Homework Assignment No. 2
 Due 10:10am, March 30, 2011

Reading: Strang, Sections 3.1-3.5.
Problems for Solution:

1. Is each of the following subsets of \mathcal{R}^{3} actually a subspace? If yes, prove it. Otherwise, find a counterexample.
(a) All vectors $\left(b_{1}, b_{2}, b_{3}\right)$ with $b_{1} b_{2} b_{3}=0$.
(b) All vectors $\left(b_{1}, b_{2}, b_{3}\right)$ satisfy $b_{1}+b_{2}+b_{3}=0$.
(c) All vectors $\left(b_{1}, b_{2}, b_{3}\right)$ with $b_{1} \leq b_{2} \leq b_{3}$.
2. Suppose S and T are two subspaces of a vector space V. The sum $S+T$ contains all sums $\boldsymbol{s}+\boldsymbol{t}$ of a vector \boldsymbol{s} in S and a vector \boldsymbol{t} in T, i.e.,

$$
S+T=\{\boldsymbol{s}+\boldsymbol{t}: \boldsymbol{s} \in S, \boldsymbol{t} \in T\} .
$$

The union $S \cup T$ contains all vectors from S or T or both, i.e.,

$$
S \cup T=\{\boldsymbol{v}: \boldsymbol{v} \in S \text { or } \boldsymbol{v} \in T\} .
$$

Determine if each of the following statements is true. If it is, prove it. Otherwise, find a counterexample.
(a) $S+T$ is a subspace of V.
(b) $S \cup T$ is a subspace of V.
3. Suppose

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0
\end{array}\right], \quad \boldsymbol{B}=\left[\begin{array}{cccc}
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 1
\end{array}\right], \quad \boldsymbol{C}=\left[\begin{array}{c}
\boldsymbol{A} \\
\boldsymbol{B}
\end{array}\right] .
$$

Find nullspaces $\mathcal{N}(\boldsymbol{A}), \mathcal{N}(\boldsymbol{B}), \mathcal{N}(\boldsymbol{C})$.
4. Find the reduced row echelon form and the rank of \boldsymbol{A} and \boldsymbol{B} :

$$
\boldsymbol{A}=\left[\begin{array}{llll}
1 & 1 & 2 & 2 \\
2 & 2 & 4 & 4 \\
1 & c & 2 & 2
\end{array}\right] \quad \text { and } \quad \boldsymbol{B}=\left[\begin{array}{cc}
1-d & 2 \\
0 & 2-d
\end{array}\right]
$$

(Hint: The answers depend on c and d.)
5. Find the complete solution to

$$
\left[\begin{array}{llll}
2 & 4 & 6 & 4 \\
2 & 5 & 7 & 6 \\
2 & 3 & 5 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
4 \\
3 \\
5
\end{array}\right] .
$$

6. Find matrices \boldsymbol{A} and \boldsymbol{B} with the given property or explain why you cannot:
(a) The complete solution to $\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$ is $\boldsymbol{x}=\left[\begin{array}{l}1 \\ 0\end{array}\right]+c\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
(b) The only solution to $\boldsymbol{B} \boldsymbol{x}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ is $\boldsymbol{x}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$.
7. If $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \boldsymbol{w}_{3}$ are independent vectors, are the vectors $2 \boldsymbol{w}_{1}+\boldsymbol{w}_{2}+\boldsymbol{w}_{3}, \boldsymbol{w}_{1}+2 \boldsymbol{w}_{2}+\boldsymbol{w}_{3}$, $\boldsymbol{w}_{1}+\boldsymbol{w}_{2}+2 \boldsymbol{w}_{3}$ also independent? You need to justify your answer.
8. (a) Find a basis for the vector space M of all 2 by 3 real matrices whose columns add to zero.
(b) Find a basis for the subspace of M whose rows also add to zero.
