EE 2030 Linear Algebra Spring 2011

Homework Assignment No. 6 Due 10:10am, June 15, 2011

Reading: Strang, Sections 6.6, 6.7, 7.1, 7.2, 7.3 (up to the top half of p. 401).

Problems for Solution:

- 1. Determine if each of the following statements is true. If yes, prove it. Otherwise, show why it is not or find a counterexample.
 - (a) If \boldsymbol{A} is similar to \boldsymbol{B} , then \boldsymbol{A}^2 is similar to \boldsymbol{B}^2 .
 - (b) If \mathbf{A}^2 is similar to \mathbf{B}^2 , then \mathbf{A} is similar to \mathbf{B} . (c) $\begin{bmatrix} 3 & 0 \\ 0 & 4 \end{bmatrix}$ is similar to $\begin{bmatrix} 3 & 1 \\ 0 & 4 \end{bmatrix}$. (d) $\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$ is similar to $\begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix}$.
- 2. For 4 by 4 matrices with eigenvalues 0, 0, 0, 0, there are five different Jordan forms. Find all of them.
- 3. Consider

$$\boldsymbol{A} = \left[\begin{array}{rrr} 1 & 1 & 0 \\ 0 & 1 & 1 \end{array} \right].$$

- (a) Compute $\mathbf{A}^T \mathbf{A}$ and $\mathbf{A} \mathbf{A}^T$ and their eigenvalues and unit eigenvectors.
- (b) Construct the singular value decomposition (SVD) and verify that \boldsymbol{A} equals $\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{T}$.
- (c) Find orthonormal bases for the four fundamental subspaces of A.
- 4. Suppose \boldsymbol{A} has orthogonal columns $\boldsymbol{w}_1, \boldsymbol{w}_2, \ldots, \boldsymbol{w}_n$ of lengths $\sigma_1, \sigma_2, \ldots, \sigma_n$. What are $\boldsymbol{U}, \boldsymbol{\Sigma}$, and \boldsymbol{V} in the SVD?
- 5. A linear transformation T from V to W has an *inverse* from W to V when the range is all of W and the kernel contains only $\boldsymbol{v} = \boldsymbol{0}$. Then $T(\boldsymbol{v}) = \boldsymbol{w}$ has one solution \boldsymbol{v} for each \boldsymbol{w} in W. Why are these T's not invertible?
 - (a) $T(v_1, v_2) = (v_2, v_2)$, where $W = \mathcal{R}^2$.
 - (b) $T(v_1, v_2) = (v_1, v_2, v_1 + v_2)$, where $W = \mathcal{R}^3$.
 - (c) $T(v_1, v_2) = v_1$, where $W = \mathcal{R}^1$.
- 6. Consider the vector space V spanned by the basis functions $1, x, x^2, x^3$. The linear operator S on V takes the *second derivative*. Find the 4 by 4 matrix representation **B** for S with respect to this basis.

- 7. Suppose A is a 3 by 4 matrix of rank r = 2, and the linear transformation T(v) = Av. Choose input basis vectors v_1, v_2 from the row space of A and v_3, v_4 from the nullspace of A. Choose output basis vectors $w_1 = Av_1, w_2 = Av_2$ in the column space of Aand w_3 from the left nullspace of A. What matrix represents this T in these special bases?
- 8. Define the linear operator T on \mathcal{R}^2 by

$$T\left(\left[\begin{array}{c}v_1\\v_2\end{array}\right]\right) = \left[\begin{array}{c}v_1+v_2\\v_1+v_2\end{array}\right].$$

Find a basis for \mathcal{R}^2 such that the matrix representation for T in this basis is a diagonal matrix.