
EE 2030 Linear Algebra Spring 2011

Solution to Homework Assignment No. 1

1. (a) Perform elimination as follows: 1 2 1 3
3 −1 −3 −1
2 3 1 4

 =⇒

 1 2 1 3
0 −7 −6 −10
0 −1 −1 −2

 (subtract 3 × row 1)
(subtract 2 × row 1)

=⇒

 1 2 1 3
0 −7 −6 −10
0 0 −1

7
−4

7


(subtract 1/7 × row 2)

This system is equivalent to 1 2 1
0 −7 −6
0 0 −1

7

 x
y
z

 =

 3
−10
−4

7

 .

Then we can solve the equations by back substitution as
x+ 2y + z = 3
−7y − 6z = −10
−1

7
z = −4

7

⇒


x = 3− 2y − z
−7y = −10 + 6z
z = 4

⇒


x = 3
y = −2
z = 4.

The pivots are 1, −7, and −1/7, and the solution is (x, y, z) = (3,−2, 4).

(b) Perform elimination as follows:
0 −1 −1 1 0
1 1 1 1 6
2 4 1 −2 −1
3 1 −2 2 3

 =⇒


1 1 1 1 6
0 −1 −1 1 0
2 4 1 −2 −1
3 1 −2 2 3


(exchange row 1 and 2)

=⇒


1 1 1 1 6
0 −1 −1 1 0
0 2 −1 −4 −13
0 −2 −5 −1 −15

 (subtract 2 × row 1)
(subtract 3 × row 1)

=⇒


1 1 1 1 6
0 −1 −1 1 0
0 0 −3 −2 −13
0 0 −3 −3 −15

 (add 2 × row 2)
(subtract 2 × row 2)

=⇒


1 1 1 1 6
0 −1 −1 1 0
0 0 −3 −2 −13
0 0 0 −1 −2


(subtract row 3)



This system is equivalent to
1 1 1 1
0 −1 −1 1
0 0 −3 −2
0 0 0 −1




x
y
z
t

 =


6
0

−13
−2

 .

Then we can solve the equations by back substitution as
x+ y + z + t = 6
−y − z + t = 0
−3z − 2t = −13
−t = −2

⇒


x = 6− y − z − t
−y = z − t
−3z = −13 + 2t
t = 2

⇒


x = 2
y = −1
z = 3
t = 2.

The pivots are 1, −1, −3, and−1, and the solution is (x, y, z, t) = (2,−1, 3, 2).

2. Perform elimination as follows:
2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

 E21=⇒


2 −1 0 0
0 3

2
−1 0

0 −1 2 −1
0 0 −1 2

 (add 1/2 × row 1)

E32=⇒


2 −1 0 0
0 3

2
−1 0

0 0 4
3

−1
0 0 −1 2

 (add 2/3 × row 2)

E43=⇒


2 −1 0 0
0 3

2
−1 0

0 0 4
3

−1
0 0 0 5

4


(add 3/4 × row 3)

This process can be expressed by
1 0 0 0
0 1 0 0
0 0 1 0
0 0 3

4
1




1 0 0 0
0 1 0 0
0 2

3
1 0

0 0 0 1




1 0 0 0
1
2

1 0 0
0 0 1 0
0 0 0 1




2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

 =


2 −1 0 0
0 3

2
−1 0

0 0 4
3

−1
0 0 0 5

4

 .

Therefore, we have

E43 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 3

4
1

 , E32 =


1 0 0 0
0 1 0 0
0 2

3
1 0

0 0 0 1

 , and E21 =


1 0 0 0
1
2

1 0 0
0 0 1 0
0 0 0 1

 .
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Applying these three elimination steps to the identity matrix I yields

I =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 E21=⇒


1 0 0 0
1
2

1 0 0
0 0 1 0
0 0 0 1


E32=⇒


1 0 0 0
1
2

1 0 0
1
3

2
3

1 0
0 0 0 1


E43=⇒


1 0 0 0
1
2

1 0 0
1
3

2
3

1 0
1
4

1
2

3
4

1

 = E43E32E21.

3. (a) Using the Gauss-Jordan method, we can have

[
A I

]
=

 1 −2 1 1 0 0
2 −1 −1 0 1 0
−2 −5 7 0 0 1


=⇒

 1 −2 1 1 0 0
0 3 −3 −2 1 0
0 −9 9 2 0 1


=⇒

 1 −2 1 1 0 0
0 3 −3 −2 1 0
0 0 0 −4 3 1

 .

Since we cannot obtain three nonzero pivots, A−1 does not exist.
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(b) Using the Gauss-Jordan method, we can have

[
B I

]
=


1 1 0 −1 1 0 0 0
0 1 1 2 0 1 0 0
2 1 0 −3 0 0 1 0
−1 −1 1 1 0 0 0 1



=⇒


1 1 0 −1 1 0 0 0
0 1 1 2 0 1 0 0
0 −1 0 −1 −2 0 1 0
0 0 1 0 1 0 0 1



=⇒


1 1 0 −1 1 0 0 0
0 1 1 2 0 1 0 0
0 0 1 1 −2 1 1 0
0 0 1 0 1 0 0 1



=⇒


1 1 0 −1 1 0 0 0
0 1 1 2 0 1 0 0
0 0 1 1 −2 1 1 0
0 0 0 −1 3 −1 −1 1



=⇒


1 1 0 0 −2 1 1 −1
0 1 1 0 6 −1 −2 2
0 0 1 0 1 0 0 1
0 0 0 −1 3 −1 −1 1



=⇒


1 1 0 0 −2 1 1 −1
0 1 0 0 5 −1 −2 1
0 0 1 0 1 0 0 1
0 0 0 −1 3 −1 −1 1



=⇒


1 0 0 0 −7 2 3 −2
0 1 0 0 5 −1 −2 1
0 0 1 0 1 0 0 1
0 0 0 −1 3 −1 −1 1



=⇒


1 0 0 0 −7 2 3 −2
0 1 0 0 5 −1 −2 1
0 0 1 0 1 0 0 1
0 0 0 1 −3 1 1 −1

 =
[
I B−1

]
.

The inverse is hence

B−1 =


−7 2 3 −2
5 −1 −2 1
1 0 0 1
−3 1 1 −1

 .
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4. Performing elimination, we can have

A =


a a a a
a b b b
a b c c
a b c d

 E1=⇒


a a a a
0 b− a b− a b− a
0 b− a c− a c− a
0 b− a c− a d− a

 (subtract row 1)
(subtract row 1)
(subtract row 1)

E2=⇒


a a a a
0 b− a b− a b− a
0 0 c− b c− b
0 0 c− b d− b

 (subtract row 2)
(subtract row 2)

E3=⇒


a a a a
0 b− a b− a b− a
0 0 c− b c− b
0 0 0 d− c

 = U .

(subtract row 3)

This procedure can be viewed as

E3E2E1A = U

where

E1 =


1 0 0 0
−1 1 0 0
−1 0 1 0
−1 0 0 1

 , E2 =


1 0 0 0
0 1 0 0
0 −1 1 0
0 −1 0 1

 , and E3 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1 1

 .

Recording the elimination steps and changing the signs of the off-diagonal elements,
we can have

L = E−1
1 E−1

2 E−1
3 =


1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

 .

We can therefore obtain A = LU as
a a a a
a b b b
a b c c
a b c d

 =


1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1




a a a a
0 b− a b− a b− a
0 0 c− b c− b
0 0 0 d− c


For A to have four pivots, the four conditions are:

a ̸= 0, a ̸= b, b ̸= c, and c ̸= d.

5. (a) Performing elimination, we can have

A =

 1 3 5
3 12 18
5 18 30

 E21=⇒

 1 3 5
0 3 3
5 18 30

 E31=⇒

 1 3 5
0 3 3
0 3 5

 E32=⇒

 1 3 5
0 3 3
0 0 2

 = U .
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This procedure can be viewed as

E32E31E21A = U

where

E21 =

 1 0 0
−3 1 0
0 0 1

 , E31 =

 1 0 0
0 1 0
−5 0 1

 , and E32 =

 1 0 0
0 1 0
0 −1 1

 .

Recording the elimination steps and changing the signs of the off-diagonal
elements, we can have

L = E−1
21 E

−1
31 E

−1
32 =

 1 0 0
3 1 0
5 1 1

 .

We also find that U = DLT where

D =

 1 0 0
0 3 0
0 0 2

 .

We can therefore obtain A = LDLT as 1 3 5
3 12 18
5 18 30

 =

 1 0 0
3 1 0
5 1 1

 1 0 0
0 3 0
0 0 2

 1 3 5
0 1 1
0 0 1

 .

(b) Performing elimination, we can have

A =

[
a b
b d

]
E21=⇒

[
a b

0 d− b2

a

]
= U .

This procedure can be viewed as

E21A = U

where

E21 =

[
1 0
− b

a
1

]
.

We can have

L = E−1
21 =

[
1 0
b
a

1

]
.

We also find that U = DLT where

D =

[
a 0

0 d− b2

a

]
.

We can therefore obtain A = LDLT as

A =

[
a b
b d

]
=

[
1 0
b
a

1

] [
a 0

0 d− b2

a

] [
1 b

a

0 1

]
.
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6. (a) (Lower triangular case)
Suppose L is an n × n lower triangular matrix with unit diagonal. We can
use the Gauss-Jordan method to check if it has a full set of n pivots, which
implies the matrix is invertible. We only need to do the Gaussian part. It
means that the required operations are only to subtract the ith row from the
jth row for i < j. Therefore, we can have

[
L I

]
=


1 0 · · · 0 1 0 · · · 0

l2,1 1
. . .

... 0 1
. . .

...
...

. . . . . . 0
...

. . . . . . 0
ln,1 · · · ln,n−1 1 0 · · · 0 1



=⇒


1 0 · · · 0 1 0 · · · 0

0 1
. . .

... l′2,1 1
. . .

...
...

. . . . . . 0
...

. . . . . . 0
0 · · · 0 1 l′n,1 · · · l′n,n−1 1

 =
[
I L−1

]
.

Because the matrix has a unit diagonal, it has n pivots and L−1 is lower tri-
angular with unit diagonal. The upper triangular case can be proved similarly.

(b) (Lower triangular case)
Suppose A and B are two n×n lower triangular matrices with unit diagonal.
We have Ai,j = 0 if i < j and Ai,j = 1 if i = j, and Bi,j = 0 if i < j and
Bi,j = 1 if i = j. For 1 ≤ i < j ≤ n, we have

(AB)i,j =
n∑

k=1

Ai,kBk,j

=

j−1∑
k=1

Ai,kBk,j +
n∑

k=j

Ai,kBk,j

= 0 + 0 (Bk,j = 0 when k < j, and Ai,k = 0 when i < j ≤ k.)

= 0.

Therefore, AB is lower triangular. For 1 ≤ i = j ≤ n, we have

(AB)i,i =
n∑

k=1

Ai,kBk,i

=
i−1∑
k=1

Ai,kBk,i + Ai,iBi,i +
n∑

k=i+1

Ai,kBk,i

= 0 + 1 · 1 + 0 (Bk,i = 0 when k < i, Ai,i = Bi,i = 1, and Ai,k = 0 when i < k)

= 1.

Therefore, AB has a unit diagonal. We can conclude that AB is also lower
triangular with unit diagonal. The upper triangular case can be proved sim-
ilarly.
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(c) (Lower triangular case)
Let L be an n× n lower triangular matrix and D be a diagonal matrix with
diagonal elements d1, d2,..., dn. We can have

LD =


l1,1 0 · · · 0

l2,1 l2,2
. . .

...
...

. . . . . . 0
ln,1 · · · ln,n−1 ln,n




d1 0 · · · 0

0 d2
. . .

...
...

. . . . . . 0
0 · · · 0 dn



=


d1l1,1 0 · · · 0

d1l2,1 d2l2,2
. . .

...
...

. . . . . . 0
d1ln,1 · · · dn−1ln,n−1 dnln,n


and

DL =


d1 0 · · · 0

0 d2
. . .

...
...

. . . . . . 0
0 · · · 0 dn




l1,1 0 · · · 0

l2,1 l2,2
. . .

...
...

. . . . . . 0
ln,1 · · · ln,n−1 ln,n



=


d1l1,1 0 · · · 0

d2l2,1 d2l2,2
. . .

...
...

. . . . . . 0
dnln,1 · · · dnln,n−1 dnln,n

 .

Therefore, the product of a lower triangular matrix and a diagonal matrix
is still a lower triangular matrix. The upper triangular case can be proved
similarly.

7. (a) (i) By 6.(a), L−1
1 and U−1

2 both exist. Given A = L1D1U 1 and A =
L2D2U 2, we can have

L2D2U 2 = L1D1U 1

=⇒ L−1
1 (L2D2U 2)U

−1
2 = L−1

1 (L1D1U 1)U
−1
2

=⇒ L−1
1 L2D2 = D1U 1U

−1
2 .

(ii) By 6.(a), L−1
1 is lower triangular with unit diagonal. By 6.(b), L−1

1 L2

is lower triangular with unit diagonal. Therefore, by 6.(c), L−1
1 L2D2 is

lower triangular. Similarly, D1U 1U
−1
2 is upper triangular.

(b) Let M = L−1
1 L2D2 = D1U 1U

−1
2 . Then M is both lower and upper trian-

gular, which implies that M is a diagonal matrix.

(i) SinceU 1U
−1
2 has a unit diagonal, M = D1U 1U

−1
2 has the same diagonal

as D1. It implies that M = D1. Similarly, we can have M = D2.
Therefore, D1 = D2.

(ii) For M = L−1
1 L2D2 = D2, we have L

−1
1 L2 = I. Since the inverse matrix

is unique, we have L2 = (L−1
1 )−1 = L1.
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(iii) Similarly, for M = D1U 1U
−1
2 = D1, we have U 1U

−1
2 = I. It then

implies that U 1 = (U−1
2 )−1 = U 2.

8. First do row exchange as

A =

 0 1 2
0 3 8
2 1 1

 P 31=⇒

 2 1 1
0 3 8
0 1 2

 = PA

and then perform elimination as 2 1 1
0 3 8
0 1 2

 E32=⇒

 2 1 1
0 3 8
0 0 −2

3

 = U .

Then we have
E32(PA) = U

where

P =

 0 0 1
0 1 0
1 0 0

 , and E32 =

 1 0 0
0 1 0
0 −1

3
1

 .

We can have

L = E−1
32 =

 1 0 0
0 1 0
0 1

3
1

 .

The factorization PA = LU is hence given by 0 0 1
0 1 0
1 0 0

 0 1 2
0 3 8
2 1 1

 =

 1 0 0
0 1 0
0 1

3
1

 2 1 1
0 3 8
0 0 −2

3

 .

In order to factor A into A = L1P 1U 1, we first perform elimination as

A =

 0 1 2
0 3 8
2 1 1

 E21=⇒

 0 1 2
0 0 2
2 1 1


and then do row exchange as 0 1 2

0 0 2
2 1 1

 P 32=⇒

 0 1 2
2 1 1
0 0 2

 P 21=⇒

 2 1 1
0 1 2
0 0 2

 = U1.

Therefore,
U1 = P 21P 32E21A

where

P 21 =

 0 1 0
1 0 0
0 0 1

 , P 32 =

 1 0 0
0 0 1
0 1 0

 , and E21 =

 1 0 0
−3 1 0
0 0 1

 .
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Multiplying E−1
21 P

−1
32 P

−1
21 from the left to both sides, we can have

A = E−1
21 P

−1
32 P

−1
21 U 1 = L1P 1U 1

where

P 1 = P−1
32 P

−1
21 =

 1 0 0
0 0 1
0 1 0

 0 1 0
1 0 0
0 0 1

 =

 0 1 0
0 0 1
1 0 0


and

L1 = E−1
21 =

 1 0 0
3 1 0
0 0 1

 .

The factorization A = L1P 1U 1 is hence given by 0 1 2
0 3 8
2 1 1

 =

 1 0 0
3 1 0
0 0 1

 0 1 0
0 0 1
1 0 0

 2 1 1
0 1 2
0 0 2

 .
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