EE 2030 Linear Algebra Spring 2012

Homework Assignment No. 6 Due 10:10am, June 13, 2012

Reading: Strang, Section 6.7, Chapter 7. Problems for Solution:

1. Suppose the singular value decomposition $\boldsymbol{A} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T$ has

- (a) Find the eigenvalues of $A^T A$.
- (b) Find a basis for the nullspace of \boldsymbol{A} .
- (c) Find a basis for the column space of A.
- (d) Find a singular value decomposition of $-\mathbf{A}^{T}$.
- 2. Suppose A is a 2 by 2 symmetric matrix with unit eigenvectors u_1 and u_2 . If its eigenvalues are $\lambda_1 = 3$ and $\lambda_2 = -2$, what are the matrices U, Σ , and V in its singular value decomposition?
- 3. Is each of the following transformations linear? If yes, prove it; otherwise, find a counterexample.
 - (a) $T(v_1, v_2) = (v_1, v_1).$
 - (b) $T(v_1, v_2) = (0, 1).$
 - (c) $T(v_1, v_2) = v_1 v_2$.
 - (d) $T(v_1, v_2) = (v_1, v_2)$ except that $T(0, v_2) = (0, 0)$.
- 4. A linear transformation T from V to W has an inverse from W to V when the range is all of W and the kernel contains only $\boldsymbol{v} = \boldsymbol{0}$. Then $T(\boldsymbol{v}) = \boldsymbol{w}$ has one solution \boldsymbol{v} for each \boldsymbol{w} in W. We thus say that T is invertible and denote its inverse by T^{-1} .
 - (a) Suppose $T(\boldsymbol{v}_1) = \boldsymbol{w}_1 + \boldsymbol{w}_2 + \boldsymbol{w}_3$, $T(\boldsymbol{v}_2) = \boldsymbol{w}_2 + \boldsymbol{w}_3$, and $T(\boldsymbol{v}_3) = \boldsymbol{w}_3$ where $\{\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3\}$ and $\{\boldsymbol{w}_1, \boldsymbol{w}_2, \boldsymbol{w}_3\}$ are bases for V and W, respectively. Find the matrix \boldsymbol{A} for T using these bases.
 - (b) Invert the matrix \boldsymbol{A} in (a). What are $T^{-1}(\boldsymbol{w}_1), T^{-1}(\boldsymbol{w}_2)$, and $T^{-1}(\boldsymbol{w}_3)$?

5. Define the linear operator T on \mathcal{R}^3 by

$$T\left(\left[\begin{array}{c}v_1\\v_2\\v_3\end{array}\right]\right) = \left[\begin{array}{c}v_1+2v_3\\-v_2-2v_3\\2v_1-2v_2\end{array}\right].$$

Find a basis for \mathcal{R}^3 such that the matrix representation for T in this basis is a diagonal matrix.

6. Let P_2 be the vector space of all polynomials of degree at most 2, i.e., $P_2 = \{a_0 + a_1x + a_2x^2 : a_0, a_1, a_2 \in \mathcal{R}\}$. Consider the linear operator L on P_2 defined by

$$L(p(x)) = xp'(x) + p''(x)$$

where p'(x) is the derivative of p(x) and p''(x) is the second derivative of p(x).

- (a) Find the matrix \boldsymbol{A} representing L with respect to the basis $\{1, x, x^2\}$.
- (b) Find the matrix **B** representing L with respect to the basis $\{1, x, 1 + x^2\}$.
- (c) Find the matrix \boldsymbol{M} such that $\boldsymbol{B} = \boldsymbol{M}^{-1} \boldsymbol{A} \boldsymbol{M}$.
- 7. Consider the matrix

$$\boldsymbol{A} = \left[\begin{array}{cc} 1 & 2 \\ 3 & 6 \end{array} \right].$$

- (a) Find the polar decomposition $\mathbf{A} = \mathbf{Q}\mathbf{H}$, where \mathbf{Q} is an orthogonal matrix and \mathbf{H} is a positive semidefinite matrix.
- (b) Find the pseudoinverse A^+ of A.
- 8. Find the shortest least squares solution to

$$\boldsymbol{A}\boldsymbol{x} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} C \\ D \\ E \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix} = \boldsymbol{b}.$$