Solution to Homework Assignment No. 4

1. Since the columns of \boldsymbol{A} are independent, let $\boldsymbol{a}_{1}=(1,1,0)^{T}, \boldsymbol{a}_{2}=(1,0,1)^{T}$, and $\boldsymbol{a}_{3}=(0,1,1)^{T}$. By the Gram-Schmidt process, we can have

$$
\begin{aligned}
& \boldsymbol{A}_{1}=\boldsymbol{a}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \Longrightarrow \boldsymbol{q}_{\mathbf{1}}=\frac{\boldsymbol{A}_{\mathbf{1}}}{\left\|\boldsymbol{A}_{\mathbf{1}}\right\|}=\left[\begin{array}{c}
\sqrt{2} / 2 \\
\sqrt{2} / 2 \\
0
\end{array}\right] \\
& \boldsymbol{A}_{2}=\boldsymbol{a}_{\mathbf{2}}-\left(\boldsymbol{q}_{\mathbf{1}}{ }^{T} \boldsymbol{a}_{\mathbf{2}}\right) \boldsymbol{q}_{\mathbf{1}}=\left[\begin{array}{c}
1 / 2 \\
-1 / 2 \\
1
\end{array}\right] \Longrightarrow \boldsymbol{q}_{\mathbf{2}}=\frac{\boldsymbol{A}_{\mathbf{2}}}{\left\|\boldsymbol{A}_{\mathbf{2}}\right\|}=\left[\begin{array}{c}
\sqrt{6} / 6 \\
-\sqrt{6} / 6 \\
\sqrt{6} / 3
\end{array}\right] \\
& \boldsymbol{A}_{3}=\boldsymbol{a}_{\mathbf{3}}-\left(\boldsymbol{q}_{\mathbf{1}}{ }^{T} \boldsymbol{a}_{\mathbf{3}}\right) \boldsymbol{q}_{\mathbf{1}}-\left(\boldsymbol{q}_{\mathbf{2}}{ }^{T} \boldsymbol{a}_{\mathbf{3}}\right) \boldsymbol{q}_{\mathbf{2}}=\left[\begin{array}{c}
-2 / 3 \\
2 / 3 \\
2 / 3
\end{array}\right] \Rightarrow \boldsymbol{q}_{\mathbf{3}}=\frac{\boldsymbol{A}_{\mathbf{3}}}{\left\|\boldsymbol{A}_{\mathbf{3}}\right\|}=\left[\begin{array}{c}
-\sqrt{3} / 3 \\
\sqrt{3} / 3 \\
\sqrt{3} / 3
\end{array}\right] .
\end{aligned}
$$

Therefore,

$$
\boldsymbol{A}=\left[\begin{array}{lll}
\boldsymbol{q}_{\mathbf{1}} & \boldsymbol{q}_{\mathbf{2}} & \boldsymbol{q}_{\mathbf{3}}
\end{array}\right]\left[\begin{array}{ccc}
\boldsymbol{q}_{\mathbf{1}}{ }^{T} \boldsymbol{a}_{1} & \boldsymbol{q}_{\mathbf{1}}{ }^{T} \boldsymbol{a}_{2} & \boldsymbol{q}_{\mathbf{1}}{ }^{T} \boldsymbol{a}_{3} \\
0 & \boldsymbol{q}_{\mathbf{2}}{ }^{T} \boldsymbol{a}_{2} & \boldsymbol{q}_{\mathbf{2}}{ }^{T} \boldsymbol{a}_{3} \\
0 & 0 & \boldsymbol{q}_{\mathbf{3}}{ }^{T} \boldsymbol{a}_{3}
\end{array}\right]=\boldsymbol{Q} \boldsymbol{R}
$$

which gives

$$
\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]=\left[\begin{array}{ccc}
\sqrt{2} / 2 & \sqrt{6} / 6 & -\sqrt{3} / 3 \\
\sqrt{2} / 2 & -\sqrt{6} / 6 & \sqrt{3} / 3 \\
0 & \sqrt{6} / 3 & \sqrt{3} / 3
\end{array}\right]\left[\begin{array}{ccc}
\sqrt{2} & \sqrt{2} / 2 & \sqrt{2} / 2 \\
0 & \sqrt{6} / 2 & \sqrt{6} / 6 \\
0 & 0 & 2 \sqrt{3} / 3
\end{array}\right] .
$$

2. (a) Consider

$$
\boldsymbol{A}^{T}=\left[\begin{array}{lll}
2 & 1 & 2 \\
1 & 1 & 1
\end{array}\right] \stackrel{\text { RRE }}{\Longrightarrow} \boldsymbol{R}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] .
$$

Since $(1,0,1) \cdot(0,1,0)=0$ and $\{(1,0,1),(0,1,0)\}$ forms a basis of the column space of \boldsymbol{A}, we can obtain

$$
\boldsymbol{q}_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \text { and } \boldsymbol{q}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] .
$$

For $\boldsymbol{A}^{T},(-1,0,1)$ is a special solution. That is to say, $(-1,0,1)$ is orthogonal to the column space of \boldsymbol{A}. Since \boldsymbol{q}_{1} and \boldsymbol{q}_{2} span the column space of \boldsymbol{A}, we can choose

$$
\boldsymbol{q}_{3}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

(b) Since \boldsymbol{q}_{3} is a special solution to $\boldsymbol{A}^{T} \boldsymbol{x}=\mathbf{0}$, the left nullspace of \boldsymbol{A} contains \boldsymbol{q}_{3}.
(c) Form (a), we have

$$
\begin{aligned}
\boldsymbol{A} & =\left[\begin{array}{ll}
\boldsymbol{q}_{1} & \boldsymbol{q}_{2}
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{q}_{1}^{T} \boldsymbol{a}_{1} & \boldsymbol{q}_{1}^{T} \boldsymbol{a}_{2} \\
0 & \boldsymbol{q}_{2}^{T} \boldsymbol{a}_{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 / \sqrt{2} & 0 \\
0 & 1 \\
1 / \sqrt{2} & 0
\end{array}\right]\left[\begin{array}{cc}
2 \sqrt{2} & \sqrt{2} \\
1 & 1
\end{array}\right] \\
& =\boldsymbol{Q} \boldsymbol{R} .
\end{aligned}
$$

Then we can obtain the solution

$$
\hat{\boldsymbol{x}}=\boldsymbol{R}^{-1} \boldsymbol{Q}^{T} \boldsymbol{b}=\left[\begin{array}{cc}
1 / \sqrt{2} & -1 \\
-1 / \sqrt{2} & 2
\end{array}\right]\left[\begin{array}{ccc}
1 / \sqrt{2} & 0 & 1 / \sqrt{2} \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
12 \\
6 \\
18
\end{array}\right]=\left[\begin{array}{c}
9 \\
-3
\end{array}\right] .
$$

3. Since

$$
\begin{gathered}
\int_{-1}^{1} 1 \cdot x d x=\int_{-1}^{1} x d x=\left.\left(x^{2} / 2\right)\right|_{x=-1} ^{x=1}=0 \\
\int_{-1}^{1} 1 \cdot\left[x^{2}-(1 / 3)\right] d x=\int_{-1}^{1}\left[x^{2}-(1 / 3)\right] d x=\left.\left[x^{3} / 3-(1 / 3) x\right]\right|_{x=-1} ^{x=1}=0 \\
\int_{-1}^{1} x \cdot\left[x^{2}-(1 / 3)\right] d x=\int_{-1}^{1}\left[x^{3}-(1 / 3) x\right] d x=\left.\left[x^{4} / 4-(1 / 6) x^{2}\right]\right|_{x=-1} ^{x=1}=0
\end{gathered}
$$

we know that $1, x$, and $x^{2}-(1 / 3)$ are orthogonal, when the integration is from $x=-1$ to $x=1$. Furthermore, $f(x)=2 x^{2}=(2 / 3) \cdot 1+0 \cdot x+2 \cdot\left[x^{2}-(1 / 3)\right]$.
4. For the first matrix, doing Gaussian elimination, we have

$$
\left[\begin{array}{llll}
11 & 12 & 13 & 14 \\
21 & 22 & 23 & 24 \\
31 & 32 & 33 & 34 \\
41 & 42 & 43 & 44
\end{array}\right] \Longrightarrow\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & -10 & -20 & -30 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Its determinate is equal to $1 \cdot(-10) \cdot 0 \cdot 0=0$.
For the second matrix, doing Gaussian elimination, we have

$$
\left[\begin{array}{cccc}
1 & t & t^{2} & t^{3} \\
t & 1 & t & t^{2} \\
t^{2} & t & 1 & t \\
t^{3} & t^{2} & t & 1
\end{array}\right] \Longrightarrow\left[\begin{array}{cccc}
1 & t & t^{2} & t^{3} \\
0 & 1-t^{2} & t-t^{3} & t^{2}-t^{4} \\
0 & 0 & 1-t^{2} & t-t^{3} \\
0 & 0 & 0 & 1-t^{2}
\end{array}\right]
$$

Its determinate is equal to $1 \cdot\left(1-t^{2}\right) \cdot\left(1-t^{2}\right) \cdot\left(1-t^{2}\right)=\left(1-t^{2}\right)^{3}$.
5. For the big formula, the determinant of \boldsymbol{A} is the sum of $5!=120$ simple determinants, times 1 or -1 , and every simple determinant chooses one entry from each row and column. If some simple determinant of \boldsymbol{A} avoids all the zero entries in \boldsymbol{A}, then it cannot choose one entry from each column. Thus every simple determinant of \boldsymbol{A} must choose at least one zero entry, and hence all 120 terms are zero in the big formula for $\operatorname{det} \boldsymbol{A}$. That is to say, the determinant of this matrix is zero.
6. Let $D_{n}=\left|\boldsymbol{A}_{\boldsymbol{n}}\right|$ where $\boldsymbol{A}_{\boldsymbol{n}}$ is an n by n matrix. For $n \geq 3$, we have

Applying the cofactor formula to the first row, we can have

$$
\begin{aligned}
D_{n} & =1 \cdot(-1)^{1+1}\left|\boldsymbol{A}_{n-1}\right|+(-1) \cdot(-1)^{1+2}\left|\begin{array}{ccccc}
1 & -1 & 0 & \cdots & 0 \\
0 & & & \\
0 & & \boldsymbol{A}_{n-2} & \\
\vdots & & \\
0 &
\end{array}\right| \\
& =D_{n-1}+1 \cdot(-1)^{1+1}\left|\boldsymbol{A}_{n-2}\right| \quad \text { (apply the cofactor formula to the first column) } \\
& =D_{n-1}+D_{n-2} .
\end{aligned}
$$

7. Since the matrix \boldsymbol{A} is symmetric, the inverse of \boldsymbol{A} is also symmetric. Then from the cofactor formula, we can have $\operatorname{det} \boldsymbol{A}=4$ and

$$
\begin{aligned}
& \left(\boldsymbol{A}^{-1}\right)_{11}=\frac{\boldsymbol{C}_{11}}{\operatorname{det} \boldsymbol{A}}=\frac{\left|\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right|}{4}=\frac{3}{4} \\
& \left(\boldsymbol{A}^{-1}\right)_{21}=\frac{\boldsymbol{C}_{12}}{\operatorname{det} \boldsymbol{A}}=\frac{-\left|\begin{array}{cc}
-1 & -1 \\
0 & 2
\end{array}\right|}{4}=\frac{1}{2} \\
& \left(\boldsymbol{A}^{-1}\right)_{22}=\frac{\boldsymbol{C}_{22}}{\operatorname{det} \boldsymbol{A}}=\frac{\left|\begin{array}{cc}
2 & 0 \\
0 & 2
\end{array}\right|}{4}=1 \\
& \left(\boldsymbol{A}^{-1}\right)_{31}=\frac{\boldsymbol{C}_{13}}{\operatorname{det} \boldsymbol{A}}=\frac{\left|\begin{array}{cc}
-1 & 2 \\
0 & -1
\end{array}\right|}{4}=\frac{1}{4} \\
& \left(\boldsymbol{A}^{-1}\right)_{32}=\frac{\boldsymbol{C}_{23}}{\operatorname{det} \boldsymbol{A}}=\frac{-\left|\begin{array}{cc}
2 & -1 \\
0 & -1
\end{array}\right|}{4}=\frac{1}{2} \\
& \left(\boldsymbol{A}^{-1}\right)_{33}=\frac{\boldsymbol{C}_{33}}{\operatorname{det} \boldsymbol{A}}=\frac{\left|\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right|}{4}=\frac{3}{4}
\end{aligned}
$$

Therefore, we can obtain the inverse of \boldsymbol{A} as

$$
\boldsymbol{A}^{-1}=\frac{1}{4}\left[\begin{array}{lll}
3 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 3
\end{array}\right]
$$

Similarly, since the matrix \boldsymbol{B} is symmetric, the inverse of \boldsymbol{B} is also symmetric. Then from the cofactor formula, we can have $\operatorname{det} \boldsymbol{B}=1$ and

$$
\begin{aligned}
& \left(\boldsymbol{B}^{-1}\right)_{11}=\frac{\boldsymbol{C}_{11}}{\operatorname{det} \boldsymbol{B}}=\frac{\left|\begin{array}{ll}
2 & 2 \\
2 & 3
\end{array}\right|}{1}=2 \\
& \left(\boldsymbol{B}^{-1}\right)_{21}=\frac{\boldsymbol{C}_{12}}{\operatorname{det} \boldsymbol{B}}=\frac{-\left|\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right|}{1}=-1 \\
& \left(\boldsymbol{B}^{-1}\right)_{22}=\frac{\boldsymbol{C}_{22}}{\operatorname{det} \boldsymbol{B}}=\frac{\left|\begin{array}{ll}
1 & 1 \\
1 & 3
\end{array}\right|}{1}=2 \\
& \left(\boldsymbol{B}^{-1}\right)_{31}=\frac{\boldsymbol{C}_{13}}{\operatorname{det} \boldsymbol{B}}=\frac{\left|\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right|}{1}=0 \\
& \left(\boldsymbol{B}^{-1}\right)_{32}=\frac{\boldsymbol{C}_{23}}{\operatorname{det} \boldsymbol{B}}=\frac{-\left|\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right|}{1}=-1 \\
& \left(\boldsymbol{B}^{-1}\right)_{33}=\frac{\boldsymbol{C}_{33}}{\operatorname{det} \boldsymbol{B}}=\frac{\left|\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right|}{1}=1 .
\end{aligned}
$$

Therefore, we can obtain the inverse of \boldsymbol{B} as

$$
\boldsymbol{B}^{-1}=\left[\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right]
$$

8. For the first system, we have

$$
\left[\begin{array}{ccc}
2 & 1 & -3 \\
4 & 5 & 1 \\
-2 & -1 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
8 \\
2
\end{array}\right] .
$$

Using Cramer's rule, we can obtain

$$
x_{1}=\frac{\left|\begin{array}{ccc}
0 & 1 & -3 \\
8 & 5 & 1 \\
2 & -1 & 4
\end{array}\right|}{\left|\begin{array}{ccc}
2 & 1 & -3 \\
4 & 5 & 1 \\
-2 & -1 & 4
\end{array}\right|}=4, x_{2}=\frac{\left|\begin{array}{ccc}
2 & 0 & -3 \\
4 & 8 & 1 \\
-2 & 2 & 4
\end{array}\right|}{\left|\begin{array}{ccc}
2 & 1 & -3 \\
4 & 5 & 1 \\
-2 & -1 & 4
\end{array}\right|}=-2, \text { and } x_{3}=\frac{\left|\begin{array}{ccc}
2 & 1 & 0 \\
4 & 5 & 8 \\
-2 & -1 & 2
\end{array}\right|}{\left|\begin{array}{ccc}
2 & 1 & -3 \\
4 & 5 & 1 \\
-2 & -1 & 4
\end{array}\right|}=2 .
$$

For the second system, we have

$$
\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & -2 \\
1 & 0 & 2 & 1 \\
1 & 1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right] .
$$

Using Cramer's rule, we can obtain

$$
\begin{aligned}
& x_{1}=\frac{\left|\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & 1 & 1 & -2 \\
0 & 0 & 2 & 1 \\
0 & 1 & 0 & 1
\end{array}\right|}{\left|\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & -2 \\
1 & 0 & 2 & 1 \\
1 & 1 & 0 & 1
\end{array}\right|}=-\frac{2}{3}, x_{2}=\frac{\left|\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & -2 \\
1 & 0 & 2 & 1 \\
1 & 0 & 0 & 1
\end{array}\right|}{\left|\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & -2 \\
1 & 0 & 2 & 1 \\
1 & 1 & 0 & 1
\end{array}\right|}=\frac{2}{3} \\
& \left.x_{3}=\frac{\left|\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & -2 \\
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1
\end{array}\right|}{\left\lvert\, \begin{array}{ccc}
1 & 1 & 0
\end{array} 0\right.} \begin{array}{|ccc}
0 & 1 & 1 \\
1 & -2 & 2
\end{array} \right\rvert\,+\frac{1}{3}, \text { and } x_{4}=\frac{\left|\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 2 & 0 \\
1 & 1 & 0 & 0
\end{array}\right|}{\left|\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & -2 \\
1 & 0 & 2 & 1 \\
1 & 1 & 0 & 1
\end{array}\right|}=0 .
\end{aligned}
$$

