Chi-chao Chao

EE 2030 Linear Algebra Spring 2011

Homework Assignment No. 3 Due 10:10am, April 22, 2011

Reading: Strang, Sections 3.6–4.3.

Problems for Solution:

1. Find a basis for each of the four subspaces associated with

$$\boldsymbol{A} = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 4 & 6 \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix}$$

2. Three matrices $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$ satisfy

$$C = AB$$
.

- (a) Show that $\operatorname{rank}(C) \leq \operatorname{rank}(B)$. (*Hint:* Argue that the rows of C are linear combinations of the rows of B.)
- (b) Also show that $\operatorname{rank}(C) \leq \operatorname{rank}(A)$. (*Hint:* $C^T = B^T A^T$.)
- 3. (a) Suppose S is spanned by the vectors (1, 2, 2, 3) and (1, 3, 3, 2). Find two vectors that span S^{\perp} . (*Hint:* This is the same as solving Ax = 0 for which A?)
 - (b) If P is the plane of vectors in \mathcal{R}^4 satisfying $x_1 + x_2 + x_3 + x_4 = 0$, find a basis for P^{\perp} . (*Hint:* Construct a matrix that has P as its nullspace.)
- 4. Find a basis for the nullspace of

$$\boldsymbol{A} = \left[\begin{array}{rrr} 1 & 0 & 2 \\ 1 & 1 & 4 \end{array} \right]$$

and verify that it is orthogonal to the row space. Given $\boldsymbol{x} = (3, 3, 3)$, split it into a row space component \boldsymbol{x}_r and a nullspace component \boldsymbol{x}_n .

5. Project **b** onto the column space of **A**. Find the projection **p**. Also find e = b - p. It should be orthogonal to the columns of **A**.

(a)
$$\boldsymbol{A} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \\ 1 & 0 \end{bmatrix}$$
 and $\boldsymbol{b} = \begin{bmatrix} 2 \\ 4 \\ 3 \end{bmatrix}$.
(b) $\boldsymbol{A} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$ and $\boldsymbol{b} = \begin{bmatrix} 4 \\ 6 \\ 4 \end{bmatrix}$.

6. (a) Find the projection matrix P_C onto the column space of A:

$$\boldsymbol{A} = \left[\begin{array}{rrr} 2 & 4 & 4 \\ 5 & 10 & 10 \end{array} \right].$$

(*Hint:* Look closely at the matrix!)

- (b) Find the 3 by 3 projection matrix P_R onto the row space of A. Multiply $B = P_C A P_R$. Your answer B should be a little surprising—can you explain it?
- 7. We have four data points with b = 0, 8, 8, 20 at t = 0, 1, 3, 4.
 - (a) Find the closest parabola $b = C_1 + D_1 t + E_1 t^2$ to the four points. The error vector e is defined as in class. What is $||e||^2$ now?
 - (b) Find the closest cubic $b = C_2 + D_2t + E_2t^2 + F_2t^3$ to the four points. What is $\|e\|^2$ now?

8. Let

$$\boldsymbol{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \quad \text{and} \quad \boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}.$$

- (a) Show that the partial derivatives of $\|\boldsymbol{A}\boldsymbol{x}\|^2$ with respect to x_1, x_2, \ldots, x_n fill the vector $2\boldsymbol{A}^T \boldsymbol{A} \boldsymbol{x}$.
- (b) Show that the partial derivatives of $2b^T A x$ fill the vector $2A^T b$.
- (c) Show that the partial derivatives of $\|Ax b\|^2$ are zero when $A^T A x = A^T b$.