Solution to Homework Assignment No. 2

1. (a) Let $\boldsymbol{x}_{1}=\boldsymbol{s}_{1}+\boldsymbol{t}_{1} \in S+T$ and $\boldsymbol{x}_{2}=\boldsymbol{s}_{2}+\boldsymbol{t}_{2} \in S+T$, where $\boldsymbol{s}_{1}, \boldsymbol{s}_{2} \in S$ and $\boldsymbol{t}_{1}, \boldsymbol{t}_{2} \in T$. We need to check the following two conditions:

- Consider $\boldsymbol{x}_{1}+\boldsymbol{x}_{2}=\left(\boldsymbol{s}_{1}+\boldsymbol{t}_{1}\right)+\left(\boldsymbol{s}_{2}+\boldsymbol{t}_{2}\right)=\left(\boldsymbol{s}_{1}+\boldsymbol{s}_{2}\right)+\left(\boldsymbol{t}_{1}+\boldsymbol{t}_{2}\right)$. Since $\boldsymbol{s}_{1}, \boldsymbol{s}_{2} \in S$ and S is a subspace, we have $\boldsymbol{s}_{1}+\boldsymbol{s}_{2} \in S$. Similarly, we have $\boldsymbol{t}_{1}+\boldsymbol{t}_{2} \in T$. Therefore, $\boldsymbol{x}_{1}+\boldsymbol{x}_{2}=\left(\boldsymbol{s}_{1}+\boldsymbol{s}_{2}\right)+\left(\boldsymbol{t}_{1}+\boldsymbol{t}_{2}\right) \in S+T$.
- For any scalar c, consider $c \boldsymbol{x}_{1}=c \boldsymbol{s}_{1}+c \boldsymbol{t}_{1}$. Since $\boldsymbol{s}_{1} \in S, \boldsymbol{t}_{1} \in T$ and S, T are subspaces of V, we have $c s_{1} \in S$ and $c \boldsymbol{t}_{1} \in T$. Therefore, $c \boldsymbol{x}_{1}=c \boldsymbol{s}_{1}+c \boldsymbol{t}_{1} \in S+T$.

Therefore, $S+T$ is a subspace of the vector space V.
(b) Let $\boldsymbol{x}_{1} \in S \cap T$. That is to say that $\boldsymbol{x}_{1} \in S$ and $\boldsymbol{x}_{1} \in T$. Also let $\boldsymbol{x}_{2} \in S \cap T$. We have $\boldsymbol{x}_{2} \in S$ and $\boldsymbol{x}_{2} \in T$. We need to check the following two conditions:

- Consider $\boldsymbol{x}_{1}+\boldsymbol{x}_{2}$. Since $\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \in S$ and S is a subspace of V, we have $\boldsymbol{x}_{1}+\boldsymbol{x}_{2} \in S$. Similarly, we have $\boldsymbol{x}_{1}+\boldsymbol{x}_{2} \in T$. Therefore, $\boldsymbol{x}_{1}+\boldsymbol{x}_{2} \in S \cap T$.
- For any scalar c, consider $c \boldsymbol{x}_{1}$. Since $\boldsymbol{x}_{1} \in S$ and S is a subspaces of V, we have $c \boldsymbol{x}_{1} \in S$. Similarly, we have $c \boldsymbol{x}_{1} \in T$. Therefore, $c \boldsymbol{x}_{1} \in S \cap T$.

Therefore, $S \cap T$ is a subspace of the vector space V.
2. (a) False. This subset is not a subspace of \mathcal{R}^{3}. Let $A=\left\{\left(a_{1}, a_{2}, a_{3}\right): a_{1}+2 a_{2}-\right.$ $\left.3 a_{3}=1\right\}$. Consider $(1,0,0),(1,3,2) \in A$ and $(1,0,0)+(1,3,2)=(2,3,2)$. Since $2+2 \cdot 3-3 \cdot 2=2 \neq 1$, we know that $(2,3,2) \notin A$. Therefore, A is not a subspace of \mathcal{R}^{3}.
(b) False. All the vectors \boldsymbol{b} that are not in the column space $\mathcal{C}(\boldsymbol{A})$ do not form a subspace of \mathcal{R}^{m}. Consider $\boldsymbol{A}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$, and we konw that $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}0 \\ -1\end{array}\right]$ are not in the column space $\mathcal{C}(\boldsymbol{A})$. However, $\left[\begin{array}{l}0 \\ 1\end{array}\right]+\left[\begin{array}{c}0 \\ -1\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ is in the column space $\mathcal{C}(\boldsymbol{A})$. Therefore, all the vectors \boldsymbol{b} that are not in the column space $\mathcal{C}(\boldsymbol{A})$ do not form a subspace of \mathcal{R}^{m}.
(c) Ture. Since

$$
\begin{aligned}
\mathcal{N}(\boldsymbol{B}) & =\{\boldsymbol{x}: \quad \boldsymbol{B} \boldsymbol{x}=\mathbf{0}\} \\
& =\{\boldsymbol{x}: \quad \boldsymbol{C} \boldsymbol{A} \boldsymbol{x}=\mathbf{0}\} \\
& =\left\{\boldsymbol{x}: \quad \boldsymbol{C}^{-1} \boldsymbol{C} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{C}^{-1} \mathbf{0}\right\} \quad \text { (because } \boldsymbol{C} \text { is invertible) } \\
& =\{\boldsymbol{x}: \quad \boldsymbol{A} \boldsymbol{x}=\mathbf{0}\} \\
& =\mathcal{N}(\boldsymbol{A})
\end{aligned}
$$

matrices \boldsymbol{A} and \boldsymbol{B} have the same nullspace when \boldsymbol{C} is invertible.
3. We can solve this system by the following procedure:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 2 & -2 \\
2 & 5 & -4 \\
4 & 9 & -8
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]} \\
& \Longrightarrow\left[\begin{array}{lll|l}
1 & 2 & -2 & b_{1} \\
2 & 5 & -4 & b_{2} \\
4 & 9 & -8 & b_{3}
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{ccc|c}
1 & 2 & -2 & b_{1} \\
0 & 1 & 0 & -2 b_{1}+b_{2} \\
4 & 9 & -8 & b_{3}
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{ccc|c}
1 & 2 & -2 & b_{1} \\
0 & 1 & 0 & -2 b_{1}+b_{2} \\
0 & 1 & 0 & -4 b_{1}+b_{3}
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{ccc|c}
1 & 2 & -2 & b_{1} \\
0 & 1 & 0 & -2 b_{1}+b_{2} \\
0 & 0 & 0 & -2 b_{1}-b_{2}+b_{3}
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{ccc|c}
1 & 0 & -2 & 5 b_{1}-2 b_{2} \\
0 & 1 & 0 & -2 b_{1}+b_{2} \\
0 & 0 & 0 & -2 b_{1}-b_{2}+b_{3}
\end{array}\right] .
\end{aligned}
$$

The system is solvable if $-2 b_{1}-b_{2}+b_{3}=0$, i.e.,

$$
b_{3}=2 b_{1}+b_{2} .
$$

When the above condition holds, we need to solve

$$
\left[\begin{array}{ccc|c}
1 & 0 & -2 & 5 b_{1}-2 b_{2} \\
0 & 1 & 0 & -2 b_{1}+b_{2} \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

The pivot variables are x_{1} and x_{2}, and the free variable is x_{3}. First, we want to find a particular solution. Choose the free variables $x_{3}=0$. Then we have a particular solution given by

$$
\boldsymbol{x}_{p}=\left[\begin{array}{c}
5 b_{1}-2 b_{2} \\
-2 b_{1}+b_{2} \\
0
\end{array}\right] .
$$

Then we want to find the nullspace vectors x_{n}. Given $x_{3}=1$, we can have $\left(x_{1}, x_{2}\right)=(2,0)$. Therefore, we can obtain

$$
\boldsymbol{x}_{n}=x_{3}\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]
$$

where $x_{3} \in \mathcal{R}$. Finally, the complete solution is

$$
\boldsymbol{x}=\boldsymbol{x}_{p}+\boldsymbol{x}_{n}=\left[\begin{array}{c}
5 b_{1}-2 b_{2} \\
-2 b_{1}+b_{2} \\
0
\end{array}\right]+x_{3}\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]
$$

where $x_{3} \in \mathcal{R}$ if $b_{3}=2 b_{1}+b_{2}$.
4. Consider the augmented matrix and perform elimination, and we have

$$
\left[\begin{array}{ccccc|c}
1 & 1 & 1 & 1 & -3 & 6 \\
2 & 3 & 1 & 4 & -9 & 17 \\
1 & 1 & 1 & 2 & -5 & 8 \\
2 & 2 & 2 & 3 & -8 & 14
\end{array}\right] \Longrightarrow\left[\begin{array}{ccccc|c}
1 & 0 & 2 & 0 & -2 & 3 \\
0 & 1 & -1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & -2 & 2 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

The pivot variables are x_{1}, x_{2}, and x_{4}, and the free variables are x_{3} and x_{5}. First, we want to find a particular solution. Choose the free variables as $x_{3}=x_{5}=0$. Then we have $x_{1}=3, x_{2}=1$, and $x_{4}=2$. Therefore, a particular solution is

$$
\boldsymbol{x}_{p}=\left[\begin{array}{l}
3 \\
1 \\
0 \\
2 \\
0
\end{array}\right]
$$

Then we want to find the nullspace vectors \boldsymbol{x}_{n}.

- Given $\left(x_{3}, x_{5}\right)=(1,0)$, we can have $\left(x_{1}, x_{2}, x_{4}\right)=(-2,1,0)$.
- Given $\left(x_{3}, x_{5}\right)=(0,1)$, we can have $\left(x_{1}, x_{2}, x_{4}\right)=(2,-1,2)$.

Therefore, we can obtain

$$
\boldsymbol{x}_{n}=x_{3}\left[\begin{array}{c}
-2 \\
1 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
2 \\
-1 \\
0 \\
2 \\
1
\end{array}\right]
$$

where $x_{3}, x_{5} \in \mathcal{R}$. Finally, the complete solution is given by

$$
\boldsymbol{x}=\boldsymbol{x}_{p}+\boldsymbol{x}_{n}=\left[\begin{array}{l}
3 \\
1 \\
0 \\
2 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-2 \\
1 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
2 \\
-1 \\
0 \\
2 \\
1
\end{array}\right]
$$

where $x_{3}, x_{5} \in \mathcal{R}$.
5. Let $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \cdots, \boldsymbol{w}_{m}$ form a basis for \boldsymbol{V}. We can have

$$
\boldsymbol{v}_{j}=\sum_{i=1}^{m} a_{i j} \boldsymbol{w}_{i}, \quad \text { for } j=1,2, \cdots n
$$

Then consider the following equation:

$$
\begin{array}{r}
\quad x_{1} \boldsymbol{v}_{1}+x_{2} \boldsymbol{v}_{2}+\cdots+x_{n} \boldsymbol{v}_{n}=\mathbf{0} \\
\Longrightarrow \quad x_{1}\left(a_{11} \boldsymbol{w}_{1}+a_{21} \boldsymbol{w}_{2}+\cdots+a_{m 1} \boldsymbol{w}_{m}\right)+x_{2}\left(a_{12} \boldsymbol{w}_{1}+a_{22} \boldsymbol{w}_{2}+\cdots+a_{m 2} \boldsymbol{w}_{m}\right)+ \\
\cdots+x_{n}\left(a_{1 n} \boldsymbol{w}_{1}+a_{2 n} \boldsymbol{w}_{2}+\cdots+a_{m n} \boldsymbol{w}_{m}\right)=\mathbf{0} \\
\Longrightarrow \quad\left(x_{1} a_{11}+x_{2} a_{12}+\cdots+x_{n} a_{1 n}\right) \boldsymbol{w}_{1}+\left(x_{1} a_{21}+x_{2} a_{22}+\cdots+x_{n} a_{2 n}\right) \boldsymbol{w}_{2}+ \\
\cdots+\left(x_{1} a_{m 1}+x_{2} a_{m 2}+\cdots+x_{n} a_{m n}\right) \boldsymbol{w}_{m}=\mathbf{0} .
\end{array}
$$

Since $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \cdots, \boldsymbol{w}_{m}$ form a basis, they are linearly independent. We know the only solution to the above equation is

$$
\begin{aligned}
& \Longrightarrow\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \ddots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right] \\
& \Longrightarrow \boldsymbol{A} \boldsymbol{x}=\mathbf{0} .
\end{aligned}
$$

Since $n>m$, we have $r \leq m<n$. There are $n-r>0$ free variables and hence there exist nonzero solutions \boldsymbol{x}. Therefore, $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \cdots, \boldsymbol{v}_{n}$ must be linearly dependent.
6. (a) Since $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ is 3 by 1 and $x=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ is 2 by 1 , we know that \boldsymbol{A} is a 3 by 2 matrix. For $\boldsymbol{x}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ to be the only solution to $\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$, the nullspace of \boldsymbol{A} must contain the zero vector only. Hence, the rank of \boldsymbol{A} should be 2 . Let $\boldsymbol{A}=\left[\begin{array}{ll}\boldsymbol{a}_{1} & \boldsymbol{a}_{2}\end{array}\right]$, where \boldsymbol{a}_{1} and \boldsymbol{a}_{2} are column vectors. We have

$$
\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{ll}
\boldsymbol{a}_{1} & \boldsymbol{a}_{2}
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

which gives

$$
\boldsymbol{a}_{2}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] .
$$

And \boldsymbol{a}_{1} can be any 3×1 column vector which is not a multiple of \boldsymbol{a}_{1}. For example, we can choose

$$
\boldsymbol{A}=\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right]
$$

(b) No such matrix exists. Since the column space and nullspace both have three components, the desired matrix is 3 by 3 , say \boldsymbol{B}. We can find $\operatorname{dim}(\mathcal{N}(\boldsymbol{B}))=$ $1 \neq 2=3-1=3-\operatorname{rank}(\boldsymbol{B})$, which is not possible. Therefore, no such matrix exists.
(c) No such matrix exists. It is clear that the desired matrix is 3 by 2 . Since the column space contains $\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and these two vectors are linearly independent, we know that the rank of the desired matrix must be 2 . It follows that the dimension of the row space is 2 and thus the row space should be \mathcal{R}^{2}. Therefore, $(1,3)$ has to be in the row space.
7. Convert \boldsymbol{A} into the RRE form:

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
1 & 3 & 1 & 2 \\
2 & 6 & 3 & 5 \\
-1 & -3 & 1 & 0
\end{array}\right] \Longrightarrow \boldsymbol{R}=\left[\begin{array}{cccc}
1 & 3 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore, a basis for the row space of \boldsymbol{A} can be given by

$$
(1,3,0,1),(0,0,1,1)
$$

The pivot columns are the 1st and 3rd columns of \boldsymbol{R}, and hence a basis for the column space of \boldsymbol{A} can be given by

$$
\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right], \quad\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right] .
$$

Since x_{1} and x_{3} are pivot variables and x_{2} and x_{4} are free variables, a basis for the nullspace can be given by the special solutions:

$$
\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{c}
-1 \\
0 \\
-1 \\
1
\end{array}\right]
$$

We can have $\boldsymbol{R}=\boldsymbol{E} \boldsymbol{A}$ where

$$
\boldsymbol{E}=\left[\begin{array}{ccc}
3 & -1 & 0 \\
-2 & 1 & 0 \\
5 & -2 & 1
\end{array}\right]
$$

Since the last row of \boldsymbol{R} is a zero row, a basis for the left nullspace can be given by the last row of \boldsymbol{E} :

$$
(5,-2,1)
$$

8. (a) Let $\boldsymbol{C}=\boldsymbol{A} \boldsymbol{B}$ where $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$ are m by n, n by l, and m by l, respectively, with $\boldsymbol{a}_{k}, \boldsymbol{b}_{k}$, and \boldsymbol{c}_{k} denoting the k th row of $\boldsymbol{A}, \boldsymbol{B}$, and \boldsymbol{C}, respectively. We have

$$
\boldsymbol{c}_{i}=\boldsymbol{a}_{i} \boldsymbol{B}=\sum_{j=1}^{n} a_{i j} \boldsymbol{b}_{j} \quad \text { for } \quad 1 \leq i \leq m
$$

which shows that the rows of \boldsymbol{C} are linear combinations of the rows of \boldsymbol{B}. Hence, any linear combination of the rows of \boldsymbol{C} is a linear combination of the rows of \boldsymbol{B}, which yields

$$
\mathcal{C}\left(\boldsymbol{C}^{T}\right) \subseteq \mathcal{C}\left(\boldsymbol{B}^{T}\right)
$$

The rank of \boldsymbol{C} is the maximal number of linearly independent vectors in $\mathcal{C}\left(\boldsymbol{C}^{T}\right)$, which in turn cannot exceed the maximal number of linearly independent vectors in $\mathcal{C}\left(\boldsymbol{B}^{T}\right)$, i.e., the rank of \boldsymbol{B}. Therefore,

$$
\operatorname{rank}(\boldsymbol{A B})=\operatorname{rank}(\boldsymbol{C}) \leq \operatorname{rank}(\boldsymbol{B})
$$

(b) We can obtain $\boldsymbol{C}^{T}=\boldsymbol{B}^{T} \boldsymbol{A}^{T}$ by taking transposition on both sides of $\boldsymbol{C}=$ $\boldsymbol{A B}$. It now follows from (a) that

$$
\operatorname{rank}\left(\boldsymbol{C}^{T}\right) \leq \operatorname{rank}\left(\boldsymbol{A}^{T}\right)
$$

Together with the fact that

$$
\operatorname{rank}(\boldsymbol{C})=\operatorname{rank}\left(\boldsymbol{C}^{T}\right) \quad \text { and } \quad \operatorname{rank}\left(\boldsymbol{A}^{T}\right)=\operatorname{rank}(\boldsymbol{A})
$$

we finally arrive at

$$
\operatorname{rank}(\boldsymbol{A} \boldsymbol{B})=\operatorname{rank}(\boldsymbol{C})=\operatorname{rank}\left(\boldsymbol{C}^{T}\right) \leq \operatorname{rank}\left(\boldsymbol{A}^{T}\right)=\operatorname{rank}(\boldsymbol{A})
$$

(c) Here \boldsymbol{A} and \boldsymbol{B} are n by n matrices. From (b), we can obtain

$$
n=\operatorname{rank}(\boldsymbol{I})=\operatorname{rank}(\boldsymbol{A} \boldsymbol{B}) \leq \operatorname{rank}(\boldsymbol{A})
$$

Since \boldsymbol{A} is an n by n matrix, we have $\operatorname{rank}(\boldsymbol{A})=n$. It follows that \boldsymbol{A} is nonsingular and hence invertible. Now since \boldsymbol{A} is invertible and $\boldsymbol{A} \boldsymbol{B}=\boldsymbol{I}$, by part (a) of Problem 3 in Homework Assignment No. 1, we can have $\boldsymbol{B}=\boldsymbol{A}^{-1}$.

