Solution to Homework Assignment No. 2

1. (a) No. Let $W=\left\{\left(b_{1}, b_{2}, b_{3}\right): b_{1}=1\right\}$. Suppose $\left(1, b_{2}, b_{3}\right),\left(1, b_{2}^{\prime}, b_{3}^{\prime}\right) \in W$. Since

$$
\left(1, b_{2}, b_{3}\right)+\left(1, b_{2}^{\prime}, b_{3}^{\prime}\right)=\left(2, b_{2}+b_{3}^{\prime}, b_{3}+b_{3}^{\prime}\right) \notin W
$$

W is not a subspace of \mathcal{R}^{3}
(b) Yes. Let $W=\left\{\left(b_{1}, b_{2}, b_{3}\right): b_{3}-b_{2}+3 b_{1}=0\right\}$. Suppose $\boldsymbol{w}_{1}=\left(b_{1}, b_{2}, b_{3}\right)$, $\boldsymbol{w}_{2}=\left(b_{1}^{\prime}, b_{2}^{\prime}, b_{3}^{\prime}\right) \in W$. We check the following two conditions:
(i) Consider $\boldsymbol{w}_{1}+\boldsymbol{w}_{2}=\left(b_{1}+b_{1}^{\prime}, b_{2}+b_{2}^{\prime}, b_{3}+b_{3}^{\prime}\right)$. Since

$$
\left(b_{3}+b_{3}^{\prime}\right)-\left(b_{2}+b_{2}^{\prime}\right)+3\left(b_{1}+b_{1}^{\prime}\right)=\left(b_{3}-b_{2}+3 b_{1}\right)+\left(b_{3}^{\prime}-b_{2}^{\prime}+3 b_{1}^{\prime}\right)=0
$$

we have $\boldsymbol{w}_{1}+\boldsymbol{w}_{2} \in W$.
(ii) Consider $c \boldsymbol{w}_{1}=\left(c b_{1}, c b_{2}, c b_{3}\right)$. Since $c b_{3}-c b_{2}+3 c b_{1}=c\left(b_{3}-b_{2}+3 b_{1}\right)=0$, we have $c \boldsymbol{w}_{1} \in W$.

As a result, W is a subspace of \mathcal{R}^{3}.
(c) Yes. Let $W=\left\{a_{1}(1,1,0)+a_{2}(2,0,1): a_{1}, a_{2} \in \mathcal{R}\right\}$. Suppose $\boldsymbol{w}_{1}=$ $a_{1}(1,1,0)+a_{2}(2,0,1), \boldsymbol{w}_{2}=a_{1}^{\prime}(1,1,0)+a_{2}^{\prime}(2,0,1) \in W$. We check the following two cases:
(i) Consider $\boldsymbol{w}_{1}+\boldsymbol{w}_{2}$. We can have

$$
\begin{aligned}
\boldsymbol{w}_{1}+\boldsymbol{w}_{2} & =a_{1}(1,1,0)+a_{2}(2,0,1)+a_{1}^{\prime}(1,1,0)+a_{2}^{\prime}(2,0,1) \\
& =\left(a_{1}+a_{1}^{\prime}\right)(1,1,0)+\left(a_{2}+a_{2}^{\prime}\right)(2,0,1) \in W .
\end{aligned}
$$

(ii) Consider $c \boldsymbol{w}_{1}$ where $c \in \mathcal{R}$. Then we can obtain

$$
\begin{aligned}
c \boldsymbol{w}_{1} & =c\left(a_{1}(1,1,0)+a_{2}(2,0,1)\right) \\
& =c a_{1}(1,1,0)+c a_{2}(2,0,1) \in W .
\end{aligned}
$$

Therefore, W is a subspace of \mathcal{R}^{3}.
2. (a) True. Suppose $\boldsymbol{w}_{1}=\boldsymbol{s}_{1}+\boldsymbol{t}_{1}, \boldsymbol{w}_{2}=\boldsymbol{s}_{2}+\boldsymbol{t}_{2} \in S+T$, where $\boldsymbol{s}_{1}, \boldsymbol{s}_{2} \in S$ and $\boldsymbol{t}_{1}, \boldsymbol{t}_{2} \in T$. Consider the following two conditions:
(i) $\boldsymbol{w}_{1}+\boldsymbol{w}_{2}=\left(\boldsymbol{s}_{1}+\boldsymbol{t}_{1}\right)+\left(\boldsymbol{s}_{2}+\boldsymbol{t}_{2}\right)=\left(\boldsymbol{s}_{1}+\boldsymbol{s}_{2}\right)+\left(\boldsymbol{t}_{1}+\boldsymbol{t}_{2}\right) \in S+T$ since $s_{1}+s_{2} \in S$ and $\boldsymbol{t}_{1}+\boldsymbol{t}_{2} \in T$.
(ii) $c \boldsymbol{w}_{1}=c\left(\boldsymbol{s}_{1}+\boldsymbol{t}_{1}\right)=c \boldsymbol{s}_{1}+c \boldsymbol{t}_{1} \in S+T$ since $c \boldsymbol{s}_{1} \in S$ and $c \boldsymbol{t}_{1} \in T$.

Therefore, $S+T$ is a subspace of V.
(b) False. Consider $S=\{(x, 0): x \in \mathcal{R}\}, T=\{(0, y): y \in \mathcal{R}\}$ are two subspaces of \mathcal{R}^{2}. Take $\boldsymbol{v}=(1,0) \in S, \boldsymbol{w}=(0,1) \in T$, and hence $\boldsymbol{v} \in S \cup T, \boldsymbol{w} \in S \cup T$. Since $\boldsymbol{v}+\boldsymbol{w}=(1,1) \notin S \cup T, S \cup T$ is not a subspace of \mathcal{R}^{2}.
3. From the figure, we can have

$$
\left\{\begin{array}{l}
y_{1}+y_{4}-y_{3}=0 \\
y_{2}+y_{5}-y_{1}=0 \\
y_{3}+y_{6}-y_{2}=0 \\
y_{4}+y_{5}+y_{6}=0
\end{array} \Longrightarrow\left[\begin{array}{cccccc}
1 & 0 & -1 & 1 & 0 & 0 \\
-1 & 1 & 0 & 0 & 1 & 0 \\
0 & -1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{5} \\
y_{6}
\end{array}\right]=\mathbf{0}\right.
$$

Hence

$$
\boldsymbol{A}=\left[\begin{array}{cccccc}
1 & 0 & -1 & 1 & 0 & 0 \\
-1 & 1 & 0 & 0 & 1 & 0 \\
0 & -1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1
\end{array}\right]
$$

By performing elimination on \boldsymbol{A}, we can obtain

$$
\boldsymbol{A}=\left[\begin{array}{cccccc}
1 & 0 & -1 & 1 & 0 & 0 \\
-1 & 1 & 0 & 0 & 1 & 0 \\
0 & -1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1
\end{array}\right] \Longrightarrow \boldsymbol{R}=\left[\begin{array}{cccccc}
1 & 0 & -1 & 0 & -1 & -1 \\
0 & 1 & -1 & 0 & 0 & -1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The pivot variables are y_{1}, y_{2}, y_{4} and the free variables are y_{3}, y_{5}, y_{6}. To have the special solutions, we let

$$
\begin{aligned}
& y_{3}=1, y_{5}=0, y_{6}=0 \quad \Longrightarrow \quad y_{1}=1, y_{2}=1, y_{4}=0 \\
& y_{3}=0, y_{5}=1, y_{6}=0 \quad \Longrightarrow y_{1}=1, y_{2}=0, y_{4}=-1 \\
& y_{3}=0, y_{5}=0, y_{6}=1 \quad \Longrightarrow \quad y_{1}=1, y_{2}=1, y_{4}=-1 .
\end{aligned}
$$

Hence, the special solutions are

$$
\left[\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
0 \\
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
0 \\
-1 \\
0 \\
1
\end{array}\right] .
$$

4. By Gaussian elimination, we can have

$$
\left[\begin{array}{cccc|c}
1 & 3 & 3 & 2 & b_{1} \\
2 & 6 & 9 & 5 & b_{2} \\
-1 & -3 & 3 & 0 & b_{3}
\end{array}\right] \Longrightarrow\left[\begin{array}{cccc|c}
1 & 3 & 0 & 1 & 3 b_{1}-b_{2} \\
0 & 0 & 1 & \frac{1}{3} & -\frac{2}{3} b_{1}+\frac{1}{3} b_{2} \\
0 & 0 & 0 & 0 & 5 b_{1}-2 b_{2}+b_{3}
\end{array}\right] .
$$

Hence the system is solvable if $5 b_{1}-2 b_{2}+b_{3}=0$. Since the pivot variables are x_{1}, x_{3} and the free variables are x_{2}, x_{4}, we can find a particular solution by letting

$$
\left\{\begin{array} { l }
{ x _ { 2 } = 0 } \\
{ x _ { 4 } = 0 }
\end{array} \Longrightarrow \left\{\begin{array}{l}
x_{1}=3 b_{1}-b_{2} \\
x_{3}=-\frac{2}{3} b_{1}+\frac{1}{3} b_{2}
\end{array} \Longrightarrow \boldsymbol{x}_{p}=\left[\begin{array}{c}
3 b_{1}-b_{2} \\
0 \\
-\frac{2}{3} b_{1}+\frac{1}{3} b_{2} \\
0
\end{array}\right] .\right.\right.
$$

Consider

$$
\left[\begin{array}{cccc|c}
1 & 3 & 0 & 1 & 0 \\
0 & 0 & 1 & \frac{1}{3} & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

To derive a general solution, we can have

$$
\begin{aligned}
& x_{2}=1, x_{4}=0 \quad \Longrightarrow x_{1}=-3, \\
& x_{3}=0 \\
& x_{2}=0, x_{4}=1 \quad \Longrightarrow \quad x_{1}=-1, \\
& x_{3}=-\frac{1}{3}
\end{aligned} \quad \Longrightarrow \quad \boldsymbol{x}_{n}=x_{2}\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-1 \\
0 \\
-\frac{1}{3} \\
1
\end{array}\right] .
$$

As a result, the complete solution can be given as

$$
\boldsymbol{x}=\boldsymbol{x}_{n}+\boldsymbol{x}_{p}=x_{2}\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-1 \\
0 \\
-\frac{1}{3} \\
1
\end{array}\right]+\left[\begin{array}{c}
3 b_{1}-b_{2} \\
0 \\
-\frac{2}{3} b_{1}+\frac{1}{3} b_{2} \\
0
\end{array}\right]
$$

if $5 b_{1}-2 b_{2}+b_{3}=0$.
5. (a) Suppose

$$
\begin{aligned}
& x_{1}\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]+x_{2}\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]+x_{3}\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
\Longrightarrow & \boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{lll}
1 & 1 & 3 \\
1 & 2 & 1 \\
2 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
\Longrightarrow & {\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] . }
\end{aligned}
$$

Since $\operatorname{rank}(\boldsymbol{A})=3, \mathcal{N}(\boldsymbol{A})=\{\mathbf{0}\}$. Hence $(1,1,2),(1,2,1),(3,1,1)$ are linearly independent.
(b) Since $\left(\boldsymbol{v}_{1}-\boldsymbol{v}_{2}\right)+\left(\boldsymbol{v}_{2}-\boldsymbol{v}_{3}\right)+\left(\boldsymbol{v}_{3}-\boldsymbol{v}_{4}\right)+\left(\boldsymbol{v}_{4}-\boldsymbol{v}_{1}\right)=\mathbf{0}$, they are linearly dependent.
(c) Since there are four vectors in \mathcal{R}^{3}, they must be linearly dependent.
6. (a) Since the column space and the nullspace both have three components, the desired matrix is 3 by 3 , say \boldsymbol{A}. We can find that $\operatorname{dim}(\mathcal{N}(\boldsymbol{A}))=1 \neq 2=$ $3-1=3-\operatorname{rank}(\boldsymbol{A})$, which is not possible. Therefore, no such matrix exists.
(b) Consider the 3 by 2 matrix

$$
\boldsymbol{B}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right]
$$

We have that $\mathcal{C}(\boldsymbol{B})$ contains $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ and $\mathcal{C}\left(\boldsymbol{B}^{T}\right)$ contains $(1,1)=(1,0)+$ $(0,1)$ and $(1,2)=(1,0)+2 \cdot(0,1)$.
(c) We can know that \boldsymbol{A} must be 3 by 4. Since $\boldsymbol{x}=\left[\begin{array}{c}1 \\ 0 \\ -1 \\ -1\end{array}\right]$ is the only solution to $\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right]$, the nullspace of \boldsymbol{A} must contain the zero vector only. Hence, the rank of \boldsymbol{A} should be 4 . Yet as the number of rows of \boldsymbol{A} is only 3 , the rank of \boldsymbol{A} cannot be 4. Therefore, \boldsymbol{A} does not exist.
7. (a) Convert $\boldsymbol{A}=\left[\begin{array}{cccc}1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ -1 & -2 & 0 & -1\end{array}\right]$ into the RRE form:

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
1 & 2 & 0 & 1 \\
0 & 1 & 1 & 0 \\
-1 & -2 & 0 & -1
\end{array}\right] \Longrightarrow \boldsymbol{R}=\left[\begin{array}{cccc}
1 & 0 & -2 & 1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore, a basis for the row space of \boldsymbol{A} can be given by

$$
(1,0,-2,1),(0,1,1,0) .
$$

The pivot columns are the 1 st and 2 nd columns of \boldsymbol{R}, and hence a basis for the column space of \boldsymbol{A} can be given by

$$
\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right], \quad\left[\begin{array}{c}
2 \\
1 \\
-2
\end{array}\right] .
$$

Since x_{1} and x_{2} are pivot variables and x_{3} and x_{4} are free variables, a basis for the nullspace of \boldsymbol{A} can be given by the special solutions:

$$
\left[\begin{array}{c}
2 \\
-1 \\
1 \\
0
\end{array}\right], \quad\left[\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right]
$$

We can have $\boldsymbol{R}=\boldsymbol{E} \boldsymbol{A}$ where

$$
\boldsymbol{E}=\left[\begin{array}{ccc}
1 & -2 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

Since the last row of \boldsymbol{R} is a zero row, a basis for the left nullspace of \boldsymbol{A} can be given by the last row of \boldsymbol{E} :

$$
(1,0,1) .
$$

(b) For the matrix

$$
\boldsymbol{A}=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 3
\end{array}\right]
$$

it is a rank-one matrix with the pivot row $(1,0,0,3)$ and the pivot column $(1,0,2)^{T}$. Therefore, a basis for the row space of \boldsymbol{A} is $(1,0,0,3)$ and a basis for the column space of \boldsymbol{A} is

$$
\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right] .
$$

For the nullspace of \boldsymbol{A}, we have

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=0
$$

Since x_{1} is a pivot variable and x_{2}, x_{3} and x_{4} are free variables, a basis for the nullspace of \boldsymbol{A} can be given by the special solutions:

$$
\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right], \quad\left[\begin{array}{c}
-3 \\
0 \\
0 \\
1
\end{array}\right] .
$$

For the left nullspace of \boldsymbol{A}, we have

$$
\left[\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]=0
$$

Therefore, a basis for the left nullspace of \boldsymbol{A} can be given by

$$
(0,1,0),(-2,0,1) .
$$

8. (a) True. Since a square matrix \boldsymbol{A} has independent columns, it is full rank. That is to say that \boldsymbol{A} has a full set of pivots. Therefore, \boldsymbol{A} is invertible. Since \boldsymbol{A} has \boldsymbol{A}^{-1} as its inverse matrix, we have $\left(\boldsymbol{A}^{-1}\right)^{2}$ as the inverse matrix for \boldsymbol{A}^{2}. This implies that \boldsymbol{A}^{2} is also full rank. Therefore, \boldsymbol{A}^{2} has independent columns.
(b) True. If the 5 by 5 matrix $\left[\begin{array}{ll}\boldsymbol{A} & \boldsymbol{b}\end{array}\right]$ is invertible, there are 5 nonzero pivots and all the columns are independent. Hence \boldsymbol{b} cannot be a linear combination of the columns of \boldsymbol{A}. Therefore, $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ is not solvable.
