Solution to Homework Assignment No. 2

- 1. (a) No, this subset is not a subspace of \mathcal{R}^3 . Let $B_1 = \{(b_1, b_2, b_3) : b_1 b_2 b_3 = 0\}$. Consider $(1, 0, 0), (0, 1, 1) \in B_1$. Since $(1, 0, 0) + (0, 1, 1) = (1, 1, 1) \notin B_1$, B_1 is not a subspace of \mathcal{R}^3 .
 - (b) Yes, this subset is a subspace of \mathcal{R}^3 . Let $B_2 = \{(b_1, b_2, b_3) : b_1 + b_2 + b_3 = 0\}$. Take two vectors $\boldsymbol{u} = (u_1, u_2, u_3) \in B_2$, $\boldsymbol{v} = (v_1, v_2, v_3) \in B_2$, where $u_1 + u_2 + u_3 = 0$ and $v_1 + v_2 + v_3 = 0$. Then we need to check the following two conditions:
 - Consider $\boldsymbol{u} + \boldsymbol{v} = (u_1 + v_1, u_2 + v_2, u_3 + v_3)$. Since $(u_1 + v_1) + (u_2 + v_2) + (u_3 + v_3) = (u_1 + u_2 + u_3) + (v_1 + v_2 + v_3) = 0$, $\boldsymbol{u} + \boldsymbol{v} \in B_2$.
 - For any $c \in \mathcal{R}$, consider $c\mathbf{u} = (cu_1, cu_2, cu_3)$. Since $cu_1 + cu_2 + cu_3 = c(u_1 + u_2 + u_3) = 0$, $c\mathbf{u} \in B_2$.

Therefore, B_2 is a subspace of \mathcal{R}^3 .

- (c) No, this subset is not a subspace. Let $B_3 = \{(b_1, b_2, b_3) : b_1 \leq b_2 \leq b_3\}$. Consider $(1, 2, 3) \in B_3$. Since $(-1)(1, 2, 3) = (-1, -2, -3) \notin B_3$, B_3 is not a subspace of \mathcal{R}^3 .
- 2. (a) Yes, S + T is a subspace of V. Let $x_1 = s_1 + t_1 \in S + T$ and $x_2 = s_2 + t_2 \in S + T$, where $s_1, s_2 \in S$ and $t_1, t_2 \in T$. We need to check the following two conditions:
 - Consider $x_1 + x_2 = (s_1 + t_1) + (s_1 + t_1) = (s_1 + s_2) + (t_1 + t_2)$. Since $s_1, s_2 \in S$ and S is a subspace, we have $s_1 + s_2 \in S$. Similarly, we have $t_1 + t_2 \in T$. Therefore, $x_1 + x_2 = (s_1 + s_2) + (t_1 + t_2) \in S + T$.
 - For any $c \in \mathcal{R}$, consider $c\mathbf{x}_1 = c\mathbf{s}_1 + c\mathbf{t}_1$. Since $\mathbf{s}_1 \in S$, $\mathbf{t}_1 \in T$ and S, T are subspaces of V, we have $c\mathbf{s}_1 \in S$ and $c\mathbf{t}_1 \in T$. Therefore, $c\mathbf{x}_1 = c\mathbf{s}_1 + c\mathbf{t}_1 \in S + T$.

Therefore, S + T is a subspace of the vector space V.

- (b) No, $S \cup T$ is in general not a subspace of V. Consider $S = \{(x, 0) : x \in \mathcal{R}\},$ $T = \{(0, y) : y \in \mathcal{R}\}$ are two subspaces of \mathcal{R}^2 . Take $(1, 0) \in S, (0, 1) \in T$, and hence $(1, 0) \in S \cup T, (0, 1) \in S \cup T$. Since $(1, 0) + (0, 1) = (1, 1) \notin S \cup T$, $S \cup T$ is not a subspace.
- 3. (a) Reduce the matrix A to the reduced row echelon (RRE) form:

$$\begin{aligned} \mathbf{A} &= \begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \end{bmatrix} = \mathbf{R}_A \\ &\Rightarrow \begin{cases} x_1 & -x_3 &= 0 \\ +x_2 & -x_3 &= 0. \end{cases} \end{aligned}$$

The pivot variables are x_1 and x_2 , and the free variables are x_3 and x_4 . Setting $x_3 = 1$, $x_4 = 0$, we have $x_1 = 1$ and $x_2 = 1$. Setting $x_3 = 0$, $x_4 = 1$, we have

 $x_1 = 0$ and $x_2 = 0$. Therefore, the nullspace of matrix **A** can be given by

$$\mathcal{N}(\boldsymbol{A}) = \left\{ \boldsymbol{x} : \boldsymbol{x} = x_3 \begin{bmatrix} 1\\1\\1\\0 \end{bmatrix} + x_4 \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}, x_3, x_4 \in \mathcal{R} \right\}.$$

(b) Reduce the matrix \boldsymbol{B} to the RRE form:

$$B = \begin{bmatrix} 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{bmatrix} = R_B$$
$$\Rightarrow \begin{cases} x_2 & -x_4 = 0 \\ +x_3 & -x_4 = 0. \end{cases}$$

The pivot variables are x_2 and x_3 , and the free variables are x_1 and x_4 . Setting $x_1 = 1$, $x_4 = 0$, we have $x_2 = 0$ and $x_3 = 0$. Setting $x_1 = 0$, $x_4 = 1$, we have $x_2 = 1$ and $x_3 = 1$. Therefore, the nullspace of matrix **B** can be given by

$$\mathcal{N}(\boldsymbol{B}) = \left\{ \boldsymbol{x} : \boldsymbol{x} = x_1 \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} + x_4 \begin{bmatrix} 0\\1\\1\\1\\1 \end{bmatrix}, x_1, x_4 \in \mathcal{R} \right\}.$$

(c) Reduce the matrix C to the RRE form:

$$\begin{split} \mathbf{C} &= \begin{bmatrix} \mathcal{A} \\ \mathcal{B} \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix} \\ \Rightarrow \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \\ \Rightarrow \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \mathbf{R}_C \Longrightarrow \begin{cases} x_1 & -x_4 &= 0 \\ x_2 & -x_4 &= 0 \\ x_3 & -x_4 &= 0. \end{cases}$$

The pivot variables are x_1 , x_2 and x_3 , and the free variable is x_4 . Setting $x_4 = 1$, we have $x_1 = 1$, $x_2 = 1$ and $x_3 = 1$. Therefore, the nullspace of matrix C can be given by

$$\mathcal{N}(\boldsymbol{C}) = \left\{ \boldsymbol{x} : \boldsymbol{x} = x_4 \begin{bmatrix} 1\\ 1\\ 1\\ 1 \end{bmatrix}, x_4 \in \mathcal{R} \right\}.$$

4. (a) First, we perform Gaussian elimination:

$$\boldsymbol{A} = \begin{bmatrix} 1 & 1 & 2 & 2 \\ 2 & 2 & 4 & 4 \\ 1 & c & 2 & 2 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 2 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & c - 1 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 2 & 2 \\ 0 & c - 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \boldsymbol{U}.$$

To find the pivots, we must check if c - 1 = 0. There are two cases:

• If c - 1 = 0, i.e., c = 1, we have

$$\boldsymbol{U}_1 = \begin{bmatrix} 1 & 1 & 2 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \boldsymbol{R}_2$$

where \mathbf{R}_1 is the RRE form with rank 1.

• If $c - 1 \neq 0$, i.e., $c \neq 1$, we can obtain

$$\boldsymbol{U}_{2} = \begin{bmatrix} 1 & 1 & 2 & 2 \\ 0 & \boldsymbol{c} - 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 2 & 2 \\ 0 & \boldsymbol{c} - 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \boldsymbol{R}_{2}$$

where \mathbf{R}_2 is the RRE form with rank 2.

- (b) The matrix B is already an upper triangular matrix. To find the pivots, we need to check if 1 d = 0 and 2 d = 0. There are three cases:
 - If 1 d = 0, i.e., d = 1, we have

$$\boldsymbol{B}_1 = \begin{bmatrix} 0 & 2 \\ 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \boldsymbol{R}_3$$

where \mathbf{R}_3 is the RRE form with rank 1.

• If 2 - d = 0, i.e., d = 2, we have

$$\boldsymbol{B}_2 = \begin{bmatrix} -1 & 2\\ 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -2\\ 0 & 0 \end{bmatrix} = \boldsymbol{R}_4$$

where \mathbf{R}_4 is the RRE form with rank 1.

• If $1 - d \neq 0$ and $2 - d \neq 0$, i.e., $d \neq 1$ and $d \neq 2$, we have

$$\boldsymbol{B}_{3} = \begin{bmatrix} 1-d & 2\\ 0 & 2-d \end{bmatrix} \Rightarrow \begin{bmatrix} 1-d & 0\\ 0 & 2-d \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} = \boldsymbol{R}_{5}$$

where \mathbf{R}_5 is the RRE form with rank 2.

5. To find the complete solution, we reduce the matrix to the RRE form:

$$\begin{bmatrix} 2 & 4 & 6 & 4 & | & 4 \\ 2 & 5 & 7 & 6 & | & 3 \\ 2 & 3 & 5 & 2 & | & 5 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 & 4 & 6 & 4 & | & 4 \\ 0 & 1 & 1 & 2 & | & -1 \\ 0 & -1 & -1 & -2 & | & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 & 4 & 6 & 4 & | & 4 \\ 0 & 1 & 1 & 2 & | & -1 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 2 & 0 & 2 & -4 & | & 8 \\ 0 & 1 & 1 & 2 & | & -1 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 1 & -2 & | & 4 \\ 0 & 1 & 1 & 2 & | & -1 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$
$$\Rightarrow \begin{cases} x_1 & + x_3 & -2x_4 & = & 4 \\ x_2 & + & x_3 & + & 2x_4 & = & -1. \end{cases}$$

Thus, the pivot variables are x_1 and x_2 , and the free variables are x_3 and x_4 . Setting $x_3 = 0$ and $x_4 = 0$, we can obtain $x_1 = 4$ and $x_2 = -1$. Therefore, a particular solution can be given by

$$oldsymbol{x}_p = egin{bmatrix} 4 \ -1 \ 0 \ 0 \end{bmatrix}.$$

To find the general soultion \boldsymbol{x}_n , we let

$$\begin{cases} x_1 & + x_3 & - 2x_4 = 0 \\ x_2 & + x_3 & + 2x_4 = 0 \end{cases}$$

Setting $x_3 = 1$, $x_4 = 0$, we have $x_1 = -1$, $x_2 = -1$. Setting $x_3 = 0$, $x_4 = 1$, we have $x_1 = 2$, $x_2 = -2$. Therefore, the general solution x_n is

$$\boldsymbol{x}_n = x_3 \begin{bmatrix} -1 \\ -1 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 2 \\ -2 \\ 0 \\ 1 \end{bmatrix}.$$

As a result, the complete solution to this problem is

$$m{x} = m{x}_p + m{x}_n = egin{bmatrix} 4 \ -1 \ 0 \ 0 \end{bmatrix} + x_3 egin{bmatrix} -1 \ -1 \ 1 \ 0 \end{bmatrix} + x_4 egin{bmatrix} 2 \ -2 \ 0 \ 1 \end{bmatrix}.$$

6. (a) Since x is a 2 by 1 vector and Ax is a 2 by 1 vector, A is a 2 by 2 matrix. Since Ax = 0 has one special solution, we know that the rank of A = 2 - 1 = 1. Let

$$\boldsymbol{A} = \left[\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right].$$

Since $\begin{bmatrix} 0\\1 \end{bmatrix}$ is a special solution to Ax = 0, we have

$$\boldsymbol{A}\boldsymbol{x} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Longrightarrow \begin{bmatrix} a_{12} \\ a_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

which gives $\mathbf{A} = \begin{bmatrix} a_{11} & 0 \\ a_{21} & 0 \end{bmatrix}$. By applying the particular solution to $\mathbf{A}\mathbf{x} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$, we can obtain

$$\boldsymbol{A}\boldsymbol{x} = \begin{bmatrix} a_{11} & 0 \\ a_{21} & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \Longrightarrow \begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}.$$

Therefore, we find the matrix $\boldsymbol{A} = \begin{bmatrix} 1 & 0 \\ 3 & 0 \end{bmatrix}$, which is clearly with rank 1.

- (b) Since \boldsymbol{x} is a 3 by 1 vector and $\boldsymbol{B}\boldsymbol{x}$ is a 2 by 1 vector, \boldsymbol{B} is a 2 by 3 matrix. Hence the rank r of \boldsymbol{B} is at most 2. We discuss the following two cases:
 - If r = 2, i.e., **B** has full row rank, Bx = b always has infinite solutions.
 - If r < 2, Bx = b has 0 or infinite solutions.

Therefore, we cannot find a matrix B with only one solution to Bx = b.

7. Yes, they are linearly independent. Consider the following equation:

$$b_1(2w_1 + w_2 + w_3) + b_2(w_1 + 2w_2 + w_3) + b_3(w_1 + w_2 + 2w_3) = 0$$

$$\Rightarrow (2b_1 + b_2 + b_3)w_1 + (b_1 + 2b_2 + b_3)w_2 + (b_1 + b_2 + 2b_3)w_3 = 0.$$

Since w_1, w_2, w_3 are linearly independent, we know the only solution to the above equation is

$$\begin{cases} 2b_1 + b_2 + b_3 = 0\\ b_1 + 2b_2 + b_3 = 0\\ b_1 + b_2 + 2b_3 = 0 \end{cases}$$

Since the matrix $\begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$ is invertible, we have $b_1 = b_2 = b_3 = 0$. Therefore, $2w_1 + w_2 + w_3, w_1 + 2w_2 + w_3, w_1 + w_2 + 2w_3$ are linearly independent.

8. (a) Take a matrix $m \in M$. Since all the column sums are zero, we can assume

$$\boldsymbol{m} = \left[egin{array}{ccc} a & b & c \ -a & -b & -c \end{array}
ight]$$

where $a, b, c \in \mathcal{R}$. Then we have

$$\boldsymbol{m} = \begin{bmatrix} a & 0 & 0 \\ -a & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & b & 0 \\ 0 & -b & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & c \\ 0 & 0 & -c \end{bmatrix}$$
$$= a \begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 & 0 \\ 0 & -1 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & -1 \end{bmatrix}$$

Thus, $\begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 & 0 \\ 0 & -1 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & -1 \end{bmatrix}$ span the vector space M. Consider

$$x \begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} + y \begin{bmatrix} 0 & 1 & 0 \\ 0 & -1 & 0 \end{bmatrix} + z \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
$$\Longrightarrow \begin{bmatrix} x & y & z \\ -x & -y & -z \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Then we have x = y = z = 0, and hence $\begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 & 0 \\ 0 & -1 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{bmatrix}$ are linearly independent. As a result, $\begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 & 0 \\ 0 & -1 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$, are a basis for M.

(b) Assume N is the subspace of M whose columns and rows both add to zero. Let $n \in N$. By the property of N, we can assume

$$\boldsymbol{n} = \left[egin{array}{ccc} a & b & -a-b \ -a & -b & a+b \end{array}
ight]$$

where $a, b \in \mathcal{R}$. Then we have

$$n = \begin{bmatrix} a & 0 & -a \\ -a & 0 & a \end{bmatrix} + \begin{bmatrix} 0 & b & -b \\ 0 & -b & b \end{bmatrix}$$
$$= a \begin{bmatrix} 1 & 0 & -1 \\ -1 & 0 & 1 \end{bmatrix} + b \begin{bmatrix} 0 & 1 & -1 \\ 0 & -1 & 1 \end{bmatrix}.$$
Thus, $\begin{bmatrix} 1 & 0 & -1 \\ -1 & 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 & -1 \\ 0 & -1 & 1 \end{bmatrix}$ span the subspace N. Consider
$$h \begin{bmatrix} 1 & 0 & -1 \\ -1 & 0 & 1 \end{bmatrix} + k \begin{bmatrix} 0 & 1 & -1 \\ 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
$$\implies \begin{bmatrix} h & k & -h-k \\ -h & -k & h+k \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$
Then we have $h = k = 0$, and hence $\begin{bmatrix} 1 & 0 & -1 \\ -1 & 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 & -1 \\ 0 & -1 & 1 \end{bmatrix}$ are

linearly independent. As a result, $\begin{bmatrix} 1 & 0 & -1 \\ -1 & 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 & -1 \\ 0 & -1 & 1 \end{bmatrix}$ are a basis for N.