Homework Assignment No. 3

Due 10:10am, April 22, 2011

Reading: Strang, Sections 3.6-4.3.
Problems for Solution:

1. Find a basis for each of the four subspaces associated with

$$
\boldsymbol{A}=\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 4 & 6 \\
0 & 0 & 0 & 1 & 2
\end{array}\right]
$$

2. Three matrices $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$ satisfy

$$
C=A B
$$

(a) Show that $\operatorname{rank}(\boldsymbol{C}) \leq \operatorname{rank}(\boldsymbol{B})$. (Hint: Argue that the rows of \boldsymbol{C} are linear combinations of the rows of \boldsymbol{B}.)
(b) Also show that $\operatorname{rank}(\boldsymbol{C}) \leq \operatorname{rank}(\boldsymbol{A})$. (Hint: $\boldsymbol{C}^{T}=\boldsymbol{B}^{T} \boldsymbol{A}^{T}$.)
3. (a) Suppose S is spanned by the vectors $(1,2,2,3)$ and ($1,3,3,2$). Find two vectors that span S^{\perp}. (Hint: This is the same as solving $\boldsymbol{A} \boldsymbol{x}=\mathbf{0}$ for which \boldsymbol{A} ?)
(b) If P is the plane of vectors in \mathcal{R}^{4} satisfying $x_{1}+x_{2}+x_{3}+x_{4}=0$, find a basis for P^{\perp}. (Hint: Construct a matrix that has P as its nullspace.)
4. Find a basis for the nullspace of

$$
\boldsymbol{A}=\left[\begin{array}{lll}
1 & 0 & 2 \\
1 & 1 & 4
\end{array}\right]
$$

and verify that it is orthogonal to the row space. Given $\boldsymbol{x}=(3,3,3)$, split it into a row space component \boldsymbol{x}_{r} and a nullspace component \boldsymbol{x}_{n}.
5. Project \boldsymbol{b} onto the column space of \boldsymbol{A}. Find the projection \boldsymbol{p}. Also find $\boldsymbol{e}=\boldsymbol{b}-\boldsymbol{p}$. It should be orthogonal to the columns of \boldsymbol{A}.
(a) $\boldsymbol{A}=\left[\begin{array}{ll}1 & 1 \\ 0 & 0 \\ 1 & 0\end{array}\right]$ and $\boldsymbol{b}=\left[\begin{array}{l}2 \\ 4 \\ 3\end{array}\right]$.
(b) $\boldsymbol{A}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 1 & 1\end{array}\right]$ and $\boldsymbol{b}=\left[\begin{array}{l}4 \\ 6 \\ 4\end{array}\right]$.
6. (a) Find the projection matrix \boldsymbol{P}_{C} onto the column space of \boldsymbol{A} :

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
2 & 4 & 4 \\
5 & 10 & 10
\end{array}\right]
$$

(Hint: Look closely at the matrix!)
(b) Find the 3 by 3 projection matrix \boldsymbol{P}_{R} onto the row space of \boldsymbol{A}. Multiply $\boldsymbol{B}=$ $\boldsymbol{P}_{C} \boldsymbol{A} \boldsymbol{P}_{R}$. Your answer \boldsymbol{B} should be a little surprising - can you explain it?
7. We have four data points with $b=0,8,8,20$ at $t=0,1,3,4$.
(a) Find the closest parabola $b=C_{1}+D_{1} t+E_{1} t^{2}$ to the four points. The error vector \boldsymbol{e} is defined as in class. What is $\|\boldsymbol{e}\|^{2}$ now?
(b) Find the closest cubic $b=C_{2}+D_{2} t+E_{2} t^{2}+F_{2} t^{3}$ to the four points. What is $\|\boldsymbol{e}\|^{2}$ now?
8. Let

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right] \quad \text { and } \quad \boldsymbol{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

(a) Show that the partial derivatives of $\|\boldsymbol{A} \boldsymbol{x}\|^{2}$ with respect to $x_{1}, x_{2}, \ldots, x_{n}$ fill the vector $2 \boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}$.
(b) Show that the partial derivatives of $2 \boldsymbol{b}^{T} \boldsymbol{A} \boldsymbol{x}$ fill the vector $2 \boldsymbol{A}^{T} \boldsymbol{b}$.
(c) Show that the partial derivatives of $\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|^{2}$ are zero when $\boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{A}^{T} \boldsymbol{b}$.

