Homework Assignment No. 2
 Due 10:10am, March 27, 2013

Reading: Strang, Chapter 3.
Problems for Solution:

1. Is each of the following subsets of \mathcal{R}^{3} actually a subspace? (\mathcal{R} is the set of real numbers.) If yes, prove it. Otherwise, find a counterexample.
(a) All vectors $\left(b_{1}, b_{2}, b_{3}\right)$ with $b_{1}=1$.
(b) All vectors $\left(b_{1}, b_{2}, b_{3}\right)$ satisfying $b_{3}-b_{2}+3 b_{1}=0$.
(c) All linear combinations of $\boldsymbol{v}=(1,1,0)$ and $\boldsymbol{w}=(2,0,1)$.
2. Suppose S and T are two subspaces of a vector space V. The sum $S+T$ contains all sums $\boldsymbol{s}+\boldsymbol{t}$ of a vector \boldsymbol{s} in S and a vector \boldsymbol{t} in T, i.e.,

$$
S+T=\{\boldsymbol{s}+\boldsymbol{t}: \boldsymbol{s} \in S, \boldsymbol{t} \in T\} .
$$

The union $S \cup T$ contains all vectors from S or T or both, i.e.,

$$
S \cup T=\{\boldsymbol{v}: \boldsymbol{v} \in S \text { or } \boldsymbol{v} \in T\} .
$$

Determine if each of the following statements is true. If it is, prove it. Otherwise, find a counterexample.
(a) $S+T$ is a subspace of V.
(b) $S \cup T$ is a subspace of V.
3. Do Problem 37 of Problem Set 3.2 in p. 143 of Strang.
4. Under what condition on b_{1}, b_{2}, b_{3} is this system solvable? Find the complete solution when that condition holds:

$$
\left[\begin{array}{cccc}
1 & 3 & 3 & 2 \\
2 & 6 & 9 & 5 \\
-1 & -3 & 3 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] .
$$

5. Decide the dependence or independence of
(a) $(1,1,2),(1,2,1),(3,1,1)$.
(b) $\boldsymbol{v}_{1}-\boldsymbol{v}_{2}, \boldsymbol{v}_{2}-\boldsymbol{v}_{3}, \boldsymbol{v}_{3}-\boldsymbol{v}_{4}, \boldsymbol{v}_{4}-\boldsymbol{v}_{1}$ for any vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}, \boldsymbol{v}_{4}$.
(c) $(1,1,0),(1,0,0),(0,1,1),(x, y, z)$ for any real numbers x, y, z.
6. Write down a matrix with the required property or explain why no such matrix exists.
(a) Column space has basis $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$; nullspace has basis $\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$.
(b) Column space contains $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$; row space contains $(1,1),(1,2)$.
(c) The only solution to $\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right]$ is $\boldsymbol{x}=\left[\begin{array}{c}1 \\ 0 \\ -1 \\ -1\end{array}\right]$.
7. Find a basis for each of the four subspaces of the following matrices:
(a)

$$
\left[\begin{array}{cccc}
1 & 2 & 0 & 1 \\
0 & 1 & 1 & 0 \\
-1 & -2 & 0 & -1
\end{array}\right]
$$

(b)

$$
\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 3
\end{array}\right] .
$$

(Hint: Read about rank-one matrices in p. 145 and p. 189 of Strang.)
8. True or false. (If it is true, prove it. Otherwise, find a counterexample.)
(a) If a square matrix \boldsymbol{A} has independent columns, so does \boldsymbol{A}^{2}.
(b) Suppose \boldsymbol{A} is a 5 by 4 matrix with full column rank. The system of linear equations $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ is not solvable if the 5 by 5 matrix $[\boldsymbol{A} \boldsymbol{b}$] is invertible.

