Homework Assignment No. 5
 Due 10:10am, June 1, 2011

Reading: Strang, Sections 6.1-6.5.
Problems for Solution:

1. (a) Suppose that \boldsymbol{A} is an n by n matrix. If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are eigenvalues of \boldsymbol{A}, show that

$$
\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}=\operatorname{trace}(\boldsymbol{A})=a_{11}+a_{22}+\cdots a_{n n}
$$

where $a_{i j}$ is the (i, j) th entry of \boldsymbol{A}, for $1 \leq i, j \leq n$.
(b) A projection matrix \boldsymbol{P} satisfies $\boldsymbol{P}^{2}=\boldsymbol{P}$ and $\boldsymbol{P}^{T}=\boldsymbol{P}$. Show that the only possible eigenvalues of a projection matrix are 1 and 0 .
2. Determine if each of the following matrices is diagonalizable. If it is, find an invertible matrix \boldsymbol{S} and a diagonal matrix $\boldsymbol{\Lambda}$ such that $\boldsymbol{S}^{-1} \boldsymbol{A} \boldsymbol{S}=\boldsymbol{\Lambda}$.
(a) $\boldsymbol{A}=\left[\begin{array}{lll}1 & 0 & 9 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$.
(b) $\boldsymbol{A}=\left[\begin{array}{lll}5 & 0 & 0 \\ 1 & 5 & 0 \\ 0 & 1 & 5\end{array}\right]$.
3. Suppose that

$$
G_{k+2}=\frac{2}{3} G_{k+1}+\frac{1}{3} G_{k}, \quad \text { for } k \geq 0
$$

with $G_{0}=0$ and $G_{1}=1$.
(a) Find a general formula for $G_{k}, k \geq 0$.
(b) Find $\lim _{k \rightarrow \infty} G_{k}$.
4. Suppose the rabbit population r and the wolf population w are governed by

$$
\begin{aligned}
\frac{d r}{d t} & =4 r-2 w \\
\frac{d w}{d t} & =r+w
\end{aligned}
$$

(a) Is this system stable, neutral, or unstable?
(b) If initially $r=300$ and $w=200$, what are the populations of rabbits and wolves at time t ?
(c) After a long time, what is the ratio of the rabbit population to the wolf population?
5. Consider

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
0 & 2 & -1 \\
2 & 3 & -2 \\
-1 & -2 & 0
\end{array}\right]
$$

(a) Find an orthogonal matrix \boldsymbol{Q} and a diagonal matrix $\boldsymbol{\Lambda}$ such that $\boldsymbol{A}=\boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{T}$.
(b) Find a_{1}, a_{2} and $\boldsymbol{P}_{1}, \boldsymbol{P}_{2}$ such that

$$
\boldsymbol{A}=a_{1} \boldsymbol{P}_{1}+a_{2} \boldsymbol{P}_{2}
$$

where $\boldsymbol{P}_{1}, \boldsymbol{P}_{2}$ are projection matrices.
6. Which of these classes of matrices do \boldsymbol{A} and \boldsymbol{B} belong to: Invertible, orthogonal, projection, permutation, symmetric, diagonalizable?

$$
\boldsymbol{A}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right], \quad \boldsymbol{B}=\frac{1}{4}\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

7. Determine if each of the following matrices is positive definite:

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right], \quad \boldsymbol{B}=\left[\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & 1 \\
-1 & 1 & 2
\end{array}\right], \quad \boldsymbol{C}=\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 0 & 1 \\
2 & 1 & 0
\end{array}\right]^{2}
$$

8. The Cholesky decomposition says that if \boldsymbol{A} is a positive definite matrix, then \boldsymbol{A} can be factored into

$$
\boldsymbol{A}=\boldsymbol{C} \boldsymbol{C}^{T}
$$

where \boldsymbol{C} is lower triangular with positive diagonal entries. Find the Cholesky decomposition for:
(a) $\boldsymbol{A}=\left[\begin{array}{lll}9 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 8\end{array}\right]$.
(b) $\boldsymbol{A}=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 7\end{array}\right]$.

