Homework Assignment No. 4
 Due 10:10am, May 2, 2012

Reading: Strang, Chapter 5.
Problems for Solution:

1. (This problem counts double.) Find the determinants of
(a) a rank one matrix

$$
\boldsymbol{A}=\left[\begin{array}{l}
1 \\
4 \\
2 \\
3
\end{array}\right]\left[\begin{array}{llll}
2 & -1 & 3 & 7
\end{array}\right]
$$

(b) the upper triangular matrix

$$
\boldsymbol{U}=\left[\begin{array}{llll}
4 & 4 & 8 & 8 \\
0 & 1 & 2 & 2 \\
0 & 0 & 2 & 6 \\
0 & 0 & 0 & 2
\end{array}\right]
$$

(c) the lower triangular matrix \boldsymbol{U}^{T};
(d) the inverse matrix \boldsymbol{U}^{-1};
(e) the "reverse triangular" matrix that results from row exchanges

$$
\boldsymbol{M}=\left[\begin{array}{cccc}
0 & 0 & 0 & 2 \\
0 & 0 & 2 & 6 \\
0 & 1 & 2 & 2 \\
4 & 4 & 8 & 8
\end{array}\right]
$$

(f) the $-1,1,1$ tridiagonal matrix

$$
\boldsymbol{F}=\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
1 & 1 & -1 & 0 \\
0 & 1 & 1 & -1 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

2. (a) Use row operations to verify that the 3 by 3 "Vandermonde determinant" is

$$
\operatorname{det}\left[\begin{array}{lll}
1 & a & a^{2} \\
1 & b & b^{2} \\
1 & c & c^{2}
\end{array}\right]=(b-a)(c-a)(c-b)
$$

(b) Show that an n by n skew-symmetric matrix \boldsymbol{A} has $\operatorname{det} \boldsymbol{A}=0$ if n is odd. (Note that a skew-symmetric matrix satisfies $\boldsymbol{A}^{T}=-\boldsymbol{A}$.)
3. (a) Find all the odd permutations of the numbers $\{1,2,3,4\}$. These are the permutations coming from an odd number of exchanges and leading to $\operatorname{det} \boldsymbol{P}_{\sigma}=-1$.
(b) The circular shift permutes $(1,2, \ldots, n-1, n)$ into $(2,3, \ldots, n, 1)$. What is the corresponding matrix \boldsymbol{P}_{σ} and (depending on n) what is its determinant?
4. Consider the n by n matrix \boldsymbol{A}_{n} with zeros on the diagonal and ones elsewhere:

$$
\boldsymbol{A}_{2}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad \boldsymbol{A}_{3}=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right], \quad \boldsymbol{A}_{4}=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right], \quad \ldots
$$

(a) Find the determinants of $\boldsymbol{A}_{2}, \boldsymbol{A}_{3}$, and \boldsymbol{A}_{4}.
(b) What is $\operatorname{det} \boldsymbol{A}_{n}$? (Hint: Start by adding all rows (except the last) to the last row, and then factoring out a constant.)
5. The matrix \boldsymbol{B}_{n} is the $-1,2,-1$ tridiagonal matrix \boldsymbol{A}_{n} considered in class except that $b_{11}=1$ instead of $a_{11}=2$:

$$
\boldsymbol{B}_{2}=\left[\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right], \quad \boldsymbol{B}_{3}=\left[\begin{array}{ccc}
\mathbf{1} & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right], \quad \boldsymbol{B}_{4}=\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right]
$$

(a) Show that $\left|\boldsymbol{B}_{n}\right|=a\left|\boldsymbol{B}_{n-1}\right|+b\left|\boldsymbol{B}_{n-2}\right|$, for $n \geq 4$. Find the constants a and b.
(b) Find $\left|\boldsymbol{B}_{2}\right|,\left|\boldsymbol{B}_{3}\right|,\left|\boldsymbol{B}_{4}\right|$. Guess a formula for $\left|\boldsymbol{B}_{n}\right|$ and verify your result.
(c) Alternatively, use the linearity in the first row of \boldsymbol{B}_{n}, where $\left[\begin{array}{lll}1 & -1 & 0\end{array}\right]=$ $\left[\begin{array}{ccc}2 & -1 & 0\end{array}\right]-\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$ illustrated for $n=3$, to show that $\left|\boldsymbol{B}_{n}\right|=\left|\boldsymbol{A}_{n}\right|-$ $\left|\boldsymbol{A}_{n-1}\right|$. Then get a formula for $\left|\boldsymbol{B}_{n}\right|$ from the formula for $\left|\boldsymbol{A}_{n}\right|$ obtained in class.
6. (a) Use Cramer's rule to solve

$$
\begin{aligned}
x+4 y-z & =1 \\
x+y+z & =0 \\
2 x+3 z & =0 .
\end{aligned}
$$

(b) Use the cofactor matrix to find the inverse of

$$
\left[\begin{array}{ccc}
1 & 3 & 1 \\
2 & 1 & 1 \\
-2 & 2 & -1
\end{array}\right]
$$

7. (a) The Hadamard matrix \boldsymbol{H} has orthogonal rows. (The box is a hypercube.)

$$
\text { What is }|\boldsymbol{H}|=\left|\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right|=\text { volume of a hypercube in } \mathcal{R}^{4} ?
$$

(b) If the columns of a 4 by 4 matrix have lengths $L_{1}, L_{2}, L_{3}, L_{4}$, what is the largest possible value for the determinant (based on volume)? If all the entries of the matrix are 1 or -1 , what are these lengths $L_{1}, L_{2}, L_{3}, L_{4}$ and what is the maximum determinant?

