Homework Assignment No. 2
 Due 10:10am, March 28, 2012

Reading: Strang, Chapter 3.
Problems for Solution:

1. Suppose S and T are two subspaces of a vector space V. The sum $S+T$ contains all sums $\boldsymbol{s}+\boldsymbol{t}$ of a vector \boldsymbol{s} in S and a vector \boldsymbol{t} in T, i.e.,

$$
S+T=\{\boldsymbol{s}+\boldsymbol{t}: \boldsymbol{s} \in S, \boldsymbol{t} \in T\} .
$$

The intersection $S \cap T$ contains all vectors in S and also in T, i.e.,

$$
S \cap T=\{\boldsymbol{v}: \boldsymbol{v} \in S \text { and } \boldsymbol{v} \in T\}
$$

(a) Show that $S+T$ is a subspace of V.
(b) Show that $S \cap T$ is a subspace of V.
2. True or false. (If it is true, prove it. Otherwise, find a counterexample.)
(a) The subset $\left\{\left(a_{1}, a_{2}, a_{3}\right): a_{1}+2 a_{2}-3 a_{3}=1\right\}$ of \mathcal{R}^{3} is a subspace of \mathcal{R}^{3}.
(b) Suppose \boldsymbol{A} is an m by n real matrix. All the (m by 1) vectors \boldsymbol{b} that are not in the column space $C(\boldsymbol{A})$ form a subspace of \mathcal{R}^{m}.
(c) Matrices \boldsymbol{A} and $\boldsymbol{B}=\boldsymbol{C A}$ have the same nullspace when \boldsymbol{C} is invertible.
3. Under what condition on b_{1}, b_{2}, b_{3} is this system solvable? Find the complete solution when that condition holds:

$$
\left[\begin{array}{lll}
1 & 2 & -2 \\
2 & 5 & -4 \\
4 & 9 & -8
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] .
$$

4. Find the complete solution to

$$
\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & -3 \\
2 & 3 & 1 & 4 & -9 \\
1 & 1 & 1 & 2 & -5 \\
2 & 2 & 2 & 3 & -8
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
6 \\
17 \\
8 \\
14
\end{array}\right]
$$

5. Prove that n vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ in an m-dimensional vector space V must be linearly dependent when $n>m$. (Hint: Let $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{m}$ form a basis for V. We can have

$$
\boldsymbol{v}_{j}=\sum_{i=1}^{m} a_{i j} \boldsymbol{w}_{i}, \text { for } j=1,2, \ldots, n
$$

Then consider

$$
x_{1} \boldsymbol{v}_{1}+x_{2} \boldsymbol{v}_{2}+\cdots+x_{n} \boldsymbol{v}_{n}=\mathbf{0}
$$

Should the values of $x_{1}, x_{2}, \ldots, x_{n}$ always be zero?)
6. Write down a matrix with the required property or explain why no such matrix exists.
(a) The only solution to $\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ is $\boldsymbol{x}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
(b) Column space has basis $\left[\begin{array}{l}1 \\ 3 \\ 1\end{array}\right]$; nullspace has basis $\left[\begin{array}{l}2 \\ 4 \\ 2\end{array}\right]$.
(c) Column space contains $\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$; row space contains $(1,2)$ but not $(1,3)$.
7. Find a basis for each of the four subspaces of

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
1 & 3 & 1 & 2 \\
2 & 6 & 3 & 5 \\
-1 & -3 & 1 & 0
\end{array}\right]
$$

8. (a) For matrices \boldsymbol{A} and \boldsymbol{B}, show that $\operatorname{rank}(\boldsymbol{A B}) \leq \operatorname{rank}(\boldsymbol{B})$. (Hint: Argue that the rows of $\boldsymbol{A} \boldsymbol{B}$ are linear combinations of the rows of \boldsymbol{B}.)
(b) Also show that $\operatorname{rank}(\boldsymbol{A B}) \leq \operatorname{rank}(\boldsymbol{A})$. (Hint: Consider $\boldsymbol{B}^{T} \boldsymbol{A}^{T}$.)
(c) Suppose \boldsymbol{A} and \boldsymbol{B} are n by n matrices, and $\boldsymbol{A B}=\boldsymbol{I}$. Show that \boldsymbol{A} is invertible and \boldsymbol{B} must be its inverse. (Hint: First show that the rank of \boldsymbol{A} is n by using $\operatorname{rank}(\boldsymbol{A B}) \leq \operatorname{rank}(\boldsymbol{A})$.
