EE 2030 Linear Algebra Spring 2013

Homework Assignment No. 2 Due 10:10am, March 27, 2013

Reading: Strang, Chapter 3.

Problems for Solution:

- 1. Is each of the following subsets of \mathcal{R}^3 actually a subspace? (\mathcal{R} is the set of real numbers.) If yes, prove it. Otherwise, find a counterexample.
 - (a) All vectors (b_1, b_2, b_3) with $b_1 = 1$.
 - (b) All vectors (b_1, b_2, b_3) satisfying $b_3 b_2 + 3b_1 = 0$.
 - (c) All linear combinations of $\boldsymbol{v} = (1, 1, 0)$ and $\boldsymbol{w} = (2, 0, 1)$.
- 2. Suppose S and T are two subspaces of a vector space V. The sum S + T contains all sums s + t of a vector s in S and a vector t in T, i.e.,

$$S+T = \{ \boldsymbol{s} + \boldsymbol{t} : \boldsymbol{s} \in S, \ \boldsymbol{t} \in T \}.$$

The union $S \cup T$ contains all vectors from S or T or both, i.e.,

 $S \cup T = \{ \boldsymbol{v} : \boldsymbol{v} \in S \text{ or } \boldsymbol{v} \in T \}.$

Determine if each of the following statements is true. If it is, prove it. Otherwise, find a counterexample.

- (a) S + T is a subspace of V.
- (b) $S \cup T$ is a subspace of V.
- 3. Do Problem 37 of Problem Set 3.2 in p. 143 of Strang.
- 4. Under what condition on b_1 , b_2 , b_3 is this system solvable? Find the complete solution when that condition holds:

$$\begin{bmatrix} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 5 \\ -1 & -3 & 3 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}.$$

- 5. Decide the dependence or independence of
 - (a) (1, 1, 2), (1, 2, 1), (3, 1, 1).
 - (b) $v_1 v_2, v_2 v_3, v_3 v_4, v_4 v_1$ for any vectors v_1, v_2, v_3, v_4 .

(c) (1,1,0), (1,0,0), (0,1,1), (x, y, z) for any real numbers x, y, z.

6. Write down a matrix with the required property or explain why no such matrix exists.

(a) Column space has basis
$$\begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
; nullspace has basis $\begin{bmatrix} 1\\2\\1 \end{bmatrix}$.
(b) Column space contains $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\0\\1 \end{bmatrix}$; row space contains $(1,1)$, $(1,2)$
(c) The only solution to $\mathbf{A}\mathbf{x} = \begin{bmatrix} 2\\1\\2 \end{bmatrix}$ is $\mathbf{x} = \begin{bmatrix} 1\\0\\-1\\-1 \end{bmatrix}$.

7. Find a basis for each of the four subspaces of the following matrices:

(a)

[1	2	0	1	
	0	1	1	0	
	1	-2	0	-1	

(b)

$$\begin{bmatrix} 1\\0\\2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 3 \end{bmatrix}.$$

(*Hint:* Read about rank-one matrices in p. 145 and p. 189 of Strang.)

- 8. True or false. (If it is true, prove it. Otherwise, find a counterexample.)
 - (a) If a square matrix \boldsymbol{A} has independent columns, so does \boldsymbol{A}^2 .
 - (b) Suppose A is a 5 by 4 matrix with full column rank. The system of linear equations Ax = b is not solvable if the 5 by 5 matrix $[A \ b]$ is invertible.