Solution to Homework Assignment No. 6

1. (a) It is true. Suppose \boldsymbol{A} is similar to \boldsymbol{B}. We then have $\boldsymbol{A}=\boldsymbol{M}^{-1} \boldsymbol{B} \boldsymbol{M}$ for some matrix \boldsymbol{M} and hence $\boldsymbol{A}^{2}=\boldsymbol{M}^{-1} \boldsymbol{B}^{2} \boldsymbol{M}$. Therefore, \boldsymbol{A}^{2} is similar to \boldsymbol{B}^{2}.
(b) It is not true. Consider $\boldsymbol{A}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ and $\boldsymbol{B}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$. Since $\boldsymbol{A}^{2}=\boldsymbol{B}^{2}$, \boldsymbol{A}^{2} is similar to \boldsymbol{B}^{2}. However, \boldsymbol{A} is not similar to \boldsymbol{B}.
(c) It is true. Since the eigenvalues of $\left[\begin{array}{ll}3 & 1 \\ 0 & 4\end{array}\right]$ are 3 and $4,\left[\begin{array}{ll}3 & 1 \\ 0 & 4\end{array}\right]$ can be diagonalized to $\left[\begin{array}{ll}3 & 0 \\ 0 & 4\end{array}\right]$. Hence $\left[\begin{array}{ll}3 & 0 \\ 0 & 4\end{array}\right]$ is similar to $\left[\begin{array}{ll}3 & 1 \\ 0 & 4\end{array}\right]$.
(d) It is not true. A simple check reveals that $\left[\begin{array}{ll}3 & 1 \\ 0 & 3\end{array}\right]$ is not diagonalizable. Therefore, $\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$ and $\left[\begin{array}{ll}3 & 1 \\ 0 & 3\end{array}\right]$ cannot be similar.
2. Considering the geometry multiplicity (GM) of the eigenvalue 0 , we have four different cases:

$$
\begin{aligned}
\mathrm{GM}=1 & \Longrightarrow\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] . \\
\mathrm{GM}=2 & \Longrightarrow\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] . \\
\mathrm{GM}=3 & \Longrightarrow\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] . \\
\mathrm{GM}=4 & \Longrightarrow\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

These are the five different Jordan forms.
3. (a) After some calculations, we can obtain the eigenvalues and unit eigenvectors
of $\boldsymbol{A}^{T} \boldsymbol{A}$ and $\boldsymbol{A} \boldsymbol{A}^{T}$ as follows:

$$
\begin{aligned}
& \boldsymbol{A}^{T} \boldsymbol{A}=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 1
\end{array}\right]
\end{aligned} \quad \Longrightarrow\left\{\begin{array}{lll}
\lambda_{1}=3 & \longleftrightarrow & \boldsymbol{v}_{1}=\frac{1}{\sqrt{6}}(1,2,1)^{T} \\
\lambda_{2}=1 & \longleftrightarrow & \boldsymbol{v}_{2}=\frac{1}{\sqrt{2}}(1,0,-1)^{T} \\
\lambda_{3}=0 & \longleftrightarrow & \boldsymbol{v}_{3}=\frac{1}{\sqrt{3}}(1,-1,1)^{T}
\end{array}\right] \begin{array}{ll}
\boldsymbol{A}^{T}=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right] & \Longrightarrow\left\{\begin{array}{lll}
\lambda_{1}=3 & \longleftrightarrow & \boldsymbol{u}_{1}=\frac{1}{\sqrt{2}}(1,1)^{T} \\
\lambda_{2}=1 & \longleftrightarrow & \boldsymbol{u}_{2}=\frac{1}{\sqrt{2}}(1,-1)^{T}
\end{array}\right.
\end{array}
$$

(b) According to (a), the singular value decomposition of \boldsymbol{A} is given by

$$
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}
$$

where

$$
\boldsymbol{U}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right], \quad \boldsymbol{\Sigma}=\left[\begin{array}{ccc}
\sqrt{3} & 0 & 0 \\
0 & 1 & 0
\end{array}\right], \quad \boldsymbol{V}=\frac{1}{\sqrt{6}}\left[\begin{array}{ccc}
1 & \sqrt{3} & \sqrt{2} \\
2 & 0 & -\sqrt{2} \\
1 & -\sqrt{3} & \sqrt{2}
\end{array}\right] .
$$

The decomposition can be verified by

$$
\begin{aligned}
\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T} & =\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \cdot\left[\begin{array}{ccc}
\sqrt{3} & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \cdot \frac{1}{\sqrt{6}}\left[\begin{array}{ccc}
1 & \sqrt{3} & \sqrt{2} \\
2 & 0 & -\sqrt{2} \\
1 & -\sqrt{3} & \sqrt{2}
\end{array}\right]^{T} \\
& =\frac{1}{\sqrt{2}}\left[\begin{array}{ccc}
\sqrt{3} & 1 & 0 \\
\sqrt{3} & -1 & 0
\end{array}\right] \cdot \frac{1}{\sqrt{6}}\left[\begin{array}{ccc}
1 & 2 & 1 \\
\sqrt{3} & 0 & -\sqrt{3} \\
\sqrt{2} & -\sqrt{2} & \sqrt{2}
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]=\boldsymbol{A} .
\end{aligned}
$$

(c) According to what was taught in class, we know that we can choose the unit eigenvectors obtained in (a) to form orthonormal bases for the four fundamental subspaces of \boldsymbol{A}. Therefore, $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\},\left\{\boldsymbol{v}_{3}\right\},\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}\right\}$, and ϕ are orthonormal bases for $\mathcal{C}\left(\boldsymbol{A}^{T}\right), \mathcal{N}(\boldsymbol{A}), \mathcal{C}(\boldsymbol{A})$, and $\mathcal{N}\left(\boldsymbol{A}^{T}\right)$, respectively. Note that the basis for the zero space is the empty set.
4. Since $\boldsymbol{A}=\left[\begin{array}{llll}\boldsymbol{w}_{1} & \boldsymbol{w}_{2} & \cdots & \boldsymbol{w}_{n}\end{array}\right]$ has orthogonal columns, we have

$$
\boldsymbol{A}^{T} \boldsymbol{A}=\left[\begin{array}{cccc}
\sigma_{1}^{2} & 0 & \cdots & 0 \\
0 & \sigma_{2}^{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sigma_{n}^{2}
\end{array}\right] \Longrightarrow\left\{\begin{array}{ccc}
\lambda_{1}=\sigma_{1}^{2} & \longleftrightarrow & \boldsymbol{v}_{1}=(1,0, \cdots, 0)^{T} \\
\lambda_{2}=\sigma_{2}^{2} & \longleftrightarrow & \boldsymbol{v}_{2}=(0,1, \cdots, 0)^{T} \\
\vdots & \vdots & \vdots \\
\lambda_{n}=\sigma_{n}^{2} & \longleftrightarrow & \boldsymbol{v}_{n}=(0,0, \cdots, 1)^{T}
\end{array}\right.
$$

On the other hand, we have $\boldsymbol{u}_{i}=\boldsymbol{A} \boldsymbol{v}_{i} / \sigma_{i}=\boldsymbol{w}_{i} / \sigma_{i}$ for $i=1,2, \cdots, n$. Therefore, we can obtain in the SVD

$$
\boldsymbol{U}=\left[\begin{array}{llll}
\boldsymbol{w}_{1} / \sigma_{1} & \boldsymbol{w}_{2} / \sigma_{2} & \cdots & \boldsymbol{w}_{n} / \sigma_{n}
\end{array}\right],
$$

$$
\boldsymbol{\Sigma}=\left[\begin{array}{cccc}
\sigma_{1} & 0 & \cdots & 0 \\
0 & \sigma_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sigma_{n}
\end{array}\right], \quad \boldsymbol{V}=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]
$$

5. (a) Since $T(1,0)=(0,0)$, this T is not invertible.
(b) Since $(1,0,0)$ is not in the range, this T is not invertible.
(c) Since $T(0,1)=0$, this T is not invertible.
6. For the second derivative, we have $S(1)=0, S(x)=0, S\left(x^{2}\right)=2$, and $S\left(x^{3}\right)=6 x$. Then we can obtain

$$
\boldsymbol{B}=\left[\begin{array}{llll}
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 6 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

7. We know that $T\left(\boldsymbol{v}_{1}\right)=\boldsymbol{A} \boldsymbol{v}_{1}=\boldsymbol{w}_{1}, T\left(\boldsymbol{v}_{2}\right)=\boldsymbol{A} \boldsymbol{v}_{2}=\boldsymbol{w}_{2}, T\left(\boldsymbol{v}_{3}\right)=\boldsymbol{A} \boldsymbol{v}_{3}=\mathbf{0}$, and $T\left(\boldsymbol{v}_{4}\right)=\boldsymbol{A} \boldsymbol{v}_{4}=\mathbf{0}$. Therefore, the matrix which represents this T is

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

8. For the standard basis, the matrix which represents this T is

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] .
$$

The eigenvectors for this matrix are $(1,1)$ and $(1,-1)$. Therefore, we can find the basis $\{(1,1),(1,-1)\}$ such that the matrix representation for T in this basis is a diagonal matrix.

