Solution to Homework Assignment No. 1

1. (a) We can perform Gaussian elimination as follows:

$$
\left[\begin{array}{lll|l}
1 & 2 & 3 & 3 \\
2 & 3 & 4 & 4 \\
3 & 5 & 8 & 9
\end{array}\right] \Rightarrow\left[\begin{array}{ccc|c}
1 & 2 & 3 & 3 \\
0 & -1 & -2 & -2 \\
0 & -1 & -1 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{ccc|c}
1 & 2 & 3 & 3 \\
0 & -1 & -2 & -2 \\
0 & 0 & 1 & 2
\end{array}\right]
$$

Hence the pivots are 1, -1 and 1 , and by back substitution the solution is given by

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
1 \\
-2 \\
2
\end{array}\right]
$$

(b) Let $\boldsymbol{U} \boldsymbol{x}=\boldsymbol{c}$ and $\boldsymbol{L} \boldsymbol{c}=\boldsymbol{b}$. First, we solve \boldsymbol{c} from $\boldsymbol{L} \boldsymbol{c}=\boldsymbol{b}$:

$$
\begin{gathered}
{\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]} \\
\Rightarrow\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
4 \\
1 \\
1
\end{array}\right]
\end{gathered}
$$

Next, we solve \boldsymbol{x} from $\boldsymbol{U} \boldsymbol{x}=\boldsymbol{c}$:

$$
\begin{gathered}
{\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
4 \\
1 \\
1
\end{array}\right]} \\
\Rightarrow\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right] .
\end{gathered}
$$

2. (a) If \boldsymbol{A} is invertible, we have $\boldsymbol{A} \boldsymbol{A}^{-1}=\boldsymbol{I}$ and $\boldsymbol{A}^{-1} \boldsymbol{A}=\boldsymbol{I}$. Since we have $\boldsymbol{A}^{2}=\boldsymbol{A} \boldsymbol{A}$ and $\left(\boldsymbol{A}^{-1}\right)^{2}=\boldsymbol{A}^{-1} \boldsymbol{A}^{-1}$, we can have

$$
\begin{gathered}
\boldsymbol{A}^{2}\left(\boldsymbol{A}^{-1}\right)^{2}=\boldsymbol{A}\left(\boldsymbol{A} \boldsymbol{A}^{-1}\right) \boldsymbol{A}^{-1}=\boldsymbol{A} \boldsymbol{I} \boldsymbol{A}^{-1}=\boldsymbol{A} \boldsymbol{A}^{-1}=\boldsymbol{I} \\
\left(\boldsymbol{A}^{-1}\right)^{2} \boldsymbol{A}^{2}=\boldsymbol{A}^{-1}\left(\boldsymbol{A}^{-1} \boldsymbol{A}\right) \boldsymbol{A}=\boldsymbol{A}^{-1} \boldsymbol{I} \boldsymbol{A}=\boldsymbol{A}^{-1} \boldsymbol{A}=\boldsymbol{I}
\end{gathered}
$$

Hence \boldsymbol{A}^{2} is invertible and $\left(\boldsymbol{A}^{2}\right)^{-1}=\left(\boldsymbol{A}^{-1}\right)^{2}$.
(b) For $m=1$, the statement is obviously true. Assume $m=k$ is true. Then considering $m=k+1$, we can have

$$
\begin{aligned}
& \boldsymbol{A}^{k+1}\left(\boldsymbol{A}^{-1}\right)^{k+1}=\boldsymbol{A}^{k}\left(\boldsymbol{A} \boldsymbol{A}^{-1}\right)\left(\boldsymbol{A}^{-1}\right)^{k}=\boldsymbol{A}^{k} \boldsymbol{I}\left(\boldsymbol{A}^{-1}\right)^{k}=\boldsymbol{A}^{k}\left(\boldsymbol{A}^{-1}\right)^{k}=\boldsymbol{I} \\
& \left(\boldsymbol{A}^{-1}\right)^{k+1} \boldsymbol{A}^{k+1}=\left(\boldsymbol{A}^{-1}\right)^{k}\left(\boldsymbol{A}^{-1} \boldsymbol{A}\right) \boldsymbol{A}^{k}=\left(\boldsymbol{A}^{-1}\right)^{k} \boldsymbol{I} \boldsymbol{A}^{k}=\left(\boldsymbol{A}^{-1}\right)^{k} \boldsymbol{A}^{k}=\boldsymbol{I}
\end{aligned}
$$

Hence the statement holds for $m=k+1$. By induction, this statement is true.
3. (a) By applying Gaussian-Jordan elimination, we have

$$
\left[\begin{array}{cccc|cccc}
1 & -a & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & -b & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & -c & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \Rightarrow\left[\begin{array}{cccc|cccc}
1 & 0 & 0 & 0 & 1 & a & a b & a b c \\
0 & 1 & 0 & 0 & 0 & 1 & b & b c \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & c \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

Hence

$$
\boldsymbol{A}^{-1}=\left[\begin{array}{cccc}
1 & a & a b & a b c \\
0 & 1 & b & b c \\
0 & 0 & 1 & c \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(b) From (a), we can guess

$$
\boldsymbol{A}^{-1}=\left[\begin{array}{ccccc}
1 & a & a b & a b c & a b c d \\
0 & 1 & b & b c & b c d \\
0 & 0 & 1 & c & c d \\
0 & 0 & 0 & 1 & d \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

This can be confirmed by multiplying them:

$$
\begin{aligned}
\boldsymbol{A} \boldsymbol{A}^{-1} & =\left[\begin{array}{ccccc}
1 & -a & 0 & 0 & 0 \\
0 & 1 & -b & 0 & 0 \\
0 & 0 & 1 & -c & 0 \\
0 & 0 & 0 & 1 & -d \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccccc}
1 & a & a b & a b c & a b c d \\
0 & 1 & b & b c & b c d \\
0 & 0 & 1 & c & c d \\
0 & 0 & 0 & 1 & d \\
0 & 0 & 0 & 0 & 1
\end{array}\right]=\boldsymbol{I} \\
\boldsymbol{A}^{-1} \boldsymbol{A} & =\left[\begin{array}{ccccc}
1 & a & a b & a b c & a b c d \\
0 & 1 & b & b c & b c d \\
0 & 0 & 1 & c & c d \\
0 & 0 & 0 & 1 & d \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccccc}
1 & -a & 0 & 0 & 0 \\
0 & 1 & -b & 0 & 0 \\
0 & 0 & 1 & -c & 0 \\
0 & 0 & 0 & 1 & -d \\
0 & 0 & 0 & 0 & 1
\end{array}\right]=\boldsymbol{I} .
\end{aligned}
$$

4. (a) False. A counterexample is $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$. Since it does not have a full set of pivots, it is not invertible.
(b) True. One can check that

$$
(\boldsymbol{A} \boldsymbol{B}+\boldsymbol{B} \boldsymbol{A})^{T}=(\boldsymbol{A} \boldsymbol{B})^{T}+(\boldsymbol{B} \boldsymbol{A})^{T}=\boldsymbol{B}^{T} \boldsymbol{A}^{T}+\boldsymbol{A}^{T} \boldsymbol{B}^{T}=\boldsymbol{B} \boldsymbol{A}+\boldsymbol{A} \boldsymbol{B}=\boldsymbol{A} \boldsymbol{B}+\boldsymbol{B} \boldsymbol{A}
$$

5. (a) Suppose \boldsymbol{A} is singular. By elimination we can assume that there is an invertible matrix \boldsymbol{M} such that a row of $\boldsymbol{M A}$ is zero. Since $\boldsymbol{M A B}=\boldsymbol{M I}=\boldsymbol{M}$, a row of \boldsymbol{M} is zero, which reaches a contradiction because \boldsymbol{M} is invertible. Hence \boldsymbol{A} is nonsingular and thus invertible. We can therefore obtain $\boldsymbol{B}=\left(\boldsymbol{A}^{-1} \boldsymbol{A}\right) \boldsymbol{B}=\boldsymbol{A}^{-1}(\boldsymbol{A B})=\boldsymbol{A}^{-1} \boldsymbol{I}=\boldsymbol{A}^{-1}$.
(b) Consider $\boldsymbol{A}^{T} \boldsymbol{C}^{T}=\boldsymbol{I}^{T}=\boldsymbol{I}$. From (a), we have that \boldsymbol{A}^{T} is invertible and $\left(\boldsymbol{A}^{T}\right)^{-1}=\boldsymbol{C}^{T}$. Since $\left(\boldsymbol{A}^{T}\right)^{-1}=\left(\boldsymbol{A}^{-1}\right)^{T}=\boldsymbol{C}^{T}$, we can obtain $\boldsymbol{A}^{-1}=\boldsymbol{C}$.
6. (a) Performing elimination, we can have

$$
\boldsymbol{A}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 3 & 6
\end{array}\right] \xrightarrow{\boldsymbol{E}_{21}}\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
1 & 3 & 6
\end{array}\right] \xrightarrow{\boldsymbol{E}_{31}}\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 2 & 5
\end{array}\right] \xrightarrow{\boldsymbol{E}_{32}}\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]=\boldsymbol{U} .
$$

This procedure can be viewed as

$$
\boldsymbol{E}_{32} \boldsymbol{E}_{31} \boldsymbol{E}_{21} \boldsymbol{A}=\boldsymbol{U}
$$

where

$$
\boldsymbol{E}_{21}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \boldsymbol{E}_{31}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right] \text {, and } \boldsymbol{E}_{32}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{array}\right] .
$$

Recording the elimination steps and changing the signs of the off-diagonal elements, we can have

$$
\boldsymbol{L}=\boldsymbol{E}_{21}^{-1} \boldsymbol{E}_{31}^{-1} \boldsymbol{E}_{32}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 2 & 1
\end{array}\right]
$$

We also find that $\boldsymbol{U}=\boldsymbol{D} \boldsymbol{L}^{T}$ where

$$
\boldsymbol{D}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

We can therefore obtain $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{D} \boldsymbol{L}^{T}$ as

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 3 & 6
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 2 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right] .
$$

(b) Performing elimination, we can have
$\boldsymbol{A}=\left[\begin{array}{llll}1 & 2 & 0 & 0 \\ 2 & 3 & 1 & 0 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 3 & 4\end{array}\right] \xrightarrow{\boldsymbol{E}_{21}}\left[\begin{array}{cccc}1 & 2 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 3 & 4\end{array}\right] \xrightarrow{\boldsymbol{E}_{32}}\left[\begin{array}{cccc}1 & 2 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 3 & 4\end{array}\right] \xrightarrow{\boldsymbol{E}_{43}}\left[\begin{array}{cccc}1 & 2 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 1\end{array}\right]=\boldsymbol{U}$.
This procedure can be viewed as

$$
\boldsymbol{E}_{43} \boldsymbol{E}_{32} \boldsymbol{E}_{21} \boldsymbol{A}=\boldsymbol{U}
$$

where
$\boldsymbol{E}_{21}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right], \boldsymbol{E}_{32}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$, and $\boldsymbol{E}_{43}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1\end{array}\right]$.
Recording the elimination steps and changing the signs of the off-diagonal elements, we can have

$$
\boldsymbol{L}=\boldsymbol{E}_{21}^{-1} \boldsymbol{E}_{32}^{-1} \boldsymbol{E}_{43}^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

We also find that $\boldsymbol{U}=\boldsymbol{D} \boldsymbol{L}^{T}$ where

$$
\boldsymbol{D}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

We can therefore obtain $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{D} \boldsymbol{L}^{T}$ as

$$
\left[\begin{array}{llll}
1 & 2 & 0 & 0 \\
2 & 3 & 1 & 0 \\
0 & 1 & 2 & 3 \\
0 & 0 & 3 & 4
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 2 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

7. (a) By (i), \boldsymbol{L}_{1}^{-1} and \boldsymbol{U}_{2}^{-1} both exist. Given $\boldsymbol{A}=\boldsymbol{L}_{1} \boldsymbol{D}_{1} \boldsymbol{U}_{1}$ and $\boldsymbol{A}=\boldsymbol{L}_{2} \boldsymbol{D}_{2} \boldsymbol{U}_{2}$, we can have

$$
\begin{aligned}
& \boldsymbol{L}_{2} \boldsymbol{D}_{2} \boldsymbol{U}_{2}=\boldsymbol{L}_{1} \boldsymbol{D}_{1} \boldsymbol{U}_{1} \\
\Longrightarrow & \boldsymbol{L}_{1}^{-1}\left(\boldsymbol{L}_{2} \boldsymbol{D}_{2} \boldsymbol{U}_{2}\right) \boldsymbol{U}_{2}^{-1}=\boldsymbol{L}_{1}^{-1}\left(\boldsymbol{L}_{1} \boldsymbol{D}_{1} \boldsymbol{U}_{1}\right) \boldsymbol{U}_{2}^{-1} \\
\Longrightarrow & \boldsymbol{L}_{1}^{-1} \boldsymbol{L}_{2} \boldsymbol{D}_{2}=\boldsymbol{D}_{1} \boldsymbol{U}_{1} \boldsymbol{U}_{2}^{-1} .
\end{aligned}
$$

By (i), \boldsymbol{L}_{1}^{-1} is lower triangular with unit diagonal. By (ii), $\boldsymbol{L}_{1}^{-1} \boldsymbol{L}_{2}$ is lower triangular with unit diagonal. Therefore, by (iii), $\boldsymbol{L}_{1}^{-1} \boldsymbol{L}_{2} \boldsymbol{D}_{2}$ is lower triangular. Similarly, $\boldsymbol{D}_{1} \boldsymbol{U}_{1} \boldsymbol{U}_{2}^{-1}$ is upper triangular.
(b) Let $\boldsymbol{M}=\boldsymbol{L}_{1}^{-1} \boldsymbol{L}_{2} \boldsymbol{D}_{2}=\boldsymbol{D}_{1} \boldsymbol{U}_{1} \boldsymbol{U}_{2}^{-1}$. Then \boldsymbol{M} is both lower and upper triangular, which implies that \boldsymbol{M} is a diagonal matrix.
(1) Since $\boldsymbol{U}_{1} \boldsymbol{U}_{2}^{-1}$ has a unit diagonal, $\boldsymbol{M}=\boldsymbol{D}_{1} \boldsymbol{U}_{1} \boldsymbol{U}_{2}^{-1}$ has the same diagonal as \boldsymbol{D}_{1}. It implies that $\boldsymbol{M}=\boldsymbol{D}_{1}$. Similarly, we can have $\boldsymbol{M}=\boldsymbol{D}_{2}$. Therefore, $\boldsymbol{D}_{1}=\boldsymbol{D}_{2}$.
(2) For $\boldsymbol{M}=\boldsymbol{L}_{1}^{-1} \boldsymbol{L}_{2} \boldsymbol{D}_{2}=\boldsymbol{D}_{2}$, we have $\boldsymbol{L}_{1}^{-1} \boldsymbol{L}_{2}=\boldsymbol{I}$. Since the inverse matrix is unique, we have $\boldsymbol{L}_{2}=\left(\boldsymbol{L}_{1}^{-1}\right)^{-1}=\boldsymbol{L}_{1}$.
(3) Similarly, for $\boldsymbol{M}=\boldsymbol{D}_{1} \boldsymbol{U}_{1} \boldsymbol{U}_{2}^{-1}=\boldsymbol{D}_{1}$, we have $\boldsymbol{U}_{1} \boldsymbol{U}_{2}^{-1}=\boldsymbol{I}$. It then implies that $\boldsymbol{U}_{1}=\left(\boldsymbol{U}_{2}^{-1}\right)^{-1}=\boldsymbol{U}_{2}$.
8. (a) First do row exchange as

$$
\boldsymbol{A}=\left[\begin{array}{lll}
0 & 2 & 2 \\
1 & 2 & 2 \\
2 & 6 & 7
\end{array}\right] \xrightarrow{\boldsymbol{P}_{21}}\left[\begin{array}{lll}
1 & 2 & 2 \\
0 & 2 & 2 \\
2 & 6 & 7
\end{array}\right]=\boldsymbol{P} \boldsymbol{A}
$$

and then perform elimination as

$$
\left[\begin{array}{lll}
1 & 2 & 2 \\
0 & 2 & 2 \\
2 & 6 & 7
\end{array}\right] \xrightarrow{\boldsymbol{E}_{31}}\left[\begin{array}{lll}
1 & 2 & 2 \\
0 & 2 & 2 \\
0 & 2 & 3
\end{array}\right] \xrightarrow{\boldsymbol{E}_{32}}\left[\begin{array}{lll}
1 & 2 & 2 \\
0 & 2 & 2 \\
0 & 0 & 1
\end{array}\right]=\boldsymbol{U}
$$

Then we have

$$
\boldsymbol{E}_{32} \boldsymbol{E}_{31}(\boldsymbol{P} \boldsymbol{A})=\boldsymbol{U}
$$

where

$$
\boldsymbol{P}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad \boldsymbol{E}_{31}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right], \quad \text { and } \quad \boldsymbol{E}_{32}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right] .
$$

We can have

$$
\boldsymbol{L}=\boldsymbol{E}_{31}^{-1} \boldsymbol{E}_{32}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 1 & 1
\end{array}\right]
$$

The factorization $\boldsymbol{P A}=\boldsymbol{L} \boldsymbol{U}$ is hence given by

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 2 & 2 \\
1 & 2 & 2 \\
2 & 6 & 7
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 2 \\
0 & 2 & 2 \\
0 & 0 & 1
\end{array}\right] .
$$

(b) In order to factor \boldsymbol{A} into $\boldsymbol{A}=\boldsymbol{L}_{1} \boldsymbol{P}_{1} \boldsymbol{U}_{1}$, we first perform elimination as

$$
\boldsymbol{A}=\left[\begin{array}{lll}
0 & 2 & 2 \\
1 & 2 & 2 \\
2 & 6 & 7
\end{array}\right] \xrightarrow{\boldsymbol{E}_{32}}\left[\begin{array}{lll}
0 & 2 & 2 \\
1 & 2 & 2 \\
0 & 2 & 3
\end{array}\right] \xrightarrow{\boldsymbol{E}_{31}}\left[\begin{array}{lll}
0 & 2 & 2 \\
1 & 2 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

and then do row exchange as

$$
\left[\begin{array}{lll}
0 & 2 & 2 \\
1 & 2 & 2 \\
0 & 0 & 1
\end{array}\right] \xrightarrow{\boldsymbol{P}_{21}}\left[\begin{array}{lll}
1 & 2 & 2 \\
0 & 2 & 2 \\
0 & 0 & 1
\end{array}\right]=\boldsymbol{U}_{\mathbf{1}}
$$

Therefore,

$$
\boldsymbol{U}_{\mathbf{1}}=\boldsymbol{P}_{21} \boldsymbol{E}_{31} \boldsymbol{E}_{32} \boldsymbol{A}
$$

where

$$
\boldsymbol{P}_{21}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \boldsymbol{E}_{31}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right], \quad \text { and } \boldsymbol{E}_{32}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{array}\right] .
$$

Multiplying $\boldsymbol{E}_{32}^{-1} \boldsymbol{E}_{31}^{-1} \boldsymbol{P}_{21}^{-1}$ from the left to both sides, we can have

$$
\boldsymbol{A}=\boldsymbol{E}_{32}^{-1} \boldsymbol{E}_{31}^{-1} \boldsymbol{P}_{21}^{-1} \boldsymbol{U}_{1}=\boldsymbol{L}_{1} \boldsymbol{P}_{1} \boldsymbol{U}_{1}
$$

where

$$
\boldsymbol{P}_{1}=\boldsymbol{P}_{21}^{-1}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

and

$$
\boldsymbol{L}_{1}=\boldsymbol{E}_{32}^{-1} \boldsymbol{E}_{31}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 2 & 1
\end{array}\right]
$$

The factorization $\boldsymbol{A}=\boldsymbol{L}_{1} \boldsymbol{P}_{1} \boldsymbol{U}_{1}$ is hence given by

$$
\left[\begin{array}{lll}
0 & 2 & 2 \\
1 & 2 & 2 \\
2 & 6 & 7
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 2 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 2 \\
0 & 2 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

