Solution to Homework Assignment No. 1

1. (a) Perform elimination as follows:

$$
\begin{aligned}
{\left[\begin{array}{ccc|c}
1 & 2 & 1 & 3 \\
3 & -1 & -3 & -1 \\
2 & 3 & 1 & 4
\end{array}\right] } & \Longrightarrow\left[\begin{array}{ccc|c}
1 & 2 & 1 & 3 \\
0 & -7 & -6 & -10 \\
0 & -1 & -1 & -2
\end{array}\right] \begin{array}{c}
\\
(\text { subtract } 3 \times \text { row } 1) \\
(\text { subtract } 2 \times \text { row } 1)
\end{array} \\
& \Longrightarrow\left[\begin{array}{ccc|c}
1 & 2 & 1 & 3 \\
0 & -7 & -6 & -10 \\
0 & 0 & -\frac{1}{7} & -\frac{4}{7}
\end{array}\right]
\end{aligned}
$$

This system is equivalent to

$$
\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & -7 & -6 \\
0 & 0 & -\frac{1}{7}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
3 \\
-10 \\
-\frac{4}{7}
\end{array}\right] .
$$

Then we can solve the equations by back substitution as

$$
\left\{\begin{array} { l }
{ x + 2 y + z = 3 } \\
{ - 7 y - 6 z = - 1 0 } \\
{ - \frac { 1 } { 7 } z = - \frac { 4 } { 7 } }
\end{array} \Rightarrow \left\{\begin{array} { l }
{ x = 3 - 2 y - z } \\
{ - 7 y = - 1 0 + 6 z } \\
{ z = 4 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x=3 \\
y=-2 \\
z=4
\end{array}\right.\right.\right.
$$

The pivots are $1,-7$, and $-1 / 7$, and the solution is $(x, y, z)=(3,-2,4)$.
(b) Perform elimination as follows:

$$
\left.\left.\begin{array}{rl}
{\left[\begin{array}{cccc|c}
0 & -1 & -1 & 1 & 0 \\
1 & 1 & 1 & 1 & 6 \\
2 & 4 & 1 & -2 & -1 \\
3 & 1 & -2 & 2 & 3
\end{array}\right]} & \Longrightarrow\left[\begin{array}{cccc|c}
1 & 1 & 1 & 1 & 6 \\
0 & -1 & -1 & 1 & 0 \\
2 & 4 & 1 & -2 & -1 \\
3 & 1 & -2 & 2 & 3
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{cccc|c}
1 & 1 & 1 & 1 & 6 \\
0 & -1 & -1 & 1 & 0 \\
0 & 2 & -1 & -4 & -13 \\
0 & -2 & -5 & -1 & -15
\end{array}\right] \begin{array}{l}
\text { (exchange row } 1 \text { and 2) } \\
\text { (subtract } 2 \times \text { row } 1) \\
\\
\end{array} \\
& \Longrightarrow\left[\begin{array}{cccc|c}
1 & 1 & 1 & 1 & 6 \\
0 & -1 & -1 & 1 & 0 \\
0 & 0 & -3 & -2 & -13 \\
0 & 0 & -3 & -3 & -15
\end{array}\right] \begin{array}{l}
\text { (add } 2 \times \text { row } 2) \\
\text { (subtract } 2 \times \text { row } 2)
\end{array} \\
& \Longrightarrow\left[\left.\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & -1 & -1 & 1 \\
0 & 0 & -3 & -2 \\
0 & 0 & 0 & -1
\end{array} \right\rvert\,-13\right.
\end{array}\right] \text { (subtract row } 3\right)
$$

This system is equivalent to

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & -1 & -1 & 1 \\
0 & 0 & -3 & -2 \\
0 & 0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
t
\end{array}\right]=\left[\begin{array}{c}
6 \\
0 \\
-13 \\
-2
\end{array}\right] .
$$

Then we can solve the equations by back substitution as

$$
\left\{\begin{array} { l }
{ x + y + z + t = 6 } \\
{ - y - z + t = 0 } \\
{ - 3 z - 2 t = - 1 3 } \\
{ - t = - 2 }
\end{array} \Rightarrow \left\{\begin{array} { l }
{ x = 6 - y - z - t } \\
{ - y = z - t } \\
{ - 3 z = - 1 3 + 2 t } \\
{ t = 2 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x=2 \\
y=-1 \\
z=3 \\
t=2
\end{array}\right.\right.\right.
$$

The pivots are $1,-1,-3$, and -1 , and the solution is $(x, y, z, t)=(2,-1,3,2)$.
2. Perform elimination as follows:

$$
\begin{aligned}
{\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right] } & \stackrel{\boldsymbol{E}_{21}}{\Longrightarrow}\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
0 & \frac{3}{2} & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right] \\
& \stackrel{\boldsymbol{E}_{32}}{\Longrightarrow}\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
0 & \frac{3}{2} & -1 & 0 \\
0 & 0 & \frac{4}{3} & -1 \\
0 & 0 & -1 & 2
\end{array}\right](\text { add } 1 / 2 \times \text { row } 1) \\
& \xrightarrow{\boldsymbol{E}_{43}}\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
0 & \frac{3}{2} & -1 & 0 \\
0 & 0 & \frac{4}{3} & -1 \\
0 & 0 & 0 & \frac{5}{4}
\end{array}\right](\text { add } 3 / 4 \times \text { row } 3)
\end{aligned}
$$

This process can be expressed by

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & \frac{3}{4} & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & \frac{2}{3} & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
\frac{1}{2} & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right]=\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
0 & \frac{3}{2} & -1 & 0 \\
0 & 0 & \frac{4}{3} & -1 \\
0 & 0 & 0 & \frac{5}{4}
\end{array}\right] .
$$

Therefore, we have

$$
\boldsymbol{E}_{43}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & \frac{3}{4} & 1
\end{array}\right], \boldsymbol{E}_{32}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & \frac{2}{3} & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \text {, and } \boldsymbol{E}_{21}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\frac{1}{2} & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

Applying these three elimination steps to the identity matrix \boldsymbol{I} yields

$$
\begin{aligned}
\boldsymbol{I}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] & \xrightarrow{\boldsymbol{E}_{21}}\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\frac{1}{2} & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \xrightarrow{\boldsymbol{E}_{32}}\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
\frac{1}{2} & 1 & 0 & 0 \\
\frac{1}{3} & \frac{2}{3} & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \xrightarrow{\boldsymbol{E}_{43}}\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
\frac{1}{2} & 1 & 0 & 0 \\
\frac{1}{3} & \frac{2}{3} & 1 & 0 \\
\frac{1}{4} & \frac{1}{2} & \frac{3}{4} & 1
\end{array}\right]=\boldsymbol{E}_{43} \boldsymbol{E}_{32} \boldsymbol{E}_{21} .
\end{aligned}
$$

3. (a) Using the Gauss-Jordan method, we can have

$$
\begin{aligned}
{\left[\begin{array}{l|l}
\boldsymbol{A} & \boldsymbol{I}
\end{array}\right] } & =\left[\begin{array}{ccc|ccc}
1 & -2 & 1 & 1 & 0 & 0 \\
2 & -1 & -1 & 0 & 1 & 0 \\
-2 & -5 & 7 & 0 & 0 & 1
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{ccc|ccc}
1 & -2 & 1 & 1 & 0 & 0 \\
0 & 3 & -3 & -2 & 1 & 0 \\
0 & -9 & 9 & 2 & 0 & 1
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{ccc|ccc}
1 & -2 & 1 & 1 & 0 & 0 \\
0 & 3 & -3 & -2 & 1 & 0 \\
0 & 0 & 0 & -4 & 3 & 1
\end{array}\right] .
\end{aligned}
$$

Since we cannot obtain three nonzero pivots, \boldsymbol{A}^{-1} does not exist.
(b) Using the Gauss-Jordan method, we can have

$$
\begin{aligned}
{[\boldsymbol{B} \mid \boldsymbol{I}] } & =\left[\begin{array}{cccc|cccc}
1 & 1 & 0 & -1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 2 & 0 & 1 & 0 & 0 \\
2 & 1 & 0 & -3 & 0 & 0 & 1 & 0 \\
-1 & -1 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{cccc|cccc}
1 & 1 & 0 & -1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 2 & 0 & 1 & 0 & 0 \\
0 & -1 & 0 & -1 & -2 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{cccc|ccc}
1 & 1 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 \\
0 & 1 & 1 & 2 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & -2 & 1 & 1 \\
0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 \\
1
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{llll|llll}
1 & 1 & 0 & -1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 2 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & -2 & 1 & 1 & 0 \\
0 & 0 & 0 & -1 & 3 & -1 & -1 & 1
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{llll|llll}
1 & 1 & 0 & 0 & -2 & 1 & 1 & -1 \\
0 & 1 & 1 & 0 & 6 & -1 & -2 & 2 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & -1 & 3 & -1 & -1 & 1
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{llll|lll}
1 & 1 & 0 & 0 & -2 & 1 & 1 \\
0 & -1 \\
0 & 1 & 0 & 0 & 5 & -1 & -2 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 & 3 & -1 & -1 \\
1
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{llll|lll}
1 & 0 & 0 & 0 & -7 & 2 & 3 \\
0 & 1 & 0 & 0 & 5 & -1 & -2 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 & 3 & -1 & -1 \\
1
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{llll|lll}
1 & 0 & 0 & 0 & -7 & 2 & 3 \\
0 & 1 & 0 & 0 & 5 & -1 & -2 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & -3 & 1 & 1 \\
\hline
\end{array}\right]=\left[\boldsymbol{I} \left\lvert\, \begin{array}{ll}
\boldsymbol{B}^{-1}
\end{array}\right.\right] .
\end{aligned}
$$

The inverse is hence

$$
\boldsymbol{B}^{-1}=\left[\begin{array}{cccc}
-7 & 2 & 3 & -2 \\
5 & -1 & -2 & 1 \\
1 & 0 & 0 & 1 \\
-3 & 1 & 1 & -1
\end{array}\right]
$$

4. Performing elimination, we can have

$$
\left.\begin{array}{rl}
\boldsymbol{A}=\left[\begin{array}{llll}
a & a & a & a \\
a & b & b & b \\
a & b & c & c \\
a & b & c & d
\end{array}\right] & \stackrel{\underline{\boldsymbol{E}_{3}}}{ } \\
& \stackrel{\underline{\boldsymbol{E}_{2}}}{\Longrightarrow}\left[\begin{array}{cccc}
a & a & a & a \\
0 & b-a & b-a & b-a \\
0 & b-a & c-a & c-a \\
0 & b-a & c-a & d-a
\end{array}\right] \begin{array}{ccc}
a & a & a
\end{array} a \\
0 & b-a \\
\text { (subtract row 1) } \\
\text { (subtract row 1) } \\
\text { (subtract row 1) } \\
0 & 0 \\
c-b & b-a \\
0 & 0 \\
c-b & d-b
\end{array}\right] \begin{aligned}
& \text { (subtract row 2) } \\
& \text { (subtract row 2) } \\
& \\
&
\end{aligned}
$$

This procedure can be viewed as

$$
\boldsymbol{E}_{3} \boldsymbol{E}_{2} \boldsymbol{E}_{1} \boldsymbol{A}=\boldsymbol{U}
$$

where

$$
\boldsymbol{E}_{1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right], \boldsymbol{E}_{2}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right] \text {, and } \boldsymbol{E}_{3}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right] .
$$

Recording the elimination steps and changing the signs of the off-diagonal elements, we can have

$$
\boldsymbol{L}=\boldsymbol{E}_{1}^{-1} \boldsymbol{E}_{2}^{-1} \boldsymbol{E}_{3}^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

We can therefore obtain $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$ as

$$
\left[\begin{array}{llll}
a & a & a & a \\
a & b & b & b \\
a & b & c & c \\
a & b & c & d
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{cccc}
a & a & a & a \\
0 & b-a & b-a & b-a \\
0 & 0 & c-b & c-b \\
0 & 0 & 0 & d-c
\end{array}\right]
$$

For \boldsymbol{A} to have four pivots, the four conditions are:

$$
a \neq 0, a \neq b, b \neq c, \text { and } c \neq d
$$

5. (a) Performing elimination, we can have

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
1 & 3 & 5 \\
3 & 12 & 18 \\
5 & 18 & 30
\end{array}\right] \xrightarrow{\boldsymbol{E}_{21}}\left[\begin{array}{ccc}
1 & 3 & 5 \\
0 & 3 & 3 \\
5 & 18 & 30
\end{array}\right] \xrightarrow{\boldsymbol{E}_{31}}\left[\begin{array}{lll}
1 & 3 & 5 \\
0 & 3 & 3 \\
0 & 3 & 5
\end{array}\right] \xrightarrow{\boldsymbol{E}_{32}}\left[\begin{array}{lll}
1 & 3 & 5 \\
0 & 3 & 3 \\
0 & 0 & 2
\end{array}\right]=\boldsymbol{U} .
$$

This procedure can be viewed as

$$
\boldsymbol{E}_{32} \boldsymbol{E}_{31} \boldsymbol{E}_{21} \boldsymbol{A}=\boldsymbol{U}
$$

where

$$
\boldsymbol{E}_{21}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-3 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad \boldsymbol{E}_{31}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-5 & 0 & 1
\end{array}\right], \text { and } \boldsymbol{E}_{32}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]
$$

Recording the elimination steps and changing the signs of the off-diagonal elements, we can have

$$
\boldsymbol{L}=\boldsymbol{E}_{21}^{-1} \boldsymbol{E}_{31}^{-1} \boldsymbol{E}_{32}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
3 & 1 & 0 \\
5 & 1 & 1
\end{array}\right]
$$

We also find that $\boldsymbol{U}=\boldsymbol{D} \boldsymbol{L}^{T}$ where

$$
\boldsymbol{D}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

We can therefore obtain $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{D} \boldsymbol{L}^{T}$ as

$$
\left[\begin{array}{ccc}
1 & 3 & 5 \\
3 & 12 & 18 \\
5 & 18 & 30
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
3 & 1 & 0 \\
5 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{lll}
1 & 3 & 5 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] .
$$

(b) Performing elimination, we can have

$$
\boldsymbol{A}=\left[\begin{array}{ll}
a & b \\
b & d
\end{array}\right] \stackrel{\boldsymbol{E}_{21}}{\Longrightarrow}\left[\begin{array}{cc}
a & b \\
0 & d-\frac{b^{2}}{a}
\end{array}\right]=\boldsymbol{U}
$$

This procedure can be viewed as

$$
\boldsymbol{E}_{21} \boldsymbol{A}=\boldsymbol{U}
$$

where

$$
\boldsymbol{E}_{21}=\left[\begin{array}{cc}
1 & 0 \\
-\frac{b}{a} & 1
\end{array}\right] .
$$

We can have

$$
\boldsymbol{L}=\boldsymbol{E}_{21}^{-1}=\left[\begin{array}{cc}
1 & 0 \\
\frac{b}{a} & 1
\end{array}\right]
$$

We also find that $\boldsymbol{U}=\boldsymbol{D} \boldsymbol{L}^{T}$ where

$$
\boldsymbol{D}=\left[\begin{array}{cc}
a & 0 \\
0 & d-\frac{b^{2}}{a}
\end{array}\right] .
$$

We can therefore obtain $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{D} \boldsymbol{L}^{T}$ as

$$
\boldsymbol{A}=\left[\begin{array}{ll}
a & b \\
b & d
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
\frac{b}{a} & 1
\end{array}\right]\left[\begin{array}{cc}
a & 0 \\
0 & d-\frac{b^{2}}{a}
\end{array}\right]\left[\begin{array}{cc}
1 & \frac{b}{a} \\
0 & 1
\end{array}\right] .
$$

6. (a) (Lower triangular case)

Suppose \boldsymbol{L} is an $n \times n$ lower triangular matrix with unit diagonal. We can use the Gauss-Jordan method to check if it has a full set of n pivots, which implies the matrix is invertible. We only need to do the Gaussian part. It means that the required operations are only to subtract the i th row from the j th row for $i<j$. Therefore, we can have

$$
\begin{aligned}
{\left[\begin{array}{lll}
\boldsymbol{L} & \boldsymbol{I}
\end{array}\right] } & =\left[\begin{array}{cccc|cccc}
1 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\
l_{2,1} & 1 & \ddots & \vdots & 0 & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 & \vdots & \ddots & \ddots & 0 \\
l_{n, 1} & \cdots & l_{n, n-1} & 1 & 0 & \cdots & 0 & 1
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{cccc|cccc}
1 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\
0 & 1 & \ddots & \vdots & l_{2,1}^{\prime} & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 & \vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 1 & l_{n, 1}^{\prime} & \cdots & l_{n, n-1}^{\prime} & 1
\end{array}\right]=\left[\begin{array}{lll}
\boldsymbol{I} \mid \boldsymbol{L}^{-1}
\end{array}\right] .
\end{aligned}
$$

Because the matrix has a unit diagonal, it has n pivots and \boldsymbol{L}^{-1} is lower triangular with unit diagonal. The upper triangular case can be proved similarly.
(b) (Lower triangular case)

Suppose \boldsymbol{A} and \boldsymbol{B} are two $n \times n$ lower triangular matrices with unit diagonal. We have $A_{i, j}=0$ if $i<j$ and $A_{i, j}=1$ if $i=j$, and $B_{i, j}=0$ if $i<j$ and $B_{i, j}=1$ if $i=j$. For $1 \leq i<j \leq n$, we have

$$
\begin{aligned}
(A B)_{i, j} & =\sum_{k=1}^{n} A_{i, k} B_{k, j} \\
& =\sum_{k=1}^{j-1} A_{i, k} B_{k, j}+\sum_{k=j}^{n} A_{i, k} B_{k, j} \\
& =0+0\left(B_{k, j}=0 \text { when } k<j, \text { and } A_{i, k}=0 \text { when } i<j \leq k .\right) \\
& =0 .
\end{aligned}
$$

Therefore, $\boldsymbol{A} \boldsymbol{B}$ is lower triangular. For $1 \leq i=j \leq n$, we have

$$
\begin{aligned}
(A B)_{i, i} & =\sum_{k=1}^{n} A_{i, k} B_{k, i} \\
& =\sum_{k=1}^{i-1} A_{i, k} B_{k, i}+A_{i, i} B_{i, i}+\sum_{k=i+1}^{n} A_{i, k} B_{k, i} \\
& =0+1 \cdot 1+0\left(B_{k, i}=0 \text { when } k<i, A_{i, i}=B_{i, i}=1, \text { and } A_{i, k}=0 \text { when } i<k\right) \\
& =1 .
\end{aligned}
$$

Therefore, $\boldsymbol{A} \boldsymbol{B}$ has a unit diagonal. We can conclude that $\boldsymbol{A} \boldsymbol{B}$ is also lower triangular with unit diagonal. The upper triangular case can be proved similarly.
(c) (Lower triangular case)

Let \boldsymbol{L} be an $n \times n$ lower triangular matrix and \boldsymbol{D} be a diagonal matrix with diagonal elements $d_{1}, d_{2}, \ldots, d_{n}$. We can have

$$
\begin{aligned}
\boldsymbol{L} \boldsymbol{D} & =\left[\begin{array}{cccc}
l_{1,1} & 0 & \cdots & 0 \\
l_{2,1} & l_{2,2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
l_{n, 1} & \cdots & l_{n, n-1} & l_{n, n}
\end{array}\right]\left[\begin{array}{cccc}
d_{1} & 0 & \cdots & 0 \\
0 & d_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & d_{n}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
d_{1} l_{1,1} & 0 & \cdots & 0 \\
d_{1} l_{2,1} & d_{2} l_{2,2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
d_{1} l_{n, 1} & \cdots & d_{n-1} l_{n, n-1} & d_{n} l_{n, n}
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\boldsymbol{D} \boldsymbol{L} & =\left[\begin{array}{cccc}
d_{1} & 0 & \cdots & 0 \\
0 & d_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & d_{n}
\end{array}\right]\left[\begin{array}{cccc}
l_{1,1} & 0 & \cdots & 0 \\
l_{2,1} & l_{2,2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
l_{n, 1} & \cdots & l_{n, n-1} & l_{n, n}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
d_{1} l_{1,1} & 0 & \cdots & 0 \\
d_{2} l_{2,1} & d_{2} l_{2,2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
d_{n} l_{n, 1} & \cdots & d_{n} l_{n, n-1} & d_{n} l_{n, n}
\end{array}\right]
\end{aligned}
$$

Therefore, the product of a lower triangular matrix and a diagonal matrix is still a lower triangular matrix. The upper triangular case can be proved similarly.
7. (a) (i) By 6.(a), \boldsymbol{L}_{1}^{-1} and \boldsymbol{U}_{2}^{-1} both exist. Given $\boldsymbol{A}=\boldsymbol{L}_{1} \boldsymbol{D}_{1} \boldsymbol{U}_{1}$ and $\boldsymbol{A}=$ $\boldsymbol{L}_{2} \boldsymbol{D}_{2} \boldsymbol{U}_{2}$, we can have

$$
\begin{aligned}
& \boldsymbol{L}_{2} \boldsymbol{D}_{2} \boldsymbol{U}_{2}=\boldsymbol{L}_{1} \boldsymbol{D}_{1} \boldsymbol{U}_{1} \\
\Longrightarrow & \boldsymbol{L}_{1}^{-1}\left(\boldsymbol{L}_{2} \boldsymbol{D}_{2} \boldsymbol{U}_{2}\right) \boldsymbol{U}_{2}^{-1}=\boldsymbol{L}_{1}^{-1}\left(\boldsymbol{L}_{1} \boldsymbol{D}_{1} \boldsymbol{U}_{1}\right) \boldsymbol{U}_{2}^{-1} \\
\Longrightarrow & \boldsymbol{L}_{1}^{-1} \boldsymbol{L}_{2} \boldsymbol{D}_{2}=\boldsymbol{D}_{1} \boldsymbol{U}_{1} \boldsymbol{U}_{2}^{-1} .
\end{aligned}
$$

(ii) By 6.(a), \boldsymbol{L}_{1}^{-1} is lower triangular with unit diagonal. By 6.(b), $\boldsymbol{L}_{1}^{-1} \boldsymbol{L}_{2}$ is lower triangular with unit diagonal. Therefore, by 6.(c), $\boldsymbol{L}_{1}^{-1} \boldsymbol{L}_{2} \boldsymbol{D}_{2}$ is lower triangular. Similarly, $\boldsymbol{D}_{1} \boldsymbol{U}_{1} \boldsymbol{U}_{2}^{-1}$ is upper triangular.
(b) Let $\boldsymbol{M}=\boldsymbol{L}_{1}^{-1} \boldsymbol{L}_{2} \boldsymbol{D}_{2}=\boldsymbol{D}_{1} \boldsymbol{U}_{1} \boldsymbol{U}_{2}^{-1}$. Then \boldsymbol{M} is both lower and upper triangular, which implies that \boldsymbol{M} is a diagonal matrix.
(i) Since $\boldsymbol{U}_{1} \boldsymbol{U}_{2}^{-1}$ has a unit diagonal, $\boldsymbol{M}=\boldsymbol{D}_{1} \boldsymbol{U}_{1} \boldsymbol{U}_{2}^{-1}$ has the same diagonal as \boldsymbol{D}_{1}. It implies that $\boldsymbol{M}=\boldsymbol{D}_{1}$. Similarly, we can have $\boldsymbol{M}=\boldsymbol{D}_{2}$. Therefore, $\boldsymbol{D}_{1}=\boldsymbol{D}_{2}$.
(ii) For $\boldsymbol{M}=\boldsymbol{L}_{1}^{-1} \boldsymbol{L}_{2} \boldsymbol{D}_{2}=\boldsymbol{D}_{2}$, we have $\boldsymbol{L}_{1}^{-1} \boldsymbol{L}_{2}=\boldsymbol{I}$. Since the inverse matrix is unique, we have $\boldsymbol{L}_{2}=\left(\boldsymbol{L}_{1}^{-1}\right)^{-1}=\boldsymbol{L}_{1}$.
(iii) Similarly, for $\boldsymbol{M}=\boldsymbol{D}_{1} \boldsymbol{U}_{1} \boldsymbol{U}_{2}^{-1}=\boldsymbol{D}_{1}$, we have $\boldsymbol{U}_{1} \boldsymbol{U}_{2}^{-1}=\boldsymbol{I}$. It then implies that $\boldsymbol{U}_{1}=\left(\boldsymbol{U}_{2}^{-1}\right)^{-1}=\boldsymbol{U}_{2}$.
8. First do row exchange as

$$
\boldsymbol{A}=\left[\begin{array}{lll}
0 & 1 & 2 \\
0 & 3 & 8 \\
2 & 1 & 1
\end{array}\right] \xrightarrow{\boldsymbol{P}_{31}}\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 3 & 8 \\
0 & 1 & 2
\end{array}\right]=\boldsymbol{P} \boldsymbol{A}
$$

and then perform elimination as

$$
\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 3 & 8 \\
0 & 1 & 2
\end{array}\right] \xrightarrow{\boldsymbol{E}_{32}}\left[\begin{array}{ccc}
2 & 1 & 1 \\
0 & 3 & 8 \\
0 & 0 & -\frac{2}{3}
\end{array}\right]=\boldsymbol{U}
$$

Then we have

$$
\boldsymbol{E}_{32}(\boldsymbol{P} \boldsymbol{A})=\boldsymbol{U}
$$

where

$$
\boldsymbol{P}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right], \text { and } \boldsymbol{E}_{32}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -\frac{1}{3} & 1
\end{array}\right] .
$$

We can have

$$
\boldsymbol{L}=\boldsymbol{E}_{32}^{-1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & \frac{1}{3} & 1
\end{array}\right]
$$

The factorization $\boldsymbol{P A}=\boldsymbol{L} \boldsymbol{U}$ is hence given by

$$
\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 2 \\
0 & 3 & 8 \\
2 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & \frac{1}{3} & 1
\end{array}\right]\left[\begin{array}{ccc}
2 & 1 & 1 \\
0 & 3 & 8 \\
0 & 0 & -\frac{2}{3}
\end{array}\right] .
$$

In order to factor \boldsymbol{A} into $\boldsymbol{A}=\boldsymbol{L}_{1} \boldsymbol{P}_{1} \boldsymbol{U}_{1}$, we first perform elimination as

$$
\boldsymbol{A}=\left[\begin{array}{lll}
0 & 1 & 2 \\
0 & 3 & 8 \\
2 & 1 & 1
\end{array}\right] \xrightarrow{\boldsymbol{E}_{21}}\left[\begin{array}{lll}
0 & 1 & 2 \\
0 & 0 & 2 \\
2 & 1 & 1
\end{array}\right]
$$

and then do row exchange as

$$
\left[\begin{array}{lll}
0 & 1 & 2 \\
0 & 0 & 2 \\
2 & 1 & 1
\end{array}\right] \xrightarrow{\boldsymbol{P}_{32}}\left[\begin{array}{lll}
0 & 1 & 2 \\
2 & 1 & 1 \\
0 & 0 & 2
\end{array}\right] \xrightarrow{\boldsymbol{P}_{21}}\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 2
\end{array}\right]=\boldsymbol{U}_{\mathbf{1}} .
$$

Therefore,

$$
\boldsymbol{U}_{\mathbf{1}}=\boldsymbol{P}_{21} \boldsymbol{P}_{32} \boldsymbol{E}_{21} \boldsymbol{A}
$$

where

$$
\boldsymbol{P}_{21}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \boldsymbol{P}_{32}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \text {, and } \boldsymbol{E}_{21}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-3 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

Multiplying $\boldsymbol{E}_{21}^{-1} \boldsymbol{P}_{32}^{-1} \boldsymbol{P}_{21}^{-1}$ from the left to both sides, we can have

$$
\boldsymbol{A}=\boldsymbol{E}_{21}^{-1} \boldsymbol{P}_{32}^{-1} \boldsymbol{P}_{21}^{-1} \boldsymbol{U}_{1}=\boldsymbol{L}_{1} \boldsymbol{P}_{1} \boldsymbol{U}_{1}
$$

where

$$
\boldsymbol{P}_{1}=\boldsymbol{P}_{32}^{-1} \boldsymbol{P}_{21}^{-1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

and

$$
\boldsymbol{L}_{1}=\boldsymbol{E}_{21}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
3 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

The factorization $\boldsymbol{A}=\boldsymbol{L}_{1} \boldsymbol{P}_{1} \boldsymbol{U}_{1}$ is hence given by

$$
\left[\begin{array}{lll}
0 & 1 & 2 \\
0 & 3 & 8 \\
2 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
3 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 2
\end{array}\right] .
$$

