Solution to Homework Assignment No. 3

1. First, we apply elimination to transform \boldsymbol{A} into the reduced row echelon (RRE) form:

$$
\boldsymbol{A}=\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 4 & 6 \\
0 & 0 & 0 & 1 & 2
\end{array}\right] \quad \Longrightarrow \quad \boldsymbol{R}=\left[\begin{array}{ccccc}
0 & 1 & 2 & 0 & -2 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

We can have $\boldsymbol{R}=\boldsymbol{E} \boldsymbol{A}$, where

$$
\boldsymbol{E}=\left[\begin{array}{ccc}
1 & 0 & -3 \\
-1 & 1 & 0 \\
1 & -1 & 1
\end{array}\right]
$$

A basis for the row space is given by

$$
\beta_{\mathrm{row}}=\left\{\left[\begin{array}{c}
0 \\
1 \\
2 \\
0 \\
-2
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
2
\end{array}\right]\right\}
$$

Since columns 2 and 4 are the pivot columns of \boldsymbol{R}, we know in class that a basis for the column space can be formed by columns 2 and 4 of \boldsymbol{A}, i.e.,

$$
\beta_{\mathrm{column}}=\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
3 \\
4 \\
1
\end{array}\right]\right\}
$$

On the other hand, the vectors in the nullspace satisfy

$$
\left[\begin{array}{ccccc}
0 & 1 & 2 & 0 & -2 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Since x_{2}, x_{4} are pivot variables and x_{1}, x_{3}, x_{5} are free variables, a basis for the nullspace can be given by the three special solutions:

$$
\beta_{\mathrm{null}}=\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
-2 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
2 \\
0 \\
-2 \\
1
\end{array}\right]\right\} .
$$

Finally, since the last row of \boldsymbol{R} is a zero row, a basis for the left nullspace can be given by the last row of \boldsymbol{E} :

$$
\beta_{\mathrm{left}}=\left\{\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right\} .
$$

2. (a) Let $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$ be $n \times n$ matrices with $\boldsymbol{a}_{k}, \boldsymbol{b}_{k}$, and \boldsymbol{c}_{k} denoting the k th row of $\boldsymbol{A}, \boldsymbol{B}$, and \boldsymbol{C}, respectively. Now since $\boldsymbol{C}=\boldsymbol{A} \boldsymbol{B}$, we have

$$
\boldsymbol{c}_{i}=\boldsymbol{a}_{i} \boldsymbol{B}=\sum_{j=1}^{n} a_{i j} \boldsymbol{b}_{j} \quad \text { for any } 1 \leq i \leq n
$$

which shows that the rows of \boldsymbol{C} are linear combinations of the rows of \boldsymbol{B}. Therefore, it follows that

$$
\begin{equation*}
\boldsymbol{c}_{i}^{T} \in \mathcal{C}\left(\boldsymbol{B}^{T}\right) \quad \text { for any } 1 \leq i \leq n \tag{1}
\end{equation*}
$$

On the other hand, the rank of \boldsymbol{C} is the maximum number of linearly independent rows in \boldsymbol{C}, which of course cannot exceed the dimension of $\mathcal{C}\left(\boldsymbol{B}^{T}\right)$ because of (1). As a result, we have

$$
\operatorname{rank}(\boldsymbol{C}) \leq \operatorname{dim}\left(\mathcal{C}\left(\boldsymbol{B}^{T}\right)\right)=\operatorname{rank}(\boldsymbol{B})
$$

(b) From $\boldsymbol{C}=\boldsymbol{A} \boldsymbol{B}$ we may obtain $\boldsymbol{C}^{T}=\boldsymbol{B}^{T} \boldsymbol{A}^{T}$ by taking transpose on both sides. It now follows from part (a) that

$$
\operatorname{rank}\left(\boldsymbol{C}^{T}\right) \leq \operatorname{rank}\left(\boldsymbol{A}^{T}\right)
$$

Together with the fact that

$$
\operatorname{rank}(\boldsymbol{C})=\operatorname{rank}\left(\boldsymbol{C}^{T}\right) \quad \text { and } \quad \operatorname{rank}\left(\boldsymbol{A}^{T}\right)=\operatorname{rank}(\boldsymbol{A})
$$

we finally arrive at

$$
\operatorname{rank}(\boldsymbol{C})=\operatorname{rank}\left(\boldsymbol{C}^{T}\right) \leq \operatorname{rank}\left(\boldsymbol{A}^{T}\right)=\operatorname{rank}(\boldsymbol{A})
$$

3. (a) Let

$$
\boldsymbol{A} \triangleq\left[\begin{array}{llll}
1 & 2 & 2 & 3 \\
1 & 3 & 3 & 2
\end{array}\right]
$$

so that $S=\mathcal{C}\left(\boldsymbol{A}^{T}\right)$. In class we know that

$$
S^{\perp}=\mathcal{C}\left(\boldsymbol{A}^{T}\right)^{\perp}=\mathcal{N}(\boldsymbol{A})
$$

Hence we solve the system of linear equations:

$$
\left[\begin{array}{llll}
1 & 2 & 2 & 3 \\
1 & 3 & 3 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

which leads to two vectors $(0,-1,1,0)$ and $(-5,1,0,1)$ spanning S^{\perp}.
(b) Let

$$
\boldsymbol{B} \triangleq\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right]
$$

so that $P=\mathcal{N}(\boldsymbol{B})$. We also learn in class that

$$
P^{\perp}=\mathcal{N}(\boldsymbol{B})^{\perp}=\mathcal{C}\left(\boldsymbol{B}^{T}\right)
$$

Since \boldsymbol{B} contains a single row, we know that $(1,1,1,1)$ is a basis for P^{\perp}.
4. Applying elimination to the system of linear equations

$$
\left[\begin{array}{lll}
1 & 0 & 2 \\
1 & 1 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

leads to a basis for $\mathcal{N}(\boldsymbol{A})$ given by $\boldsymbol{w}=(-2,-2,1)^{T}$. The orthogonality between \boldsymbol{w} and $\mathcal{C}\left(\boldsymbol{A}^{T}\right)$ can be verified by

$$
\left[\begin{array}{lll}
1 & 0 & 2
\end{array}\right]\left[\begin{array}{c}
-2 \\
-2 \\
1
\end{array}\right]=0 \quad \text { and } \quad\left[\begin{array}{lll}
1 & 1 & 4
\end{array}\right]\left[\begin{array}{c}
-2 \\
-2 \\
1
\end{array}\right]=0
$$

To split $\boldsymbol{x}=(3,3,3)^{T}$ into $\boldsymbol{x}_{r}+\boldsymbol{x}_{n}$, we first project \boldsymbol{x} onto $\mathcal{N}(\boldsymbol{A})$ so that

$$
\boldsymbol{x}_{n}=\frac{\boldsymbol{w}^{T} \boldsymbol{x}}{\boldsymbol{w}^{T} \boldsymbol{w}} \boldsymbol{w}=-\boldsymbol{w}=\left[\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right] .
$$

Finally, it follows that

$$
\boldsymbol{x}_{r}=\boldsymbol{x}-\boldsymbol{x}_{n}=\left[\begin{array}{l}
3 \\
3 \\
3
\end{array}\right]-\left[\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
4
\end{array}\right] .
$$

5. (a) In class we know the projection of \boldsymbol{b} onto the column space of \boldsymbol{A} is given by

$$
\begin{equation*}
p=\boldsymbol{A} \hat{\boldsymbol{x}} \tag{2}
\end{equation*}
$$

where $\hat{\boldsymbol{x}}$ is the solution to

$$
\begin{equation*}
\boldsymbol{A}^{T} \boldsymbol{A} \hat{\boldsymbol{x}}=\boldsymbol{A}^{T} \boldsymbol{b} \tag{3}
\end{equation*}
$$

In our case, (3) is explicitly given by

$$
\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
\hat{x}_{1} \\
\hat{x}_{2}
\end{array}\right]=\left[\begin{array}{l}
5 \\
2
\end{array}\right]
$$

and hence

$$
\hat{\boldsymbol{x}}=\left[\begin{array}{l}
\hat{x}_{1} \\
\hat{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
3 \\
-1
\end{array}\right] .
$$

It now follows from (2) that

$$
\boldsymbol{p}=\left[\begin{array}{ll}
1 & 1 \\
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
3 \\
-1
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
3
\end{array}\right]
$$

and the error is thus

$$
\boldsymbol{e}=\boldsymbol{b}-\boldsymbol{p}=\left[\begin{array}{l}
2 \\
4 \\
3
\end{array}\right]-\left[\begin{array}{l}
2 \\
0 \\
3
\end{array}\right]=\left[\begin{array}{l}
0 \\
4 \\
0
\end{array}\right] .
$$

The orthogonality between \boldsymbol{e} and the columns of \boldsymbol{A} can be verified by

$$
\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
4 \\
0
\end{array}\right]=0 \quad \text { and } \quad\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
0 \\
4 \\
0
\end{array}\right]=0 .
$$

(b) Applying (3) and (2) we obtain

$$
\hat{\boldsymbol{x}}=\left[\begin{array}{c}
-2 \\
6
\end{array}\right] \quad \text { and } \quad \boldsymbol{p}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{c}
-2 \\
6
\end{array}\right]=\left[\begin{array}{l}
4 \\
6 \\
4
\end{array}\right]
$$

The error is now given by

$$
\boldsymbol{e}=\boldsymbol{b}-\boldsymbol{p}=\left[\begin{array}{l}
4 \\
6 \\
4
\end{array}\right]-\left[\begin{array}{l}
4 \\
6 \\
4
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

Obviously \boldsymbol{e} is orthogonal to the columns of \boldsymbol{A}. Note that actually $\boldsymbol{b} \in \mathcal{C}(\boldsymbol{A})$ because

$$
\left[\begin{array}{l}
4 \\
6 \\
4
\end{array}\right]=-2\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+6\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Hence projecting \boldsymbol{b} onto $\mathcal{C}(\boldsymbol{A})$ results in \boldsymbol{b} itself.
6. (a) In class we know the projection matrix projecting a vector onto the column space of \boldsymbol{A} is given by

$$
\begin{equation*}
\boldsymbol{P}=\boldsymbol{A}\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{T} \tag{4}
\end{equation*}
$$

where \boldsymbol{A} is assumed to have full column rank so that $\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{-1}$ exists.
Unfortunately, the matrix

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
2 & 4 & 4 \\
5 & 10 & 10
\end{array}\right]
$$

does not have full column rank because its columns are linearly dependent. As a result we cannot apply (4) directly. However, a closer look at \boldsymbol{A} reveals that its column space is actually spanned by a single vector, say

$$
\boldsymbol{v}_{C}=\left[\begin{array}{l}
2 \\
5
\end{array}\right] .
$$

Since \boldsymbol{v}_{C} has full column rank, we may apply (4) and obtain

$$
\boldsymbol{P}_{C}=\left[\begin{array}{l}
2 \\
5
\end{array}\right] \cdot \frac{1}{29} \cdot\left[\begin{array}{ll}
2 & 5
\end{array}\right]=\left[\begin{array}{cc}
4 / 29 & 10 / 29 \\
10 / 29 & 25 / 29
\end{array}\right]
$$

(b) Let $\boldsymbol{B} \triangleq \boldsymbol{A}^{T}=\left[\begin{array}{cc}2 & 5 \\ 4 & 10 \\ 4 & 10\end{array}\right]$ so that $\mathcal{C}\left(\boldsymbol{A}^{T}\right)=\mathcal{C}(\boldsymbol{B})$. Since the column space of \boldsymbol{B} is spanned by a single vector $\boldsymbol{v}_{R}=\left[\begin{array}{l}2 \\ 4 \\ 4\end{array}\right]$, we may apply (4) to obtain

$$
\boldsymbol{P}_{R}=\left[\begin{array}{l}
2 \\
4 \\
4
\end{array}\right] \cdot \frac{1}{36} \cdot\left[\begin{array}{lll}
2 & 4 & 4
\end{array}\right]=\left[\begin{array}{ccc}
1 / 9 & 2 / 9 & 2 / 9 \\
2 / 9 & 4 / 9 & 4 / 9 \\
2 / 9 & 4 / 9 & 4 / 9
\end{array}\right]
$$

After some calculations we discover that

$$
\boldsymbol{P}_{C} \boldsymbol{A} \boldsymbol{P}_{R}=\left[\begin{array}{ccc}
2 & 4 & 4 \\
5 & 10 & 10
\end{array}\right]=\boldsymbol{A} .
$$

This result follows from the facts that

$$
\boldsymbol{P}_{C} \boldsymbol{A}=\boldsymbol{A} \quad \text { and } \quad \boldsymbol{A} \boldsymbol{P}_{R}=\boldsymbol{A}
$$

To explain why, we let \boldsymbol{x} be a vector. Since $\boldsymbol{A} \boldsymbol{x} \in \mathcal{C}(\boldsymbol{A})$ and $\boldsymbol{A}^{T} \boldsymbol{x} \in \mathcal{C}\left(\boldsymbol{A}^{T}\right)$, it follows that

$$
\left(\boldsymbol{P}_{C} \boldsymbol{A}\right) \boldsymbol{x}=\boldsymbol{P}_{C}(\boldsymbol{A} \boldsymbol{x})=\boldsymbol{A} \boldsymbol{x}
$$

and

$$
\left(\boldsymbol{P}_{R}^{T} \boldsymbol{A}^{T}\right) \boldsymbol{x}=\boldsymbol{P}_{R}^{T}\left(\boldsymbol{A}^{T} \boldsymbol{x}\right)=\boldsymbol{P}_{R}\left(\boldsymbol{A}^{T} \boldsymbol{x}\right)=\boldsymbol{A}^{T} \boldsymbol{x}
$$

Since \boldsymbol{x} is arbitrary, we must have

$$
\boldsymbol{P}_{C} \boldsymbol{A}=\boldsymbol{A} \quad \text { and } \quad \boldsymbol{P}_{R}^{T} \boldsymbol{A}^{T}=\boldsymbol{A}^{T}\left(\text { or } \boldsymbol{A} \boldsymbol{P}_{R}=\boldsymbol{A}\right) .
$$

Using these two facts, we may obtain

$$
\boldsymbol{P}_{C} \boldsymbol{A} \boldsymbol{P}_{R}=\left(\boldsymbol{P}_{C} \boldsymbol{A}\right) \boldsymbol{P}_{R}=\boldsymbol{A} \boldsymbol{P}_{R}=\boldsymbol{A}
$$

7. (a) Let

$$
\boldsymbol{A}_{1} \triangleq\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 3 & 9 \\
1 & 4 & 16
\end{array}\right], \quad \hat{\boldsymbol{x}}_{1} \triangleq\left[\begin{array}{c}
C_{1} \\
D_{1} \\
E_{1}
\end{array}\right], \quad \text { and } \quad \boldsymbol{b}_{1} \triangleq\left[\begin{array}{c}
0 \\
8 \\
8 \\
20
\end{array}\right] .
$$

In class we learn the choice of $\hat{\boldsymbol{x}}_{1}$ which minimizes $\|\boldsymbol{e}\|^{2}$ is given by solving

$$
\boldsymbol{A}_{1}^{T} \boldsymbol{A}_{1} \hat{\boldsymbol{x}}_{1}=\boldsymbol{A}_{1}^{T} \boldsymbol{b}_{1}
$$

which yields

$$
\left[\begin{array}{ccc}
4 & 8 & 26 \\
8 & 26 & 92 \\
26 & 92 & 338
\end{array}\right]\left[\begin{array}{c}
C_{1} \\
D_{1} \\
E_{1}
\end{array}\right]=\left[\begin{array}{c}
36 \\
112 \\
400
\end{array}\right] .
$$

Therefore,

$$
\hat{\boldsymbol{x}}_{1}=\left[\begin{array}{c}
C_{1} \\
D_{1} \\
E_{1}
\end{array}\right]=\left[\begin{array}{c}
2 \\
4 / 3 \\
2 / 3
\end{array}\right] .
$$

The closest parabola is hence $b=2+(4 / 3) t+(2 / 3) t^{2}$. The projection of \boldsymbol{b}_{1} onto $\mathcal{C}\left(\boldsymbol{A}_{1}\right)$ is

$$
\boldsymbol{p}_{1}=\boldsymbol{A}_{1} \hat{\boldsymbol{x}}_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 3 & 9 \\
1 & 4 & 16
\end{array}\right]\left[\begin{array}{c}
2 \\
4 / 3 \\
2 / 3
\end{array}\right]=\left[\begin{array}{c}
2 \\
4 \\
12 \\
18
\end{array}\right] .
$$

Finally, the error is given by

$$
\boldsymbol{e}_{1}=\boldsymbol{b}_{1}-\boldsymbol{p}_{1}=\left[\begin{array}{c}
0 \\
8 \\
8 \\
20
\end{array}\right]-\left[\begin{array}{c}
2 \\
4 \\
12 \\
18
\end{array}\right]=\left[\begin{array}{c}
-2 \\
4 \\
-4 \\
2
\end{array}\right]
$$

with $\left\|\boldsymbol{e}_{1}\right\|^{2}=(-2)^{2}+4^{2}+(-4)^{2}+2^{2}=40$.
(b) Computations similar to part (a) can be carried out by letting

$$
\boldsymbol{A}_{2} \triangleq\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
1 & 3 & 9 & 27 \\
1 & 4 & 16 & 64
\end{array}\right], \quad \hat{\boldsymbol{x}}_{2} \triangleq\left[\begin{array}{c}
C_{2} \\
D_{2} \\
E_{2} \\
F_{2}
\end{array}\right], \quad \text { and } \quad \boldsymbol{b}_{2} \triangleq\left[\begin{array}{c}
0 \\
8 \\
8 \\
20
\end{array}\right]
$$

However, there is no need for such amount of computation in this problem! A simple check will confirm that the columns of \boldsymbol{A}_{2} are linearly independent. Hence $\mathcal{C}\left(\boldsymbol{A}_{2}\right)=\mathcal{R}^{4}$. Now since $\boldsymbol{b}_{2} \in \mathcal{R}^{4}=\mathcal{C}\left(\boldsymbol{A}_{2}\right)$, we should be able to fit a curve without any error! The exact coefficients of the curve can be determined by solving

$$
\boldsymbol{A}_{2} \hat{\boldsymbol{x}}_{2}=\boldsymbol{b}_{2}
$$

or equivalently,

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
1 & 3 & 9 & 27 \\
1 & 4 & 16 & 64
\end{array}\right]\left[\begin{array}{c}
C_{2} \\
D_{2} \\
E_{2} \\
F_{2}
\end{array}\right]=\left[\begin{array}{c}
0 \\
8 \\
8 \\
20
\end{array}\right] .
$$

Applying elimination yields

$$
\hat{\boldsymbol{x}}_{2}=\left[\begin{array}{c}
C_{2} \\
D_{2} \\
E_{2} \\
F_{2}
\end{array}\right]=\left[\begin{array}{c}
0 \\
47 / 3 \\
-28 / 3 \\
5 / 3
\end{array}\right] .
$$

Therefore, the closest cubic is given by $b=(47 / 3) t-(28 / 3) t^{2}+(5 / 3) t^{3}$. The error in this case is of course

$$
\boldsymbol{e}_{2}=\boldsymbol{b}_{2}-\boldsymbol{p}_{2}=\boldsymbol{b}_{2}-\boldsymbol{b}_{2}=\mathbf{0} \quad \text { with } \quad\left\|\boldsymbol{e}_{2}\right\|^{2}=0
$$

8. (a) Let $\boldsymbol{y} \triangleq \boldsymbol{A} \boldsymbol{x}$ and $\boldsymbol{z} \triangleq \boldsymbol{A}^{T} \boldsymbol{y}$. Since

$$
\frac{\partial}{\partial x_{k}}\|\boldsymbol{A} \boldsymbol{x}\|^{2}=\frac{\partial}{\partial x_{k}}\|\boldsymbol{y}\|^{2}=\frac{\partial}{\partial x_{k}} \sum_{i=1}^{m} y_{i}^{2}=\sum_{i=1}^{m} 2 y_{i} \frac{\partial y_{i}}{\partial x_{k}}
$$

and

$$
\frac{\partial y_{i}}{\partial x_{k}}=\frac{\partial}{\partial x_{k}} \sum_{j=1}^{n} A_{i j} x_{j}=A_{i k}=A_{k i}^{T}
$$

we have

$$
\frac{\partial}{\partial x_{k}}\|\boldsymbol{A} \boldsymbol{x}\|^{2}=2 \sum_{i=1}^{m} A_{k i}^{T} y_{i}=2 z_{k}
$$

Collecting the partial derivatives yields

$$
\left[\begin{array}{c}
\frac{\partial}{\partial x_{1}}\|\boldsymbol{A} \boldsymbol{x}\|^{2} \\
\vdots \\
\frac{\partial}{\partial x_{n}}\|\boldsymbol{A} \boldsymbol{x}\|^{2}
\end{array}\right]=\left[\begin{array}{c}
2 z_{1} \\
\vdots \\
2 z_{n}
\end{array}\right]=2 \boldsymbol{z}=2 \boldsymbol{A}^{T} \boldsymbol{y}=2 \boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x} .
$$

(b) Let $\boldsymbol{w} \triangleq \boldsymbol{A}^{T} \boldsymbol{b}$; then we have

$$
\frac{\partial}{\partial x_{k}}\left(2 \boldsymbol{b}^{T} \boldsymbol{A} \boldsymbol{x}\right)=\frac{\partial}{\partial x_{k}}\left(2 \sum_{i=1}^{m} b_{i} y_{i}\right)=2 \sum_{i=1}^{m} A_{k i}^{T} b_{i}=2 w_{k} .
$$

Collecting the partial derivatives yields

$$
\left[\begin{array}{c}
\frac{\partial}{\partial x_{1}}\left(2 \boldsymbol{b}^{T} \boldsymbol{A} \boldsymbol{x}\right) \\
\vdots \\
\frac{\partial}{\partial x_{n}}\left(2 \boldsymbol{b}^{T} \boldsymbol{A} \boldsymbol{x}\right)
\end{array}\right]=\left[\begin{array}{c}
2 w_{1} \\
\vdots \\
2 w_{n}
\end{array}\right]=2 \boldsymbol{w}=2 \boldsymbol{A}^{T} \boldsymbol{b}
$$

(c) Finally, we obtain

$$
\frac{\partial}{\partial x_{k}}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|^{2}=\frac{\partial}{\partial x_{k}}\|\boldsymbol{A} \boldsymbol{x}\|^{2}-\frac{\partial}{\partial x_{k}}\left(2 \boldsymbol{b}^{T} \boldsymbol{A} \boldsymbol{x}\right)=2 z_{k}-2 w_{k} .
$$

Collecting the partial derivatives yields

$$
\left[\begin{array}{c}
\frac{\partial}{\partial x_{1}}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|^{2} \\
\vdots \\
\frac{\partial}{\partial x_{n}}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|^{2}
\end{array}\right]=\left[\begin{array}{c}
2 z_{1}-2 w_{1} \\
\vdots \\
2 z_{n}-2 w_{n}
\end{array}\right]=2(\boldsymbol{z}-\boldsymbol{w})=2\left(\boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}-\boldsymbol{A}^{T} \boldsymbol{b}\right) .
$$

Hence the partial derivatives of $\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|^{2}$ are zero when $\boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{A}^{T} \boldsymbol{b}$.

