Solution to Homework Assignment No. 1

1. (a) We first perform forward elimination:

$$
\begin{aligned}
{\left[\begin{array}{ccc|c}
2 & 3 & 1 & 8 \\
4 & 7 & 5 & 20 \\
0 & -2 & 2 & 0
\end{array}\right] } & \Longrightarrow\left[\begin{array}{ccc|c}
2 & 3 & 1 & 8 \\
0 & 1 & 3 & 4 \\
0 & -2 & 2 & 0
\end{array}\right](\text { subtract } 2 \times \text { row } 1) \\
& \Longrightarrow\left[\begin{array}{lll|l}
2 & 3 & 1 & 8 \\
0 & 1 & 3 & 4 \\
0 & 0 & 8 & 8
\end{array}\right]
\end{aligned}(\text { add } 2 \times \text { row } 2) .
$$

Then we obtain the pivots as 2,1 , and 8 , and the solution can be solved by back substitution as follows:

$$
\begin{array}{ccl}
\text { equation 3: } & 8 z=8 & \text { gives } z=1 \\
\text { equation 2: } & 1 y+3=4 & \text { gives } y=1 \\
\text { equation 1: } & 2 x+3+1=8 & \text { gives } x=2
\end{array}
$$

We have $(x, y, z)=(2,1,1)$.
(b) We perform forward elimination first:

$$
\begin{aligned}
{\left[\begin{array}{ccc|c}
2 & -3 & 0 & 3 \\
4 & -5 & 1 & 7 \\
2 & -1 & -3 & 5
\end{array}\right] } & \left.\Longrightarrow\left[\begin{array}{ccc|c}
2 & -3 & 0 & 3 \\
0 & 1 & 1 & 1 \\
2 & -1 & -3 & 5
\end{array}\right] \quad \text { (subtract } 2 \times \text { row } 1\right) \\
& \Longrightarrow\left[\begin{array}{ccc|c}
2 & -3 & 0 & 3 \\
0 & 1 & 1 & 1 \\
0 & 2 & -3 & 2
\end{array}\right] \quad(\text { subtract } 1 \times \text { row } 1) \\
& \Longrightarrow\left[\begin{array}{ccc|c}
2 & -3 & 0 & 3 \\
0 & 1 & 1 & 1 \\
0 & 0 & -5 & 0
\end{array}\right] \quad(\text { subtract } 2 \times \text { row } 2) .
\end{aligned}
$$

The pivots are 2,1 , and -5 . We then do back substitution to get the solution:

$$
\begin{array}{ccl}
\text { equation 3: } & -5 z=0 & \text { gives } z=0 \\
\text { equation 2: } & y+0=1 & \text { gives } y=1 \\
\text { equation 1: } & 2 x-3=3 & \text { gives } x=3
\end{array}
$$

The solution is $(x, y, z)=(3,1,0)$.
2. (a) We use the Gauss-Jordan method to find the inverse of \boldsymbol{A} :

$$
\xrightarrow{\boldsymbol{E}_{32}}\left[\begin{array}{cccc|cccc}
2 & -1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 3 / 2 & -1 & 0 & 1 / 2 & 1 & 0 & 0 \\
0 & 0 & 4 / 3 & -1 & 1 / 3 & 2 / 3 & 1 & 0 \\
0 & 0 & -1 & 2 & 0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\xrightarrow{\boldsymbol{E}_{43}}\left[\begin{array}{cccc|cccc}
2 & -1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 3 / 2 & -1 & 0 & 1 / 2 & 1 & 0 & 0 \\
0 & 0 & 4 / 3 & -1 & 1 / 3 & 2 / 3 & 1 & 0 \\
0 & 0 & 0 & 5 / 4 & 1 / 4 & 1 / 2 & 3 / 4 & 1
\end{array}\right]
$$

$$
\xrightarrow{\boldsymbol{E}_{34}}\left[\begin{array}{cccc|cccc}
2 & -1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 3 / 2 & -1 & 0 & 1 / 2 & 1 & 0 & 0 \\
0 & 0 & 4 / 3 & 0 & 8 / 15 & 16 / 15 & 8 / 5 & 4 / 5 \\
0 & 0 & 0 & 5 / 4 & 1 / 4 & 1 / 2 & 3 / 4 & 1
\end{array}\right]
$$

$$
\xrightarrow{\boldsymbol{E}_{23}}\left[\begin{array}{cccc|cccc}
2 & -1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 3 / 2 & 0 & 0 & 9 / 10 & 9 / 5 & 6 / 5 & 3 / 5 \\
0 & 0 & 4 / 3 & 0 & 8 / 15 & 16 / 15 & 8 / 5 & 4 / 5 \\
0 & 0 & 0 & 5 / 4 & 1 / 4 & 1 / 2 & 3 / 4 & 1
\end{array}\right]
$$

$$
\xrightarrow{\boldsymbol{E}_{12}}\left[\begin{array}{cccc|cccc}
2 & 0 & 0 & 0 & 8 / 5 & 6 / 5 & 4 / 5 & 2 / 5 \\
0 & 3 / 2 & 0 & 0 & 9 / 10 & 9 / 5 & 6 / 5 & 3 / 5 \\
0 & 0 & 4 / 3 & 0 & 8 / 15 & 16 / 5 & 8 / 5 & 4 / 5 \\
0 & 0 & 0 & 5 / 4 & 1 / 4 & 1 / 2 & 3 / 4 & 1
\end{array}\right]
$$

$$
\stackrel{D^{-1}}{\Longrightarrow}
$$

$$
\left[\begin{array}{llll|llll}
1 & 0 & 0 & 0 & 4 / 5 & 3 / 5 & 2 / 5 & 1 / 5 \\
0 & 1 & 0 & 0 & 3 / 5 & 6 / 5 & 4 / 5 & 2 / 5 \\
0 & 0 & 1 & 0 & 2 / 5 & 4 / 5 & 6 / 5 & 3 / 5 \\
0 & 0 & 0 & 1 & 1 / 5 & 2 / 5 & 3 / 5 & 4 / 5
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{l|l}
\boldsymbol{A} & \boldsymbol{I}
\end{array}\right]=\left[\begin{array}{cccc|cccc}
2 & -1 & 0 & 0 & 1 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 & 1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 & 1 & 0 \\
0 & 0 & -1 & 2 & 0 & 0 & 0 & 1
\end{array}\right]} \\
& \xrightarrow{\boldsymbol{E}_{21}}\left[\begin{array}{cccc|cccc}
2 & -1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 3 / 2 & -1 & 0 & 1 / 2 & 1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 & 1 & 0 \\
0 & 0 & -1 & 2 & 0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

where

$$
\left.\left.\begin{array}{cc}
\boldsymbol{E}_{\mathbf{2 1}}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 / 2 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad \boldsymbol{E}_{\mathbf{3 2}}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 2 / 3 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad \boldsymbol{E}_{\mathbf{4 3}}=\left[\begin{array}{ccc}
1 & 0 & 0
\end{array} 0\right. \\
0 & 1 \\
0 & 0 \\
0 & 0 \\
1 & 0 \\
0 & 0
\end{array} 3 / 4 \quad 1\right] ~\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 4 / 5 \\
0 & 0 & 0 & 1
\end{array}\right], \quad \boldsymbol{E}_{\mathbf{2 3}}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 3 / 4 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad \boldsymbol{E}_{\mathbf{1 2}}=\left[\begin{array}{cccc}
1 & 2 / 3 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)
$$

Thus we have

$$
\boldsymbol{A}^{-\mathbf{1}}=\frac{1}{5}\left[\begin{array}{llll}
4 & 3 & 2 & 1 \\
3 & 6 & 4 & 2 \\
2 & 4 & 6 & 3 \\
1 & 2 & 3 & 4
\end{array}\right] .
$$

(b) We use the Gauss-Jordan method to find \boldsymbol{B}^{-1} :

$$
\begin{aligned}
& {\left[\begin{array}{l|l}
\boldsymbol{A} & \boldsymbol{I}
\end{array}\right]=\left[\begin{array}{cccc|cccc}
2 & -1 & 0 & -1 & 1 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 & 1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 & 1 & 0 \\
-1 & 0 & -1 & 2 & 0 & 0 & 0 & 1
\end{array}\right]} \\
& \xrightarrow{\boldsymbol{E}_{21}}\left[\begin{array}{cccc|cccc}
2 & -1 & 0 & -1 & 1 & 0 & 0 & 0 \\
0 & 3 / 2 & -1 & -1 / 2 & 1 / 2 & 1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 & 1 & 0 \\
-1 & 0 & -1 & 2 & 0 & 0 & 0 & 1
\end{array}\right] \\
& \xrightarrow{\boldsymbol{E}_{41}}\left[\begin{array}{cccc|cccc}
2 & -1 & 0 & -1 & 1 & 0 & 0 & 0 \\
0 & 3 / 2 & -1 & -1 / 2 & 1 / 2 & 1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 & 1 & 0 \\
0 & -1 / 2 & -1 & 3 / 2 & 1 / 2 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \xrightarrow{\boldsymbol{E}_{32}}\left[\begin{array}{cccc|cccc}
2 & -1 & 0 & -1 & 1 & 0 & 0 & 0 \\
0 & 3 / 2 & -1 & -1 / 2 & 1 / 2 & 1 & 0 & 0 \\
0 & 0 & 4 / 3 & -4 / 3 & 1 / 3 & 2 / 3 & 1 & 0 \\
0 & -1 / 2 & -1 & 3 / 2 & 1 / 2 & 0 & 0 & 1
\end{array}\right] \\
& \xrightarrow{\boldsymbol{E}_{42}}\left[\begin{array}{cccc|cccc}
2 & -1 & 0 & -1 & 1 & 0 & 0 & 0 \\
0 & 3 / 2 & -1 & -1 / 2 & 1 / 2 & 1 & 0 & 0 \\
0 & 0 & 4 / 3 & -4 / 3 & 1 / 3 & 2 / 3 & 1 & 0 \\
0 & 0 & -4 / 3 & 4 / 3 & 2 / 3 & 1 / 3 & 0 & 1
\end{array}\right] \\
& \xrightarrow{\boldsymbol{E}_{43}}\left[\begin{array}{cccc|cccc}
2 & -1 & 0 & -1 & 1 & 0 & 0 & 0 \\
0 & 3 / 2 & -1 & -1 / 2 & 1 / 2 & 1 & 0 & 0 \\
0 & 0 & 4 / 3 & -4 / 3 & 1 / 3 & 2 / 3 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right] .
\end{aligned}
$$

Since we can not find a full set of nonzero pivots, \boldsymbol{B} is not invertible.
Alternatively, we can prove by contradiction that it has no inverse. Suppose \boldsymbol{B}^{-1} exists. Let $\boldsymbol{a}=\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]$. We have

$$
\begin{aligned}
a\left(B B^{-1}\right) & =\boldsymbol{a I}=\boldsymbol{a} \\
(a B) B^{-1} & =0 B^{-1}=\mathbf{0}
\end{aligned}
$$

where $\mathbf{0}$ is the 1×4 zero vector. Since the associative law is violated, we get a contradiction. Therefore, \boldsymbol{B}^{-1} does not exist.
3. (a) True.
$\boldsymbol{B}=\boldsymbol{I} \boldsymbol{B}=\left(\boldsymbol{A}^{-1} \boldsymbol{A}\right) \boldsymbol{B}=\boldsymbol{A}^{-1}(\boldsymbol{A B})=\boldsymbol{A}^{-1} \boldsymbol{I}=\boldsymbol{A}^{-1} \Rightarrow \boldsymbol{B}=\boldsymbol{A}^{-1}$.
(b) False.

Consider

$$
\boldsymbol{A}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \text { and } \boldsymbol{B}=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right] .
$$

Both matrices are invertible. But

$$
\boldsymbol{A}+\boldsymbol{B}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

which is not invertible.
(c) True.

This is equivalent to showing that \boldsymbol{A} is symmetric if \boldsymbol{A}^{-1} is symmetric. Suppose \boldsymbol{A}^{-1} is symmetric. We have

$$
\begin{aligned}
& \boldsymbol{A}^{-1}=\left(\boldsymbol{A}^{-1}\right)^{T} \\
\Rightarrow & \boldsymbol{I}=\boldsymbol{A} \boldsymbol{A}^{-1}=\boldsymbol{A}\left(\boldsymbol{A}^{-1}\right)^{T} \\
\Rightarrow & \boldsymbol{A}^{T}=\boldsymbol{I} \boldsymbol{A}^{T}=\boldsymbol{A}\left(\boldsymbol{A}^{-1}\right)^{T} \boldsymbol{A}^{T} \\
& =\boldsymbol{A}\left(\boldsymbol{A} \boldsymbol{A}^{-1}\right)^{T}=\boldsymbol{A} \boldsymbol{I}^{T}=\boldsymbol{A} \boldsymbol{I}=\boldsymbol{A}
\end{aligned}
$$

which shows that \boldsymbol{A} is symmetric.
4. (a)

$$
\begin{aligned}
& \boldsymbol{E}_{21} \boldsymbol{A}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 1 \\
1 & 1 & 2 \\
2 & 5 & 6
\end{array}\right]=\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & -1 & 1 \\
2 & 5 & 6
\end{array}\right] . \\
& \boldsymbol{E}_{31} \boldsymbol{E}_{21} \boldsymbol{A}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & 1 \\
1 & 1 & 2 \\
2 & 5 & 6
\end{array}\right]=\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & -1 & 1 \\
0 & 1 & 4
\end{array}\right] . \\
& \boldsymbol{U}=\boldsymbol{E}_{32} \boldsymbol{E}_{31} \boldsymbol{E}_{21} \boldsymbol{A}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & 1 \\
1 & 1 & 2 \\
2 & 5 & 6
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & -1 & 1 \\
0 & 0 & 5
\end{array}\right] .
\end{aligned}
$$

Thus we have

$$
\boldsymbol{L}=\boldsymbol{E}_{21}^{-1} \boldsymbol{E}_{31}^{-1} \boldsymbol{E}_{32}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
2 & -1 & 1
\end{array}\right], \quad \boldsymbol{D}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 5
\end{array}\right], \quad \boldsymbol{U}=\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right] .
$$

(b) As we did in part (a) of Problem 2, we can find that

$$
\begin{aligned}
& \boldsymbol{L}=\boldsymbol{E}_{21}^{-1} \boldsymbol{E}_{32}^{-1} \boldsymbol{E}_{43}^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 / 2 & 1 & 0 & 0 \\
0 & -2 / 3 & 1 & 0 \\
0 & 0 & -3 / 4 & 1
\end{array}\right], \quad \boldsymbol{D}=\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & 3 / 2 & 0 & 0 \\
0 & 0 & 4 / 3 & 0 \\
0 & 0 & 0 & 5 / 4
\end{array}\right] \\
& \boldsymbol{U}=\left[\begin{array}{cccc}
1 & -1 / 2 & 0 & 0 \\
0 & 1 & -2 / 3 & 0 \\
0 & 0 & 1 & -3 / 4 \\
0 & 0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

5. (a) Observe that d_{1}, d_{2}, d_{3} are pivots. In order to have a full set of pivots, we should have $d_{1} d_{2} d_{3} \neq 0$.
(b) We first solve $\boldsymbol{L} \boldsymbol{c}=\boldsymbol{y}$:

$$
\boldsymbol{L} \boldsymbol{c}=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
2
\end{array}\right] \Rightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{c}
2 \\
-2 \\
0
\end{array}\right]=\boldsymbol{c} .
$$

Then we solve $\boldsymbol{U} \boldsymbol{x}=\boldsymbol{c}$:

$$
\begin{array}{lcl}
\text { equation 3: } & 1 \cdot w=0 & \text { gives } w=0 \\
\text { equation 2: } & 1 \cdot v+0=-2 & \text { gives } v=-2 \\
\text { equation 1: } & 2 \cdot u+4 \cdot(-2)+0=2 & \text { gives } u=5
\end{array}
$$

We have $(u, v, w)=(5,-2,0)$.
6. (a) By (i) both \boldsymbol{L}_{1}^{-1} and \boldsymbol{U}_{2}^{-1} exist. We can have

$$
\begin{aligned}
& \boldsymbol{L}_{1} \boldsymbol{D}_{1} \boldsymbol{U}_{1}=\boldsymbol{L}_{2} \boldsymbol{D}_{2} \boldsymbol{U}_{2} \\
\Longrightarrow & \boldsymbol{D}_{1} \boldsymbol{U}_{1}=\boldsymbol{L}_{1}^{-1} \boldsymbol{L}_{2} \boldsymbol{D}_{2} \boldsymbol{U}_{2} \\
\Longrightarrow & \boldsymbol{D}_{1} \boldsymbol{U}_{1} \boldsymbol{U}_{2}^{-1}=\boldsymbol{L}_{1}^{-1} \boldsymbol{L}_{2} \boldsymbol{D}_{2} .
\end{aligned}
$$

By (i) and (ii) we have that $\boldsymbol{L}_{1}^{-1} \boldsymbol{L}_{2}$ a lower triangular matrix with unit diagonal. Also by (iii) $\boldsymbol{L}_{1}^{-1} \boldsymbol{L}_{2} \boldsymbol{D}_{2}$ is a lower triangular matrix. Similarly, $\boldsymbol{D}_{1} \boldsymbol{U}_{1} \boldsymbol{U}_{2}^{-1}$ is upper triangular.
(b) Observing the left hand side, we have $\boldsymbol{U}_{1} \boldsymbol{U}_{2}^{-1}$ is an upper triangular matrix with unit diagonal; i.e. $\left(\boldsymbol{U}_{1} \boldsymbol{U}_{2}^{-1}\right)_{i i}=1$, for all i. Now we consider the diagonal terms of $\boldsymbol{D}_{1} \boldsymbol{U}_{1} \boldsymbol{U}_{2}^{-1}$. We find that $\left(\boldsymbol{D}_{1} \boldsymbol{U}_{1} \boldsymbol{U}_{2}^{-1}\right)_{i i}=\sum_{j}\left(\boldsymbol{D}_{1}\right)_{i j}\left(\boldsymbol{U}_{1} \boldsymbol{U}_{2}^{-1}\right)_{j i}=$ $\left(\boldsymbol{D}_{1}\right)_{i i}\left(\boldsymbol{U}_{1} \boldsymbol{U}_{2}^{-1}\right)_{i i}$, since $\left(\boldsymbol{D}_{1}\right)_{i j}=0, \forall i \neq j$. From the above we can deduce that $\left(\boldsymbol{D}_{1} \boldsymbol{U}_{1} \boldsymbol{U}_{2}^{-1}\right)_{i i}=\left(\boldsymbol{D}_{1}\right)_{i i}$. Similarly, $\left(\boldsymbol{L}_{1}^{-1} \boldsymbol{L}_{2} \boldsymbol{D}_{2}\right)_{i i}=\left(\boldsymbol{D}_{2}\right)_{i i}$. We can then obtain the fact that $\left(\boldsymbol{D}_{1}\right)_{i i}=\left(\boldsymbol{D}_{2}\right)_{i i}$, for all i. Therefore, $\boldsymbol{D}_{1}=\boldsymbol{D}_{2}$.

Now comes the off-diagonals. From part (a) we have an lower triangular matrix equal to an upper triangular matrix. The only possibility is that $\boldsymbol{D}_{1} \boldsymbol{U}_{1} \boldsymbol{U}_{2}^{-1}=\boldsymbol{L}_{1}^{-1} \boldsymbol{L}_{2} \boldsymbol{D}_{2}$ is a diagonal matrix, which means both $\boldsymbol{D}_{1} \boldsymbol{U}_{1} \boldsymbol{U}_{2}^{-1}$ and $\boldsymbol{L}_{1}^{-1} \boldsymbol{L}_{2} \boldsymbol{D}_{2}$ only have non-zero values on the main diagonal. From the previous paragraph we have learned that the values on the main diagonal of the above two matrices are the same as those of \boldsymbol{D}_{1} and \boldsymbol{D}_{2}. Thus we have $\boldsymbol{D}_{1}=\boldsymbol{D}_{1} \boldsymbol{U}_{1} \boldsymbol{U}_{2}^{-1}=\boldsymbol{D}_{2}=\boldsymbol{L}_{1}^{-1} \boldsymbol{L}_{2} \boldsymbol{D}_{2}$. Since $\boldsymbol{D}_{1}, \boldsymbol{D}_{2}$ are invertible, we can then have $\boldsymbol{U}_{1} \boldsymbol{U}_{2}^{-1}=\boldsymbol{L}_{1}^{-1} \boldsymbol{L}_{2}=\boldsymbol{I}$, which gives $\boldsymbol{L}_{1}=\boldsymbol{L}_{2}$ and $\boldsymbol{U}_{1}=\boldsymbol{U}_{2}$, because of the fact that the inverses are unique.
7. (a) We can have

$$
\begin{aligned}
& \boldsymbol{A}+\boldsymbol{A}^{\boldsymbol{T}}=\boldsymbol{B}+\boldsymbol{B}^{\boldsymbol{T}}+\boldsymbol{C}+\boldsymbol{C}^{\boldsymbol{T}}=\boldsymbol{B}+\boldsymbol{B}+\boldsymbol{C}-\boldsymbol{C}=\mathbf{2} \boldsymbol{B} \\
\Rightarrow & \mathbf{2} \boldsymbol{B}=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]+\left[\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{array}\right]=\left[\begin{array}{ccc}
2 & 6 & 10 \\
6 & 10 & 14 \\
10 & 14 & 18
\end{array}\right] \\
\Rightarrow & \boldsymbol{B}=\left[\begin{array}{lll}
1 & 3 & 5 \\
3 & 5 & 7 \\
5 & 7 & 9
\end{array}\right] \\
\Rightarrow & \boldsymbol{C}=\boldsymbol{A}-\boldsymbol{B}=\left[\begin{array}{ccc}
0 & -1 & -2 \\
1 & 0 & -1 \\
2 & 1 & 0
\end{array}\right] .
\end{aligned}
$$

(b) We can generalize the method in part (a) to obtain $\boldsymbol{B}=\left(\boldsymbol{A}+\boldsymbol{A}^{T}\right) / 2$ and $\boldsymbol{C}=\left(\boldsymbol{A}-\boldsymbol{A}^{T}\right) / 2$.
8. (a) We first perform row exchange to obtain

$$
\boldsymbol{P} \boldsymbol{A}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
2 & 3 & 6
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
2 & 3 & 6
\end{array}\right]=\boldsymbol{A}^{\prime}
$$

Then elimination gives

$$
\boldsymbol{E}_{32} \boldsymbol{E}_{31} \boldsymbol{A}^{\prime}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -3 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
2 & 3 & 6
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]=\boldsymbol{U} .
$$

Therefore, we can obtain $\boldsymbol{P} \boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$ where

$$
\boldsymbol{P}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad \boldsymbol{L}=\boldsymbol{E}_{31}^{-1} \boldsymbol{E}_{32}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 3 & 1
\end{array}\right], \quad \boldsymbol{U}=\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] .
$$

(b) We first perform elimination to obtain

$$
\boldsymbol{E}_{31} \boldsymbol{E}_{32} \boldsymbol{A}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{array}\right]\left[\begin{array}{ccc}
0 & 1 & 1 \\
1 & 0 & 1 \\
2 & 3 & 6
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
0 & 0 & 1
\end{array}\right]=\boldsymbol{A}^{\prime} .
$$

Then we perform row exchange to obtain

$$
\boldsymbol{P}_{1}^{T} \boldsymbol{A}^{\prime}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]=\boldsymbol{U}
$$

Therefore, we can obtain $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{P}_{1} \boldsymbol{U}$ where

$$
\boldsymbol{P}_{1}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad \boldsymbol{L}=\boldsymbol{E}_{32}^{-1} \boldsymbol{E}_{31}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
3 & 2 & 1
\end{array}\right], \quad \boldsymbol{U}=\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

