Solution to Homework Assignment No. 2

1. (a) No, this subset is not a subspace of \mathcal{R}^{3}. Let $B_{1}=\left\{\left(b_{1}, b_{2}, b_{3}\right): b_{1} b_{2} b_{3}=0\right\}$. Consider $(1,0,0),(0,1,1) \in B_{1}$. Since $(1,0,0)+(0,1,1)=(1,1,1) \notin B_{1}, B_{1}$ is not a subspace of \mathcal{R}^{3}.
(b) Yes, this subset is a subspace of \mathcal{R}^{3}. Let $B_{2}=\left\{\left(b_{1}, b_{2}, b_{3}\right): b_{1}+b_{2}+b_{3}=\right.$ $0\}$. Take two vectors $\boldsymbol{u}=\left(u_{1}, u_{2}, u_{3}\right) \in B_{2}, \boldsymbol{v}=\left(v_{1}, v_{2}, v_{3}\right) \in B_{2}$, where $u_{1}+u_{2}+u_{3}=0$ and $v_{1}+v_{2}+v_{3}=0$. Then we need to check the following two conditions:

- Consider $\boldsymbol{u}+\boldsymbol{v}=\left(u_{1}+v_{1}, u_{2}+v_{2}, u_{3}+v_{3}\right)$. Since $\left(u_{1}+v_{1}\right)+\left(u_{2}+v_{2}\right)+$ $\left(u_{3}+v_{3}\right)=\left(u_{1}+u_{2}+u_{3}\right)+\left(v_{1}+v_{2}+v_{3}\right)=0, \boldsymbol{u}+\boldsymbol{v} \in B_{2}$.
- For any $c \in \mathcal{R}$, consider $c \boldsymbol{u}=\left(c u_{1}, c u_{2}, c u_{3}\right)$. Since $c u_{1}+c u_{2}+c u_{3}=$ $c\left(u_{1}+u_{2}+u_{3}\right)=0, c \boldsymbol{u} \in B_{2}$.
Therefore, B_{2} is a subspace of \mathcal{R}^{3}.
(c) No, this subset is not a subspace. Let $B_{3}=\left\{\left(b_{1}, b_{2}, b_{3}\right): b_{1} \leq b_{2} \leq b_{3}\right\}$. Consider $(1,2,3) \in B_{3}$. Since $(-1)(1,2,3)=(-1,-2,-3) \notin B_{3}, B_{3}$ is not a subspace of \mathcal{R}^{3}.

2. (a) Yes, $S+T$ is a subspace of V. Let $\boldsymbol{x}_{1}=\boldsymbol{s}_{1}+\boldsymbol{t}_{1} \in S+T$ and $\boldsymbol{x}_{2}=\boldsymbol{s}_{2}+\boldsymbol{t}_{2} \in$ $S+T$, where $\boldsymbol{s}_{1}, \boldsymbol{s}_{2} \in S$ and $\boldsymbol{t}_{1}, \boldsymbol{t}_{2} \in T$. We need to check the following two conditions:

- Consider $\boldsymbol{x}_{1}+\boldsymbol{x}_{2}=\left(\boldsymbol{s}_{1}+\boldsymbol{t}_{1}\right)+\left(\boldsymbol{s}_{1}+\boldsymbol{t}_{1}\right)=\left(\boldsymbol{s}_{1}+\boldsymbol{s}_{2}\right)+\left(\boldsymbol{t}_{1}+\boldsymbol{t}_{2}\right)$. Since $\boldsymbol{s}_{1}, \boldsymbol{s}_{2} \in S$ and S is a subspace, we have $\boldsymbol{s}_{1}+\boldsymbol{s}_{2} \in S$. Similarly, we have $\boldsymbol{t}_{1}+\boldsymbol{t}_{2} \in T$. Therefore, $\boldsymbol{x}_{1}+\boldsymbol{x}_{2}=\left(\boldsymbol{s}_{1}+\boldsymbol{s}_{2}\right)+\left(\boldsymbol{t}_{1}+\boldsymbol{t}_{2}\right) \in S+T$.
- For any $c \in \mathcal{R}$, consider $c \boldsymbol{x}_{1}=c \boldsymbol{s}_{1}+c \boldsymbol{t}_{1}$. Since $\boldsymbol{s}_{1} \in S, \boldsymbol{t}_{1} \in T$ and S, T are subspaces of V, we have $c s_{1} \in S$ and $c \boldsymbol{t}_{1} \in T$. Therefore, $c \boldsymbol{x}_{1}=c \boldsymbol{s}_{1}+c \boldsymbol{t}_{1} \in S+T$.
Therefore, $S+T$ is a subspace of the vector space V.
(b) No, $S \cup T$ is in general not a subspace of V. Consider $S=\{(x, 0): x \in \mathcal{R}\}$, $T=\{(0, y): y \in \mathcal{R}\}$ are two subspaces of \mathcal{R}^{2}. Take $(1,0) \in S,(0,1) \in T$, and hence $(1,0) \in S \cup T,(0,1) \in S \cup T$. Since $(1,0)+(0,1)=(1,1) \notin S \cup T$, $S \cup T$ is not a subspace.

3. (a) Reduce the matrix \boldsymbol{A} to the reduced row echelon (RRE) form:

$$
\begin{aligned}
& \boldsymbol{A}=\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{llll}
1 & 0 & -1 & 0 \\
0 & 1 & -1 & 0
\end{array}\right]=\boldsymbol{R}_{A} \\
& \Rightarrow\left\{\begin{array}{ll}
x_{1} & -x_{3}
\end{array}=0\right. \\
& +x_{2}
\end{aligned}-x_{3}=0.0 \text {. }
$$

The pivot variables are x_{1} and x_{2}, and the free variables are x_{3} and x_{4}. Setting $x_{3}=1, x_{4}=0$, we have $x_{1}=1$ and $x_{2}=1$. Setting $x_{3}=0, x_{4}=1$, we have
$x_{1}=0$ and $x_{2}=0$. Therefore, the nullspace of matrix \boldsymbol{A} can be given by

$$
\mathcal{N}(\boldsymbol{A})=\left\{\boldsymbol{x}: \boldsymbol{x}=x_{3}\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right], x_{3}, x_{4} \in \mathcal{R}\right\}
$$

(b) Reduce the matrix \boldsymbol{B} to the RRE form:

$$
\begin{aligned}
& \boldsymbol{B}=\left[\begin{array}{cccc}
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 1
\end{array}\right] \Rightarrow\left[\begin{array}{cccc}
0 & -1 & 0 & 1 \\
0 & 0 & -1 & 1
\end{array}\right] \Rightarrow\left[\begin{array}{llll}
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1
\end{array}\right]=\boldsymbol{R}_{B} \\
& \Rightarrow\left\{\begin{array}{ll}
x_{2} & -x_{4} \\
& +x_{3}
\end{array}-x_{4}=0\right.
\end{aligned}
$$

The pivot variables are x_{2} and x_{3}, and the free variables are x_{1} and x_{4}. Setting $x_{1}=1, x_{4}=0$, we have $x_{2}=0$ and $x_{3}=0$. Setting $x_{1}=0, x_{4}=1$, we have $x_{2}=1$ and $x_{3}=1$. Therefore, the nullspace of matrix \boldsymbol{B} can be given by

$$
\mathcal{N}(\boldsymbol{B})=\left\{\boldsymbol{x}: \boldsymbol{x}=x_{1}\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right], x_{1}, x_{4} \in \mathcal{R}\right\}
$$

(c) Reduce the matrix \boldsymbol{C} to the RRE form:

$$
\begin{aligned}
& \boldsymbol{C}=\left[\begin{array}{c}
\mathcal{A} \\
\mathcal{B}
\end{array}\right]=\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 1
\end{array}\right] \Rightarrow\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 1
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & -1 & 1
\end{array}\right] \Rightarrow\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]=\boldsymbol{R}_{C} \Longrightarrow\left\{\begin{array}{llllll}
x_{1} & & & -x_{4} & =0 \\
& x_{2} & & -x_{4} & =0 \\
& & x_{3} & -x_{4} & =0
\end{array}\right.
\end{aligned}
$$

The pivot variables are x_{1}, x_{2} and x_{3}, and the free variable is x_{4}. Setting $x_{4}=1$, we have $x_{1}=1, x_{2}=1$ and $x_{3}=1$. Therefore, the nullspace of matrix \boldsymbol{C} can be given by

$$
\mathcal{N}(\boldsymbol{C})=\left\{\boldsymbol{x}: \boldsymbol{x}=x_{4}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], x_{4} \in \mathcal{R}\right\}
$$

4. (a) First, we perform Gaussian elimination:

$$
\boldsymbol{A}=\left[\begin{array}{llll}
1 & 1 & 2 & 2 \\
2 & 2 & 4 & 4 \\
1 & c & 2 & 2
\end{array}\right] \Rightarrow\left[\begin{array}{cccc}
1 & 1 & 2 & 2 \\
0 & 0 & 0 & 0 \\
0 & c-1 & 0 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{cccc}
1 & 1 & 2 & 2 \\
0 & c-1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]=\boldsymbol{U}
$$

To find the pivots, we must check if $c-1=0$. There are two cases:

- If $c-1=0$, i.e., $c=1$, we have

$$
\boldsymbol{U}_{1}=\left[\begin{array}{cccc}
1 & 1 & 2 & 2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]=\boldsymbol{R}_{1}
$$

where \boldsymbol{R}_{1} is the RRE form with rank 1 .

- If $c-1 \neq 0$, i.e., $c \neq 1$, we can obtain
$\boldsymbol{U}_{2}=\left[\begin{array}{cccc}1 & 1 & 2 & 2 \\ 0 & c-1 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \Rightarrow\left[\begin{array}{cccc}1 & 0 & 2 & 2 \\ 0 & c-1 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \Rightarrow\left[\begin{array}{llll}1 & 0 & 2 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]=\boldsymbol{R}_{2}$
where \boldsymbol{R}_{2} is the RRE form with rank 2 .
(b) The matrix \boldsymbol{B} is already an upper triangular matrix. To find the pivots, we need to check if $1-d=0$ and $2-d=0$. There are three cases:
- If $1-d=0$, i.e., $d=1$, we have

$$
\boldsymbol{B}_{1}=\left[\begin{array}{ll}
0 & 2 \\
0 & 1
\end{array}\right] \Rightarrow\left[\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\boldsymbol{R}_{3}
$$

where \boldsymbol{R}_{3} is the RRE form with rank 1 .

- If $2-d=0$, i.e., $d=2$, we have

$$
\boldsymbol{B}_{2}=\left[\begin{array}{cc}
-1 & 2 \\
0 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right]=\boldsymbol{R}_{4}
$$

where \boldsymbol{R}_{4} is the RRE form with rank 1 .

- If $1-d \neq 0$ and $2-d \neq 0$, i.e., $d \neq 1$ and $d \neq 2$, we have

$$
\boldsymbol{B}_{3}=\left[\begin{array}{cc}
1-d & 2 \\
0 & 2-d
\end{array}\right] \Rightarrow\left[\begin{array}{cc}
1-d & 0 \\
0 & 2-d
\end{array}\right] \Rightarrow\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\boldsymbol{R}_{5}
$$

where \boldsymbol{R}_{5} is the RRE form with rank 2 .
5. To find the complete solution, we reduce the matrix to the RRE form:

$$
\begin{aligned}
& {\left[\begin{array}{llll|l}
2 & 4 & 6 & 4 & 4 \\
2 & 5 & 7 & 6 & 3 \\
2 & 3 & 5 & 2 & 5
\end{array}\right] \Rightarrow\left[\begin{array}{cccc|c}
2 & 4 & 6 & 4 & 4 \\
0 & 1 & 1 & 2 & -1 \\
0 & -1 & -1 & -2 & 1
\end{array}\right] \Rightarrow\left[\begin{array}{llll|c}
2 & 4 & 6 & 4 & 4 \\
0 & 1 & 1 & 2 & -1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]} \\
& \Rightarrow\left[\begin{array}{llll|l}
2 & 0 & 2 & -4 & 8 \\
0 & 1 & 1 & 2 & -1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{cccc|c}
1 & 0 & 1 & -2 & 4 \\
0 & 1 & 1 & 2 & -1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \Rightarrow \begin{cases}x_{1} & +x_{3}-2 x_{4}=4 \\
r & x_{2}+x_{3}+2 x_{4}=-1\end{cases}
\end{aligned}
$$

Thus, the pivot variables are x_{1} and x_{2}, and the free variables are x_{3} and x_{4}. Setting $x_{3}=0$ and $x_{4}=0$, we can obtain $x_{1}=4$ and $x_{2}=-1$. Therefore, a particular solution can be given by

$$
\boldsymbol{x}_{p}=\left[\begin{array}{c}
4 \\
-1 \\
0 \\
0
\end{array}\right]
$$

To find the general soultion \boldsymbol{x}_{n}, we let

$$
\left\{\begin{aligned}
x_{1} & +x_{3}-2 x_{4}=0 \\
& x_{2}+x_{3}+2 x_{4}=0
\end{aligned}\right.
$$

Setting $x_{3}=1, x_{4}=0$, we have $x_{1}=-1, x_{2}=-1$. Setting $x_{3}=0, x_{4}=1$, we have $x_{1}=2, x_{2}=-2$. Therefore, the general solution \boldsymbol{x}_{n} is

$$
\boldsymbol{x}_{n}=x_{3}\left[\begin{array}{c}
-1 \\
-1 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
2 \\
-2 \\
0 \\
1
\end{array}\right] .
$$

As a result, the complete solution to this problem is

$$
\boldsymbol{x}=\boldsymbol{x}_{p}+\boldsymbol{x}_{n}=\left[\begin{array}{c}
4 \\
-1 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-1 \\
-1 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
2 \\
-2 \\
0 \\
1
\end{array}\right]
$$

6. (a) Since \boldsymbol{x} is a 2 by 1 vector and $\boldsymbol{A} \boldsymbol{x}$ is a 2 by 1 vector, \boldsymbol{A} is a 2 by 2 matrix. Since $\boldsymbol{A} \boldsymbol{x}=\mathbf{0}$ has one special solution, we know that the rank of $\boldsymbol{A}=2-1=1$. Let

$$
\boldsymbol{A}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

Since $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ is a special solution to $\boldsymbol{A} \boldsymbol{x}=\mathbf{0}$, we have

$$
\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Longrightarrow\left[\begin{array}{l}
a_{12} \\
a_{22}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

which gives $\boldsymbol{A}=\left[\begin{array}{ll}a_{11} & 0 \\ a_{21} & 0\end{array}\right]$. By applying the particular solution to $\boldsymbol{A} \boldsymbol{x}=$ $\left[\begin{array}{l}1 \\ 3\end{array}\right]$, we can obtain

$$
\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{ll}
a_{11} & 0 \\
a_{21} & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
3
\end{array}\right] \Longrightarrow\left[\begin{array}{l}
a_{11} \\
a_{21}
\end{array}\right]=\left[\begin{array}{l}
1 \\
3
\end{array}\right] .
$$

Therefore, we find the matrix $\boldsymbol{A}=\left[\begin{array}{ll}1 & 0 \\ 3 & 0\end{array}\right]$, which is clearly with rank 1 .
(b) Since \boldsymbol{x} is a 3 by 1 vector and $\boldsymbol{B} \boldsymbol{x}$ is a 2 by 1 vector, \boldsymbol{B} is a 2 by 3 matrix. Hence the rank r of \boldsymbol{B} is at most 2. We discuss the following two cases:

- If $r=2$, i.e., \boldsymbol{B} has full row rank, $\boldsymbol{B} \boldsymbol{x}=\boldsymbol{b}$ always has infinite solutions.
- If $r<2, \boldsymbol{B} \boldsymbol{x}=\boldsymbol{b}$ has 0 or infinite solutions.

Therefore, we cannot find a matrix \boldsymbol{B} with only one solution to $\boldsymbol{B} \boldsymbol{x}=\boldsymbol{b}$.
7. Yes, they are linearly independent. Consider the following equation:

$$
\begin{aligned}
& b_{1}\left(2 \boldsymbol{w}_{1}+\boldsymbol{w}_{2}+\boldsymbol{w}_{3}\right)+b_{2}\left(\boldsymbol{w}_{1}+2 \boldsymbol{w}_{2}+\boldsymbol{w}_{3}\right)+b_{3}\left(\boldsymbol{w}_{1}+\boldsymbol{w}_{2}+2 \boldsymbol{w}_{3}\right)=0 \\
& \Rightarrow\left(2 b_{1}+b_{2}+b_{3}\right) \boldsymbol{w}_{1}+\left(b_{1}+2 b_{2}+b_{3}\right) \boldsymbol{w}_{2}+\left(b_{1}+b_{2}+2 b_{3}\right) \boldsymbol{w}_{3}=0
\end{aligned}
$$

Since $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \boldsymbol{w}_{3}$ are linearly independent, we know the only solution to the above equation is

$$
\left\{\begin{array}{c}
2 b_{1}+b_{2}+b_{3}=0 \\
b_{1}+2 b_{2}+b_{3}=0 \\
b_{1}+b_{2}+2 b_{3}=0
\end{array}\right.
$$

Since the matrix $\left[\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right]$ is invertible, we have $b_{1}=b_{2}=b_{3}=0$. Therefore, $2 \boldsymbol{w}_{1}+\boldsymbol{w}_{2}+\boldsymbol{w}_{3}, \boldsymbol{w}_{1}+2 \boldsymbol{w}_{2}+\boldsymbol{w}_{3}, \boldsymbol{w}_{1}+\boldsymbol{w}_{2}+2 \boldsymbol{w}_{3}$ are linearly independent.
8. (a) Take a matrix $\boldsymbol{m} \in M$. Since all the column sums are zero, we can assume

$$
\boldsymbol{m}=\left[\begin{array}{ccc}
a & b & c \\
-a & -b & -c
\end{array}\right]
$$

where $a, b, c \in \mathcal{R}$. Then we have

$$
\begin{aligned}
\boldsymbol{m} & =\left[\begin{array}{ccc}
a & 0 & 0 \\
-a & 0 & 0
\end{array}\right]+\left[\begin{array}{ccc}
0 & b & 0 \\
0 & -b & 0
\end{array}\right]+\left[\begin{array}{ccc}
0 & 0 & c \\
0 & 0 & -c
\end{array}\right] \\
& =a\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right]+b\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & -1 & 0
\end{array}\right]+c\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & -1
\end{array}\right] .
\end{aligned}
$$

Thus, $\left[\begin{array}{ccc}1 & 0 & 0 \\ -1 & 0 & 0\end{array}\right],\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & -1 & 0\end{array}\right],\left[\begin{array}{ccc}0 & 0 & 1 \\ 0 & 0 & -1\end{array}\right]$ span the vector space M. Consider

$$
\begin{aligned}
& x\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right]+y\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & -1 & 0
\end{array}\right]+z\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & -1
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{ccc}
x & y & z \\
-x & -y & -z
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

Then we have $x=y=z=0$, and hence $\left[\begin{array}{ccc}1 & 0 & 0 \\ -1 & 0 & 0\end{array}\right],\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & -1 & 0\end{array}\right]$, $\left[\begin{array}{ccc}0 & 0 & 1 \\ 0 & 0 & -1\end{array}\right]$ are linearly independent. As a result, $\left[\begin{array}{ccc}1 & 0 & 0 \\ -1 & 0 & 0\end{array}\right],\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & -1 & 0\end{array}\right]$,
$\left[\begin{array}{ccc}0 & 0 & 1 \\ 0 & 0 & -1\end{array}\right]$ are a basis for M.
(b) Assume N is the subspace of M whose columns and rows both add to zero. Let $\boldsymbol{n} \in N$. By the property of N, we can assume

$$
\boldsymbol{n}=\left[\begin{array}{ccc}
a & b & -a-b \\
-a & -b & a+b
\end{array}\right]
$$

where $a, b \in \mathcal{R}$. Then we have

$$
\begin{aligned}
\boldsymbol{n} & =\left[\begin{array}{ccc}
a & 0 & -a \\
-a & 0 & a
\end{array}\right]+\left[\begin{array}{ccc}
0 & b & -b \\
0 & -b & b
\end{array}\right] \\
& =a\left[\begin{array}{ccc}
1 & 0 & -1 \\
-1 & 0 & 1
\end{array}\right]+b\left[\begin{array}{ccc}
0 & 1 & -1 \\
0 & -1 & 1
\end{array}\right] .
\end{aligned}
$$

Thus, $\left[\begin{array}{ccc}1 & 0 & -1 \\ -1 & 0 & 1\end{array}\right],\left[\begin{array}{ccc}0 & 1 & -1 \\ 0 & -1 & 1\end{array}\right]$ span the subspace N. Consider

$$
\begin{aligned}
& h\left[\begin{array}{ccc}
1 & 0 & -1 \\
-1 & 0 & 1
\end{array}\right]+k\left[\begin{array}{ccc}
0 & 1 & -1 \\
0 & -1 & 1
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{ccc}
h & k & -h-k \\
-h & -k & h+k
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

Then we have $h=k=0$, and hence $\left[\begin{array}{ccc}1 & 0 & -1 \\ -1 & 0 & 1\end{array}\right],\left[\begin{array}{ccc}0 & 1 & -1 \\ 0 & -1 & 1\end{array}\right]$ are linearly independent. As a result, $\left[\begin{array}{ccc}1 & 0 & -1 \\ -1 & 0 & 1\end{array}\right],\left[\begin{array}{ccc}0 & 1 & -1 \\ 0 & -1 & 1\end{array}\right]$ are a basis for N.

