldsymbol{x}_{n} such that $\boldsymbol{x}=\boldsymbol{x}_{r}+\boldsymbol{x}_{n}$, where \boldsymbol{x}_{r} is in the row space of \boldsymbol{A} and \boldsymbol{x}_{n} is in the nullspace of \boldsymbol{A}.
(e) Given

$$
\boldsymbol{b}=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

in the column space of \boldsymbol{A}, find a vector \boldsymbol{x}_{r} in the row space of \boldsymbol{A} such that

$$
\boldsymbol{A} \boldsymbol{x}_{r}=\boldsymbol{b}
$$

3. (a) Find the best least squares fit by a plane $y=C+D t+E z$ to the four points

$$
\begin{array}{ll}
y=3 \text { at } t=1, z=1 & y=6 \text { at } t=0, z=3 \\
y=5 \text { at } t=2, z=1 & y=0 \text { at } t=0, z=0 .
\end{array}
$$

(b) Show that the best least squares fit to a set of measurements $y_{1}, y_{2}, \ldots, y_{m}$ by a horizontal line - in other words, by a constant function $y=C$-is their average

$$
C=\frac{y_{1}+y_{2}+\cdots+y_{m}}{m}
$$

(In statistical terms, the choice \bar{y} that minimizes the error $E^{2}=\left(y_{1}-y\right)^{2}+\left(y_{2}-\right.$ $y)^{2}+\cdots+\left(y_{m}-y\right)^{2}$ is the mean of the sample, and the resulting E^{2} is the variance σ^{2}.)
4. Let

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right], \quad \boldsymbol{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right], \quad \text { and } \boldsymbol{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right] .
$$

(a) Show that the partial derivatives of $\|\boldsymbol{A} \boldsymbol{x}\|^{2}$ with respect to $x_{1}, x_{2}, \ldots, x_{n}$ fill the vector $2 \boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}$.
(b) Show that the partial derivatives of $2 \boldsymbol{b}^{T} \boldsymbol{A} \boldsymbol{x}$ fill the vector $2 \boldsymbol{A}^{T} \boldsymbol{b}$.
(c) Show that the partial derivatives of $\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|^{2}$ are zero when $\boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{A}^{T} \boldsymbol{b}$.
5. Suppose \boldsymbol{I} is the n by n identity matrix and \boldsymbol{u} is an n by 1 unit vector, i.e., $\|\boldsymbol{u}\|=1$. Consider the matrix $\boldsymbol{Q}=\boldsymbol{I}-2 \boldsymbol{u} \boldsymbol{u}^{T}$.
(a) Show that \boldsymbol{Q} is an orthogonal matrix. (It is a reflection, also known as a Householder transformation.)
(b) Show that $\boldsymbol{Q u}=-\boldsymbol{u}$.
(c) Find $\boldsymbol{Q} \boldsymbol{v}$ when \boldsymbol{v} and \boldsymbol{u} are orthogonal.
6. Consider

$$
\boldsymbol{A}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

(a) Apply the Gram-Schmidt process to find an orthonormal basis for the column space of \boldsymbol{A}.
(b) Write \boldsymbol{A} as $\boldsymbol{Q R}$.
7. Consider the vector space $C[-1,1]$, the space of all real-valued continuous functions on $[-1,1]$, with inner product defined by

$$
\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x
$$

(a) Find an orthonormal basis for the subspace spanned by $1, x$, and x^{2}.
(b) Find the best least squares approximation to x^{3} on $[-1,1]$ by a quadratic function $C+D x+E x^{2}$.

