Homework Assignment No. 4 Due 10:10am, May 4, 2011

Reading: Strang, Sections 4.4, Section 8.5, Chapter 5.
Problems for Solution:

1. Apply the Gram-Schmidt process to obtain orthonormal vectors $\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, \boldsymbol{q}_{3}$ from the columns of

$$
\boldsymbol{A}=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

Then write the result in the form $\boldsymbol{A}=\boldsymbol{Q} \boldsymbol{R}$.
2. (a) Find orthonormal vectors $\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, \boldsymbol{q}_{3}$ such that $\boldsymbol{q}_{1}, \boldsymbol{q}_{2}$ span the column space of

$$
\boldsymbol{A}=\left[\begin{array}{ll}
2 & 1 \\
1 & 1 \\
2 & 1
\end{array}\right]
$$

(b) Which of the four fundamental subspaces contains \boldsymbol{q}_{3} ?
(c) Find the least squares solution to

$$
\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{c}
12 \\
6 \\
18
\end{array}\right]
$$

3. Show that $1, x$, and $x^{2}-(1 / 3)$ are orthogonal, when the integration is from $x=-1$ to $x=1$. Write $f(x)=2 x^{2}$ as a combination of those orthogonal functions.
4. Find the determinants of the following 4 by 4 matrices by Gaussian elimination:

$$
\left[\begin{array}{llll}
11 & 12 & 13 & 14 \\
21 & 22 & 23 & 24 \\
31 & 32 & 33 & 34 \\
41 & 42 & 43 & 44
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{cccc}
1 & t & t^{2} & t^{3} \\
t & 1 & t & t^{2} \\
t^{2} & t & 1 & t \\
t^{3} & t^{2} & t & 1
\end{array}\right]
$$

5. This problem shows that the determinant of the following matrix is zero (where the x 's are any numbers and they need not be the same):

$$
\boldsymbol{A}=\left[\begin{array}{lllll}
x & x & x & x & x \\
x & x & x & x & x \\
0 & 0 & 0 & x & x \\
0 & 0 & 0 & x & x \\
0 & 0 & 0 & x & x
\end{array}\right]
$$

Explain why all 120 terms are zero in the big formula for $\operatorname{det} \boldsymbol{A}$.
6. Let D_{n} be the determinant of the $1,1,-1$ tridiagonal matrix of order n :

$$
D_{2}=\left|\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right|, \quad D_{3}=\left|\begin{array}{ccc}
1 & -1 & 0 \\
1 & 1 & -1 \\
0 & 1 & 1
\end{array}\right|, \quad D_{4}=\left|\begin{array}{cccc}
1 & -1 & 0 & 0 \\
1 & 1 & -1 & 0 \\
0 & 1 & 1 & -1 \\
0 & 0 & 1 & 1
\end{array}\right|, \quad \ldots
$$

Expand in cofactors to show that $D_{n}=D_{n-1}+D_{n-2}$. This yields the Fibonacci sequence $1,2,3,5,8,13, \ldots$ for the determinants.
7. Use the cofactor matrix to find the inverses of

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right] \quad \text { and } \quad \boldsymbol{B}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 3
\end{array}\right]
$$

8. Use Cramer's rule to solve each of the following systems of linear equations:

$$
\begin{array}{r}
2 x_{1}+x_{2}-3 x_{3}=0 \\
4 x_{1}+5 x_{2}+x_{3}=8 \\
-2 x_{1}-x_{2}+4 x_{3}=2
\end{array}
$$

and

$$
\begin{aligned}
x_{1}+x_{2} & =0 \\
x_{2}+x_{3}-2 x_{4} & =1 \\
x_{1}+2 x_{3}+x_{4} & =0 \\
x_{1}+x_{2}+x_{4} & =0
\end{aligned}
$$

