Solution to Homework Assignment No. 5

1. (a) We know that

$$
\begin{aligned}
& \operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I}) \\
= & \left|\begin{array}{ccccc}
a_{11}-\lambda & a_{12} & & \ldots & a_{1 n} \\
a_{21} & a_{22}-\lambda & & \ldots & a_{2 n} \\
\vdots & & \ddots & & \vdots \\
\vdots & & & \ddots & \vdots \\
a_{n 1} & a_{n 2} & & \ldots & a_{n n}-\lambda
\end{array}\right| \\
= & \left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right) \ldots\left(\lambda_{n}-\lambda\right) .
\end{aligned}
$$

The only term in the big formula for $\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})$ which contains the λ^{n-1} term is $\left(a_{11}-\lambda\right)\left(a_{22}-\lambda\right) \ldots\left(a_{n n}-\lambda\right)$. Hence, the coefficient of λ^{n-1} in $\operatorname{det}(\boldsymbol{A}-$ $\lambda \boldsymbol{I})$ is

$$
(-1)^{n-1}\left(a_{11}+a_{22}+\ldots+a_{n n}\right)=(-1)^{n-1} \operatorname{trace}(\boldsymbol{A}) .
$$

On the other hand, the coefficient of λ^{n-1} in $\left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right) \ldots\left(\lambda_{n}-\lambda\right)$ is

$$
(-1)^{n-1}\left(\lambda_{1}+\lambda_{2}+\ldots+\lambda_{n}\right) .
$$

Therefore,

$$
\lambda_{1}+\lambda_{2}+\ldots+\lambda_{n}=\operatorname{trace}(\boldsymbol{A})
$$

(b) Assume that \boldsymbol{P} has an eigenvalue λ and a corresponding eigenvector \boldsymbol{x}. We have $\boldsymbol{P} \boldsymbol{x}=\lambda \boldsymbol{x}$. With $\boldsymbol{P}^{2}=\boldsymbol{P}$, we can obtain $\boldsymbol{P}^{2} \boldsymbol{x}=\boldsymbol{P} \lambda \boldsymbol{x}=\lambda^{2} \boldsymbol{x}$ and therefore $\lambda \boldsymbol{x}=\lambda^{2} \boldsymbol{x}$. Since \boldsymbol{x} is a nonzero vector, we have $\lambda^{2}=\lambda$, which implies that $\lambda=1$ or 0 . Therefore, the only possible eigenvalues of a projection matrix are 1 and 0 .
2. (a) A matrix \boldsymbol{A} is diagonalizable if and only if each of its eigenvalues has the same algebraic multiplicity (AM) and geometric multiplicity (GM). Therefore, we have to find the eigenvalues and eigenvectors of \boldsymbol{A}.

$$
\begin{aligned}
\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I}) & =\left|\begin{array}{ccc}
1-\lambda & 0 & 9 \\
0 & -\lambda & 0 \\
0 & 0 & 1-\lambda
\end{array}\right| \\
& =-(1-\lambda)^{2} \lambda=0 .
\end{aligned}
$$

Thus, we have $\lambda=1,1,0$. For $\lambda_{1}=1$, the AM of λ_{1} equals 2 . Besides,

$$
\boldsymbol{A}-\lambda_{1} \boldsymbol{I}=\left[\begin{array}{ccc}
0 & 0 & 9 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

and the corresponding eigenvector is

$$
\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] .
$$

This gives that the GM of λ_{1} equals 1 and is smaller than the AM of λ_{1}. As a result, \boldsymbol{A} is not diagonalizable.
(b)

$$
\begin{aligned}
\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I}) & =\left|\begin{array}{ccc}
5-\lambda & 0 & 0 \\
1 & 5-\lambda & 0 \\
0 & 1 & 5-\lambda
\end{array}\right| \\
& =(5-\lambda)^{3}=0
\end{aligned}
$$

Thus, we have $\lambda=5,5,5$. It can be seen that the AM of λ equals 3. Besides,

$$
\boldsymbol{A}-\lambda \boldsymbol{I}=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

and the corresponding eigenvector is

$$
\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
$$

This gives that the GM of λ equals 1 and is smaller than the AM of λ. As a result, \boldsymbol{A} is not diagonalizable.
3. (a) Let $\boldsymbol{u}_{k}=\left[\begin{array}{c}G_{k+1} \\ G_{k}\end{array}\right]$. The relation between $\boldsymbol{u}_{k+1}=\left[\begin{array}{c}G_{k+2} \\ G_{k+1}\end{array}\right]$ and $\boldsymbol{u}_{k}=$ $\left[\begin{array}{c}G_{k+1} \\ G_{k}\end{array}\right]$ is given by

$$
\boldsymbol{u}_{k+1}=\left[\begin{array}{c}
G_{k+2} \\
G_{k+1}
\end{array}\right]=\left[\begin{array}{c}
\frac{2}{3} G_{k+1}+\frac{1}{3} G_{k} \\
G_{k+1}
\end{array}\right]=\left[\begin{array}{cc}
2 / 3 & 1 / 3 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
G_{k+1} \\
G_{k}
\end{array}\right]=\boldsymbol{A} \boldsymbol{u}_{k}
$$

Then we have $\boldsymbol{u}_{k}=\boldsymbol{A} \boldsymbol{u}_{k-1}=\boldsymbol{A} \boldsymbol{A} \boldsymbol{u}_{k-2}=\boldsymbol{A}^{2} \boldsymbol{u}_{k-2}=\boldsymbol{A}^{k} \boldsymbol{u}_{0}$. To find \boldsymbol{A}^{k}, we first find the eigenvalues of \boldsymbol{A}.

$$
\begin{aligned}
& \operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})=\left|\begin{array}{cc}
\frac{2}{3}-\lambda & \frac{1}{3} \\
1 & -\lambda
\end{array}\right| \\
&=\lambda^{2}-\frac{2}{3} \lambda-\frac{1}{3} \\
&=(\lambda-1)\left(\lambda+\frac{1}{3}\right)=0 \\
& \Longrightarrow \lambda=1,-1 / 3
\end{aligned}
$$

For $\lambda_{1}=1$,

$$
\boldsymbol{A}-\lambda_{1} \boldsymbol{I}=\left[\begin{array}{cc}
-1 / 3 & 1 / 3 \\
1 & -1
\end{array}\right]
$$

and the corresponding eigenvector is

$$
\boldsymbol{x}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

For $\lambda_{2}=-1 / 3$,

$$
\boldsymbol{A}-\lambda_{2} \boldsymbol{I}=\left[\begin{array}{ll}
1 & 1 / 3 \\
1 & 1 / 3
\end{array}\right]
$$

and the corresponding eigenvector is

$$
\boldsymbol{x}_{2}=\left[\begin{array}{c}
-1 / 3 \\
1
\end{array}\right] .
$$

Therefore, we have

$$
\boldsymbol{A}=\boldsymbol{S} \Lambda \boldsymbol{S}^{-1}=\left[\begin{array}{cc}
1 & -1 / 3 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1 / 3
\end{array}\right]\left[\begin{array}{cc}
1 & -1 / 3 \\
1 & 1
\end{array}\right]^{-1} .
$$

We can write \boldsymbol{u}_{0} as a linear combination of \boldsymbol{x}_{1} and \boldsymbol{x}_{2} as follows:

$$
\begin{gathered}
\boldsymbol{u}_{0}=\left[\begin{array}{l}
G_{1} \\
G_{0}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{cc}
1 & -1 / 3 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
\\
\Longrightarrow\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{c}
3 / 4 \\
-3 / 4
\end{array}\right] \\
\\
\Longrightarrow \boldsymbol{u}_{0}=\frac{3}{4} \boldsymbol{x}_{1}-\frac{3}{4} \boldsymbol{x}_{2} .
\end{gathered}
$$

Then we can obtain

$$
\begin{aligned}
\boldsymbol{u}_{k} & =\boldsymbol{A}^{k} \boldsymbol{u}_{0} \\
& =\boldsymbol{A}^{k}\left(\frac{3}{4} \boldsymbol{x}_{1}-\frac{3}{4} \boldsymbol{x}_{2}\right) \\
& =\frac{3}{4}\left(1^{k} \boldsymbol{x}_{1}-\left(-\frac{1}{3}\right)^{k} \boldsymbol{x}_{2}\right) \\
& =\frac{3}{4}\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]-\left(\frac{-1}{3}\right)^{k}\left[\begin{array}{c}
-1 / 3 \\
1
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
G_{k+1} \\
G_{k}
\end{array}\right] .
\end{aligned}
$$

Therefore, we can have

$$
G_{k}=\frac{3}{4}-\frac{3}{4}\left(-\frac{1}{3}\right)^{k}
$$

for $k \geq 0$.
(b) When k goes to infinity, the term $(-1 / 3)^{k}$ goes to zero. Therefore, we can obtain

$$
\lim _{k \rightarrow \infty} G_{k}=\lim _{k \rightarrow \infty}\left(\frac{3}{4}-\frac{3}{4}\left(-\frac{1}{3}\right)^{k}\right)=\frac{3}{4}
$$

4. (a) Let $\boldsymbol{u}=\left[\begin{array}{ll}r & w\end{array}\right]^{T}$. We then have

$$
\begin{aligned}
\frac{d \boldsymbol{u}}{d t} & =\left[\begin{array}{cc}
4 & -2 \\
1 & 1
\end{array}\right] \boldsymbol{u} \\
& =\boldsymbol{A} \boldsymbol{u}
\end{aligned}
$$

To find the eigenvalues of \boldsymbol{A}, we calculate

$$
\begin{aligned}
\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I}) & =\left|\begin{array}{cc}
4-\lambda & -2 \\
1 & 1-\lambda
\end{array}\right| \\
& =\lambda^{2}-5 \lambda+6 \\
& =(\lambda-2)(\lambda-3)
\end{aligned}
$$

Therefore, $\lambda=2,3$. For $\lambda_{1}=2$,

$$
\boldsymbol{A}-\lambda_{1} \boldsymbol{I}=\left[\begin{array}{ll}
2 & -2 \\
1 & -1
\end{array}\right]
$$

and the corresponding eigenvector is

$$
\boldsymbol{x}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

For $\lambda_{2}=3$,

$$
\boldsymbol{A}-\lambda_{2} \boldsymbol{I}=\left[\begin{array}{ll}
1 & -2 \\
1 & -2
\end{array}\right]
$$

and the corresponding eigenvector is

$$
\boldsymbol{x}_{2}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Hence, we have

$$
\begin{aligned}
\boldsymbol{u} & =\alpha e^{2 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\beta e^{3 t}\left[\begin{array}{l}
2 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
\alpha e^{2 t}+2 \beta e^{3 t} \\
\alpha e^{2 t}+\beta e^{3 t}
\end{array}\right] .
\end{aligned}
$$

Since both the eigenvalues are positive, the system is unstable.
(b) At $t=0$, we have

$$
\left\{\begin{array}{l}
\alpha+2 \beta=300 \\
\alpha+\beta=200
\end{array}\right.
$$

Solving the equations gives $\alpha=\beta=100$. Therefore, we have

$$
r=100 e^{2 t}+200 e^{3 t}
$$

and

$$
w=100 e^{2 t}+100 e^{3 t} .
$$

(c) After a long time, the ratio of the rabbit population to the wolf population can be obtained as

$$
\begin{aligned}
\lim _{t \rightarrow \infty} \frac{r}{w} & =\lim _{t \rightarrow \infty} \frac{100 e^{2 t}+200 e^{3 t}}{100 e^{2 t}+100 e^{3 t}} \\
& =2
\end{aligned}
$$

5. (a) To find an orthogonal matrix \boldsymbol{Q}, we first find the eigenvalues of the matrix

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
0 & 2 & -1 \\
2 & 3 & -2 \\
-1 & -2 & 0
\end{array}\right]
$$

We can have

$$
\begin{aligned}
\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I}) & =\left|\begin{array}{ccc}
-\lambda & 2 & -1 \\
2 & 3-\lambda & -2 \\
-1 & -2 & -\lambda
\end{array}\right| \\
& =\lambda^{2}(3-\lambda)+4+4+(\lambda-3)+4 \lambda+4 \lambda \\
& =-\lambda^{3}+3 \lambda^{2}+9 \lambda+5 \\
& =-(\lambda-5)(\lambda+1)^{2}=0
\end{aligned}
$$

Therefore, we obtain $\lambda=5,-1,-1$. For $\lambda_{1}=5$, we have

$$
\boldsymbol{A}-\lambda_{1} \boldsymbol{I}=\left[\begin{array}{ccc}
-5 & 2 & -1 \\
2 & -2 & -2 \\
-1 & -2 & -5
\end{array}\right]
$$

and the corresponding unit eigenvector

$$
\boldsymbol{x}_{1}=\frac{1}{\sqrt{6}}\left[\begin{array}{c}
-1 \\
-2 \\
1
\end{array}\right]
$$

For $\lambda_{2}=-1$, we have

$$
\boldsymbol{A}-\lambda_{2} \boldsymbol{I}=\left[\begin{array}{ccc}
1 & 2 & -1 \\
2 & 4 & -2 \\
-1 & -2 & 1
\end{array}\right]
$$

and the corresponding eigenvectors

$$
\boldsymbol{x}_{2}^{\prime}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

and

$$
\boldsymbol{x}_{3}^{\prime}=\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right]
$$

Since $\boldsymbol{x}_{2}^{\prime}$ and $\boldsymbol{x}_{3}^{\prime}$ are not orthogonal, we use the Gram-Schmidt process to find orthonormal vectors \boldsymbol{x}_{2} and \boldsymbol{x}_{3} with the same span. We can obtain

$$
\boldsymbol{x}_{2}=\frac{\boldsymbol{x}_{2}^{\prime}}{\left\|\boldsymbol{x}_{2}^{\prime}\right\|}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

and

$$
\boldsymbol{x}_{3}=\frac{\boldsymbol{x}_{3}^{\prime}-\left(\boldsymbol{x}_{2}^{T} \boldsymbol{x}_{3}^{\prime}\right) \boldsymbol{x}_{2}}{\left\|\boldsymbol{x}_{3}^{\prime}-\left(\boldsymbol{x}_{2}^{T} \boldsymbol{x}_{3}^{\prime}\right) \boldsymbol{x}_{2}\right\|}=\frac{1}{\sqrt{3}}\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]
$$

Therefore, we can obtain an orthogonal matrix

$$
\boldsymbol{Q}=\frac{1}{\sqrt{6}}\left[\begin{array}{ccc}
-1 & \sqrt{3} & -\sqrt{2} \\
-2 & 0 & \sqrt{2} \\
1 & \sqrt{3} & \sqrt{2}
\end{array}\right]
$$

and a diagonal matrix

$$
\boldsymbol{\Lambda}=\left[\begin{array}{ccc}
5 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

such that $\boldsymbol{A}=\boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{T}$.
(b) As shown in (a), we can have

$$
\begin{aligned}
\boldsymbol{A} & =\boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{T} \\
& =\left[\begin{array}{lll}
\boldsymbol{x}_{1} & \boldsymbol{x}_{2} & \boldsymbol{x}_{3}
\end{array}\right]\left[\begin{array}{ccc}
5 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{x}_{1}^{T} \\
\boldsymbol{x}_{2}^{T} \\
\boldsymbol{x}_{3}^{T}
\end{array}\right] \\
& =5\left(\boldsymbol{x}_{1} \boldsymbol{x}_{1}^{T}\right)+(-1)\left(\boldsymbol{x}_{2} \boldsymbol{x}_{2}^{T}+\boldsymbol{x}_{3} \boldsymbol{x}_{3}^{T}\right) .
\end{aligned}
$$

Therefore, $a_{1}=5, a_{2}=-1$,

$$
\boldsymbol{P}_{1}=\boldsymbol{x}_{1} \boldsymbol{x}_{1}^{T}=\left[\begin{array}{ccc}
1 / 6 & 1 / 3 & -1 / 6 \\
1 / 3 & 2 / 3 & -1 / 3 \\
-1 / 6 & -1 / 3 & 1 / 6
\end{array}\right]
$$

and

$$
\boldsymbol{P}_{2}=\boldsymbol{x}_{2} \boldsymbol{x}_{2}^{T}+\boldsymbol{x}_{3} \boldsymbol{x}_{3}^{T}=\left[\begin{array}{ccc}
5 / 6 & -1 / 3 & 1 / 6 \\
-1 / 3 & 1 / 3 & 1 / 3 \\
1 / 6 & 1 / 3 & 5 / 6
\end{array}\right]
$$

6. (a) For \boldsymbol{A}, it can be seen that $\operatorname{dim}(\mathcal{C}(\boldsymbol{A}))=4$ where $\operatorname{dim}(\mathcal{C}(\boldsymbol{A}))$ is the dimension of the column space of \boldsymbol{A}, so \boldsymbol{A} is invertible. All the column vectors of \boldsymbol{A} are of unit length and mutually orthogonal, so \boldsymbol{A} is orthogonal. Since $\boldsymbol{A} \neq \boldsymbol{A}^{T}$, \boldsymbol{A} is not a projection matrix. The rows of \boldsymbol{A} are a permutation of those of the identity matrix, so \boldsymbol{A} is a permutation matrix. Since $\boldsymbol{A} \neq \boldsymbol{A}^{T}$ as mentioned
before, \boldsymbol{A} is not symmetric. Besides,

$$
\begin{aligned}
\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I}) & =\left|\begin{array}{cccc}
-\lambda & 1 & 0 & 0 \\
0 & -\lambda & 1 & 0 \\
0 & 0 & -\lambda & 1 \\
1 & 0 & 0 & -\lambda
\end{array}\right| \\
& =(-1)\left|\begin{array}{ccc}
1 & 0 & 0 \\
-\lambda & 1 & 0 \\
0 & -\lambda & 1
\end{array}\right|+(-\lambda)\left|\begin{array}{ccc}
-\lambda & 1 & 0 \\
0 & -\lambda & 1 \\
0 & 0 & -\lambda
\end{array}\right| \\
& =-1+\lambda^{4}=0
\end{aligned}
$$

gives that $\lambda= \pm 1, \pm i$. Since \boldsymbol{A} has four different eigenvalues, \boldsymbol{A} is diagonalizable.
(b) For \boldsymbol{B}, it can be seen that $\operatorname{dim}(\mathcal{C}(\boldsymbol{B}))=1$, so \boldsymbol{B} is not invertible. The first column of \boldsymbol{B} is not orthogonal to the second column of \boldsymbol{B}, so \boldsymbol{B} is not orthogonal. Since $B=\boldsymbol{x} \boldsymbol{x}^{T}$, where $\boldsymbol{x}=\frac{1}{\sqrt{4}}\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]^{T}, \boldsymbol{B}$ is a projection matrix. The rows of \boldsymbol{B} are not a permutation of those of the identity matrix, so \boldsymbol{B} is not a permutation matrix. Since $\boldsymbol{B}=\boldsymbol{B}^{T}, \boldsymbol{B}$ is symmetric. Besides, since \boldsymbol{B} is symmetric, it is diagonalizable by the Spectral Theorem.
7. To determine whether a matrix is positive definite, we can check whether all the upper left determinants are positive. For \boldsymbol{A}, we have $\operatorname{det}(\boldsymbol{A})=0$, so \boldsymbol{A} is not positive definite. For $\boldsymbol{B}, 2>0$,

$$
\left|\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right|=3>0
$$

and

$$
\left|\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & 1 \\
-1 & 1 & 2
\end{array}\right|=4>0
$$

Therefore, \boldsymbol{B} is positive definite. It can be verified that

$$
\boldsymbol{C}=\left[\begin{array}{lll}
5 & 2 & 1 \\
2 & 2 & 2 \\
1 & 2 & 5
\end{array}\right]
$$

Similarly, it can be checked that \boldsymbol{C} is positive definite by verifying that all the upper left determinants are positive.
8. (a) By Gaussian elimination, we can obtain

$$
\begin{aligned}
{\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{array}\right] \boldsymbol{A} } & =\left[\begin{array}{lll}
9 & 0 & 0 \\
0 & 1 & 2 \\
0 & 0 & 4
\end{array}\right] \\
& =\left[\begin{array}{lll}
9 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 4
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\boldsymbol{A} & =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 2 & 1
\end{array}\right]\left[\begin{array}{lll}
9 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 4
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right] \\
& =\boldsymbol{L} \boldsymbol{D} \boldsymbol{L}^{T} .
\end{aligned}
$$

We then have $\boldsymbol{A}=\boldsymbol{C} \boldsymbol{C}^{T}$ where

$$
\begin{aligned}
\boldsymbol{C} & =\boldsymbol{L} \sqrt{\boldsymbol{D}} \\
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 2 & 1
\end{array}\right]\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right] \\
& =\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 1 & 0 \\
0 & 2 & 2
\end{array}\right] .
\end{aligned}
$$

(b) Similar to (a), by Gaussian elimination, we can obtain

$$
\begin{aligned}
\boldsymbol{A} & =\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 5
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] \\
& =\boldsymbol{L} \boldsymbol{D} \boldsymbol{L}^{T} .
\end{aligned}
$$

We then have $\boldsymbol{A}=\boldsymbol{C} \boldsymbol{C}^{T}$ where

$$
\begin{aligned}
\boldsymbol{C} & =\boldsymbol{L} \sqrt{\boldsymbol{D}} \\
& =\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \sqrt{5}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & \sqrt{5}
\end{array}\right] .
\end{aligned}
$$

