Solution to Homework Assignment No. 6

1. We have $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}$ is a 3 by 4 matrix where

$$
\boldsymbol{U}=\frac{1}{3}\left[\begin{array}{ccc}
-1 & 2 & 2 \\
2 & -1 & 2 \\
2 & 2 & -1
\end{array}\right], \boldsymbol{\Sigma}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \boldsymbol{V}=\frac{1}{2}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
$$

(a) Since $\boldsymbol{A}^{T} \boldsymbol{A}$ is 4 by 4 , it has 4 eigenvalues. The nonzero eigenvalues of $\boldsymbol{A}^{T} \boldsymbol{A}$ are the squares of the singular values of \boldsymbol{A}, which are given by $1^{2}=1$ and $4^{2}=16$. Therefore, the eigenvalues of $\boldsymbol{A}^{T} \boldsymbol{A}$ are $1,16,0,0$.
(b) Since there are 2 nonzero singular values of \boldsymbol{A}, the rank of \boldsymbol{A} is 2 . Therefore, the dimension of the nullspace of $\boldsymbol{A}=4-2=2$. A basis for the nullspace of \boldsymbol{A} can be obtained as the last two columns of \boldsymbol{V}, i.e.,

$$
\left[\begin{array}{c}
1 / 2 \\
1 / 2 \\
-1 / 2 \\
-1 / 2
\end{array}\right], \quad\left[\begin{array}{c}
1 / 2 \\
-1 / 2 \\
-1 / 2 \\
1 / 2
\end{array}\right] .
$$

(c) Since the dimension of the column space of \boldsymbol{A} is 2 , a basis for the column space of \boldsymbol{A} can be obtained as the first two columns of \boldsymbol{U}, i.e.,

$$
\left[\begin{array}{c}
-1 / 3 \\
2 / 3 \\
2 / 3
\end{array}\right],\left[\begin{array}{c}
2 / 3 \\
-1 / 3 \\
2 / 3
\end{array}\right] .
$$

(d) A singular value decomposition of $-\boldsymbol{A}^{T}$ can be given by

$$
-\boldsymbol{A}^{T}=-\left(\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}\right)^{T}=-\boldsymbol{V} \boldsymbol{\Sigma}^{T} \boldsymbol{U}^{T}=\boldsymbol{U}^{\prime} \boldsymbol{\Sigma}^{\prime} \boldsymbol{V}^{\prime T}
$$

where $\boldsymbol{U}^{\prime}=-\boldsymbol{V}, \boldsymbol{\Sigma}^{\prime}=\boldsymbol{\Sigma}^{T}$ and $\boldsymbol{V}^{\prime}=\boldsymbol{U}$.
2. Since \boldsymbol{A} is a symmetry matrix, we have $\boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{u}_{1}=\boldsymbol{A} \boldsymbol{A} \boldsymbol{u}_{1}=\lambda_{1} \boldsymbol{A} \boldsymbol{u}_{1}=\lambda_{1}^{2} \boldsymbol{u}_{1}$ and $\boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{u}_{2}=\boldsymbol{A} \boldsymbol{A} \boldsymbol{u}_{2}=\lambda_{2} \boldsymbol{A} \boldsymbol{u}_{2}=\lambda_{2}^{2} \boldsymbol{u}_{2}$. Therefore, this implies that $\sigma_{1}^{2}=\lambda_{1}^{2}=9$ and $\sigma_{2}^{2}=\lambda_{2}^{2}=4$. We have $\sigma_{1}=\lambda_{1}=3$ and $\sigma_{2}=-\lambda_{2}=2$. Besides, \boldsymbol{u}_{1} and \boldsymbol{u}_{2} are the unit eigenvectors of $\boldsymbol{A}^{T} \boldsymbol{A}$. Furthermore, we can know that $\boldsymbol{A} \boldsymbol{u}_{1}=\lambda_{1} \boldsymbol{u}_{1}=\sigma_{1} \boldsymbol{u}_{1}$ and $\boldsymbol{A} \boldsymbol{u}_{2}=\lambda_{2} \boldsymbol{u}_{2}=\sigma_{2}\left(-\boldsymbol{u}_{2}\right)$. As a result, the matrices are

$$
\boldsymbol{U}=\left[\begin{array}{ll}
\boldsymbol{u}_{1} & -\boldsymbol{u}_{2}
\end{array}\right], \quad \boldsymbol{\Sigma}=\left[\begin{array}{ll}
3 & 0 \\
0 & 2
\end{array}\right], \text { and } \boldsymbol{V}=\left[\begin{array}{ll}
\boldsymbol{u}_{1} & \boldsymbol{u}_{2}
\end{array}\right] .
$$

3. (a) True. Let $\boldsymbol{v}=\left(v_{1}, v_{2}\right)$ and $\boldsymbol{w}=\left(w_{1}, w_{2}\right)$. We can check the following two conditions:

- $T(\boldsymbol{v}+\boldsymbol{w})=T\left(v_{1}+w_{1}, v_{2}+w_{2}\right)=\left(v_{1}+w_{1}, v_{1}+w_{1}\right)=\left(v_{1}, v_{1}\right)+\left(w_{1}, w_{1}\right)=$ $T(\boldsymbol{v})+T(\boldsymbol{w})$.
- $T(c \boldsymbol{v})=T\left(c v_{1}, c v_{2}\right)=\left(c v_{1}, c v_{1}\right)=c\left(v_{1}, v_{1}\right)=c T(\boldsymbol{v})$ for all c.

Therefore, it is linear.
(b) False. Let $\boldsymbol{v}=(1,1)$. Since

$$
T(0 \cdot \boldsymbol{v})=T(0,0)=(0,1) \neq(0,0)=0 \cdot(0,1)=0 \cdot T(\boldsymbol{v})
$$

it is not linear.
(c) False. Let $\boldsymbol{v}=(1,1)$ and $\boldsymbol{w}=(2,2)$. Since

$$
T(\boldsymbol{v}+\boldsymbol{w})=T(3,3)=9 \neq 5=T(1,1)+T(2,2)=T(\boldsymbol{v})+T(\boldsymbol{w})
$$

it is not linear.
(d) False. Let $\boldsymbol{v}=(1,1)$ and $\boldsymbol{w}=(0,2)$. Since

$$
T(\boldsymbol{v}+\boldsymbol{w})=T(1,3)=(1,3) \neq(1,1)=T(1,1)+T(0,2)=T(\boldsymbol{v})+T(\boldsymbol{w})
$$

it is not linear.
4. (a) Since $T\left(\boldsymbol{v}_{1}\right)=1 \cdot \boldsymbol{w}_{1}+1 \cdot \boldsymbol{w}_{2}+1 \cdot \boldsymbol{w}_{3}, T\left(\boldsymbol{v}_{2}\right)=0 \cdot \boldsymbol{w}_{1}+1 \cdot \boldsymbol{w}_{2}+1 \cdot \boldsymbol{w}_{3}$, and $T\left(\boldsymbol{v}_{3}\right)=0 \cdot \boldsymbol{w}_{1}+0 \cdot \boldsymbol{w}_{2}+1 \cdot \boldsymbol{w}_{3}$, we have the matrix \boldsymbol{A} for T as

$$
\boldsymbol{A}=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]
$$

(b) We have

$$
\boldsymbol{A}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]
$$

Therefore, we can obtain $T^{-1}\left(\boldsymbol{w}_{1}\right)=\boldsymbol{v}_{1}-\boldsymbol{v}_{2}, T^{-1}\left(\boldsymbol{w}_{2}\right)=\boldsymbol{v}_{2}-\boldsymbol{v}_{3}$, and $T^{-1}\left(\boldsymbol{w}_{3}\right)=\boldsymbol{v}_{3}$.
5. For the standard basis, the matrix which represents this T is

$$
\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & -1 & -2 \\
2 & -2 & 0
\end{array}\right] .
$$

The eigenvectors for this matrix are $(-1,2,2),(-2,-2,1)$, and $(2,-1,2)$. Therefore, we can find the basis $\{(-1,2,2),(-2,-2,1),(2,-1,2)\}$ such that the matrix representation for T in this basis is a diagonal matrix.
6. (a) Let $\beta=\left\{1, x, x^{2}\right\}$. Since

$$
\begin{aligned}
L(1) & =0 \\
L(x) & =x
\end{aligned}=0 \cdot 1+0 \cdot x+0 \cdot x^{2}, ~=0 \cdot 1+1 \cdot x+0 \cdot x^{2}, ~=2 \cdot 1+0 \cdot x+2 \cdot x^{2} .
$$

we have

$$
\boldsymbol{A}=[L]_{\beta}=\left[\begin{array}{lll}
0 & 0 & 2 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

(b) Let $\gamma=\left\{1, x, 1+x^{2}\right\}$. Since

$$
\begin{aligned}
L(1) & =0 \\
L(x) & =x
\end{aligned}=0 \cdot 1+0 \cdot x+0 \cdot\left(1+x^{2}\right), ~=0 \cdot 1+1 \cdot x+0 \cdot\left(1+x^{2}\right)
$$

we have

$$
\boldsymbol{B}=[L]_{\gamma}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

(c) Let I be the identity transformation, and we have $\boldsymbol{M}=[I]_{\gamma}^{\beta}$. Since

$$
\begin{aligned}
I(1) & =1 \\
I(x) & =x
\end{aligned}=1 \cdot 1+0 \cdot x+0 \cdot x^{2}, 0 \cdot 1+1 \cdot x+0 \cdot x^{2}, ~=1 \cdot 1+0 \cdot x+1 \cdot x^{2} .
$$

we can obtain

$$
\boldsymbol{M}=[I]_{\gamma}^{\beta}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

7. Perform the singular value decomposition, and we can have

$$
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}=\frac{1}{\sqrt{10}}\left[\begin{array}{cc}
1 & 3 \\
3 & -1
\end{array}\right]\left[\begin{array}{cc}
\sqrt{50} & 0 \\
0 & 0
\end{array}\right] \frac{1}{\sqrt{5}}\left[\begin{array}{cc}
1 & 2 \\
2 & -1
\end{array}\right] .
$$

(a)

$$
\boldsymbol{A}=\boldsymbol{Q} \boldsymbol{H}=\left(\boldsymbol{U} \boldsymbol{V}^{T}\right)\left(\boldsymbol{V} \boldsymbol{\Sigma} \boldsymbol{V}^{T}\right)=\frac{1}{\sqrt{50}}\left[\begin{array}{cc}
7 & -1 \\
1 & 7
\end{array}\right] \frac{1}{\sqrt{50}}\left[\begin{array}{cc}
10 & 20 \\
20 & 40
\end{array}\right]
$$

(b)

$$
\begin{aligned}
\boldsymbol{A}^{+} & =\boldsymbol{V} \boldsymbol{\Sigma}^{+} \boldsymbol{U}^{T} \\
& =\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
1 & 2 \\
2 & -1
\end{array}\right]\left[\begin{array}{cc}
1 / \sqrt{50} & 0 \\
0 & 0
\end{array}\right] \frac{1}{\sqrt{10}}\left[\begin{array}{cc}
1 & 3 \\
3 & -1
\end{array}\right] \\
& =\frac{1}{50}\left[\begin{array}{ll}
1 & 3 \\
2 & 6
\end{array}\right] .
\end{aligned}
$$

8. Perform the singular value decomposition, and we can have

$$
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}=\frac{1}{\sqrt{6}}\left[\begin{array}{ccc}
1 & \sqrt{2} & \sqrt{3} \\
1 & \sqrt{2} & -\sqrt{3} \\
2 & -\sqrt{2} & 0
\end{array}\right]\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \frac{1}{\sqrt{6}}\left[\begin{array}{ccc}
2 & 1 & 1 \\
\sqrt{2} & -\sqrt{2} & -\sqrt{2} \\
0 & \sqrt{3} & -\sqrt{3}
\end{array}\right] .
$$

Then we can obtain

$$
\begin{aligned}
\boldsymbol{A}^{+} & =\boldsymbol{V} \boldsymbol{\Sigma}^{+} \boldsymbol{U}^{T} \\
& =\frac{1}{\sqrt{6}}\left[\begin{array}{ccc}
2 & \sqrt{2} & 0 \\
1 & -\sqrt{2} & \sqrt{3} \\
1 & -\sqrt{2} & -\sqrt{3}
\end{array}\right]\left[\begin{array}{ccc}
1 / 2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \frac{1}{\sqrt{6}}\left[\begin{array}{ccc}
1 & 1 & 2 \\
\sqrt{2} & \sqrt{2} & -\sqrt{2} \\
\sqrt{3} & -\sqrt{3} & 0
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 / 2 & 1 / 2 & 0 \\
-1 / 4 & -1 / 4 & 1 / 2 \\
-1 / 4 & -1 / 4 & 1 / 2
\end{array}\right] .
\end{aligned}
$$

Therefore, the shortest least squares solution is

$$
\boldsymbol{A}^{+} \boldsymbol{b}=\left[\begin{array}{c}
1 \\
1 / 2 \\
1 / 2
\end{array}\right]
$$

