
1

Chapter 2 Axial Loaded Members

2.1 Introduction

Axial loaded member : structural components subjected only to tension or

compression, such as trusses, connecting rods, columns, etc.

change in length for prismatic bars, nonuniform bars are determined, it

will be used to solve the statically indeterminate structures,

change in length by thermal effect is also considered

stresses on inclined sections will be calculated

several additional topics of importance in mechanics of materials will be

introduced, such as strain energy, impact loading, fatigue, stress

concentrations, and nonlinear behavior, etc.

2.2 Changes in Length of Axial Loaded Members

consider a coil spring with natural length L

subjected to an axial load P

if the material of the spring is linear elastic, then

P = k or  = f P

k : stiffness (spring constant)

f : flexibility (compliance)

with k f = 1

some cross-sectional shapes are shown
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prismatic bar : a member having

straight longitudinal axis and constant

cross section

consider a prismatic bar with cross-sectional area A and length L

subjected to an axial load P

then  = P / A

and  = / L

material is elastic  = E 

L P L
∴  = L = CC = CC

E E A

E A : axial rigidity of the bar

compare withP = k we have

E A L
k = CC or f = CC

L E A

Cable : used to transmit large tensile forces

the cross-section area of a cable is equal to the total cross-sectional area

of the individual wires, called effective area, it is less than the area of a

circle having the same diameter

also the modulus of elasticity (called the effective modulus) of a cable is

less than the modulus of the material of which it is made
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Example 2-1

a L-shape frame ABC with

b = 10.5 in c = 6.4 in

spring constant k = 4.2 lb/in

pitch of the threads p = 1/16 in

if W = 2 lb, how many revolutions

of the nut are required to bring the

pointer back to the mark ?

(deformation of ABC are negligible)

MB = 0 => F = W b / c

the elongation  of the spring is

 = F / k = W b / c k = n p

Then

W b (2 lb) (10.5 in)
n = CCC = CCCCCCCCCCC = 12.5 revolutions

c k p (6.4 in) (4.2 lb/in) (1/16 in)

Example 2-2

the contraption shown in figure

AB = 450 mm BC = 225 mm

BD = 480 mm CE = 600 mm

ABD = 1,020 mm3 ACE = 520 mm3

E = 205 GPa A = 1 mm

Pmax = ? ABC is rigid

take the free body ABC,

MB = 0 and Fy = 0, we have
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FCE = 2 P FBD = 3 P

the shortening of BD is

FBD LBD (3 P) (480 mm)
BD = CCCC = CCCCCCCCC = 6.887 P x 10-6 (P : N)

E ABD (205 GPa) (1020 mm2)

and the lengthening of CE is

FCE LCE (2 P) (600 mm)
CE = CCCC = CCCCCCCCC = 11.26 P x 10-6 (P : N)

E ACE (205 GPa) (520 mm2)

a displacement diagram showing the beam

is deformed from ABC to A'B'C' using

similar triangles, we can find the relationships

between displacements

A'A" B'B" A +CE BD +CE
CC = CC or CCCC = CCCC
A"C' B"C' 450 + 225 225

A + 11.26 P x 10-6 6.887 P x 10-6 + 11.26 P x 10-6

or CCCCCCCC = CCCCCCCCCCCCC
450 + 225 225

substitute for A = 1 mm and solve the equation for P

P = Pmax = 23,200 N = 23.2 kN

also the rotation of the beam can be calculated

A'A" A +CE (1 + 0.261) mm
tan= CCC = CCCC = CCCCCCC = 0.001868

A"C' 675 mm 675 mm

 = 0.11o
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2.3 Changes in Length Under Nonuniform Conditions

consider a prismatic bar is loaded by one

or more axial loads, use the free body

diagrams, the axial forces in each segment

can be calculated

N1 = - PB + PC + PD

N2 = PC + PD N3 = PD

the changes in length of each segment are

N1L1 N2L2 N3L3
1 = CC 2 = CC 3 = CC

EA EA EA

and the change in length of the entire bar is

 = 1 + 2 + 3

the same method can be used when the

bar consists of several prismatic segments,

each having different axial forces, different

dimensions, and different materials, the

change in length may be obtained

n Ni Li
 = CCC

i=1 Ei Ai

when either the axial force N or the cross-sectional area A vary

continuously along the bar, the above equation no longer suitable
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consider a bar with varying cross-sectional area and varying axial force

for the element dx, the elongation is

N(x) dx
d  = CCCC

E A(x)

the elongation of the entire bar is obtained by integrating

L L N(x) dx
 = ∫ d  = ∫ CCCC

0 0 E A(x)

in the above equation, = P/A is used, for the angle of the sides is 20o,

the maximum error in normal stress is 3% as compared to the exact stress,

for  small, error is less, for  large, more accurate methods may

be needed

Example 2-3

L1 = 20 in A1 = 0.25 in2

L2 = 34.8 in A2 = 0.15 in2

E = 29 x 106 psi

a = 28 in b = 25 in

P1 = 2100 lb P2 = 5600 lb

calculate C at point C
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taking moment about D for the free body BDE

P3 = P2 b / a = 5600 x 25 / 28 = 5000 lb

on free body ABC

RA = P3 - P1 = 5000 - 2100 = 2900 lb

then the elongation of ABC is

n Ni Li N1 L1 N2 L2
 = CCC = CCC + CCC

i=1 Ei Ai E A1 E A2

(-2900 lb) (20 in) (2100 lb) (34.8 in)
= CCCCCCCCCC + CCCCCCCCCC

(29 x 106 psi) (0.25 in2) (29 x 106 psi) (0.15 in2)

= - 0.0080 in + 0.0168 in = 0.0088 in

 = C = 0.0088 in (↓)

this displacement is downward

Example 2-4

a tapered bar AB of solid circular cross section with length L is supported

to a tensile load P, determine 

LA dA d(x) x dA x
C = C CC = C d(x) = CC
LB dB dA LA LA
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the cross-sectional area at distance x is

[d(x)]2 dA
2 x2

A(x) = CCCC = CCC
4 4 LA

2

then the elongation of the bar is

N(x) dx LB P dx (4LA
2) 4 P LA

2
LB dx

 = ∫CCC = ∫ CCCCC = CCC ∫ C
E A(x) LA E (dA

2 x2) E dA
2

LA x2

4 P LA
2 1 LB 4 P LA

2 1 1 4 P LA
2 LB - LA

 = CCC [- C] = CCC ( C - C ) = CCC CCC
E dA

2 x LA E dA
2 LA LB E dA

2 LA LB

4 P L LA 4 P L
= CCC ( C ) = CCCC
E dA

2 LB E dA dB

for a prismatic bar dA = dB = d

4 P L P L
 = CCC = CC

E d2 E A

2.4 Statically Indeterminate Structures

flexibility method (force method) [another method is stiffness method

(displacement method)]

consider an axial loaded member

equation of equilibrium

Fy = 0 RA - P + RB = 0

one equation for two unknowns

[statically indeterminate]

∵ both ends A and B are fixed, thus

AB = AC + CB = 0
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this is called equation of compatibility

elongation of each part can be obtained

RA a RB b
AC = CC BC = - CC

E A E A

thus, we have

RA a RB b
CC - CC = 0

E A E A

then RA = P b / L RB = P a / L

RA a P a b
and C = AC = CC = CCC

E A L E A

summarize of flexibility method : take the force as unknown quantity,

and the elongation of each part in terms of these forces, use the equation of

compatibility of displacement to solve the unknown force

stiffness method to solve the same problem

the axial forces RA and RB can be expressed in terms of C

E A E A
RA = CCC RB = CCC

a b

equation of equilibrium
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RA + RB = P
E A E A P a b

CC C + CCC = P => C = CCC
a b E A L

and RA = P b / L RB = P a / L

summarize of stiffness method : to select a suitable displacement as

unknown quantity, and the unknown forces in terms of these displacement,

use the equation of equilibrium to solve the displacement

Example 2-5

a solid circular steel cylinder S is

encased in a hollow circular copper C

subjected to a compressive force P

for steel : Es, As

for copper : Ec, Ac

determine Ps, Pc,s, c, 

Ps : force in steel, Pc : force in copper

force equilibrium

Ps + Pc = P

flexibility method

for the copper tube

Pc L P L Ps L
c = CC = CC - CC

Ec Ac Ec Ac Ec Ac

for the steel cylinder

Ps L
s = CC

Es As
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Ps L P L Ps L
s = c CC = CC - CC

Es As Ec Ac Ec Ac

Es As
Ps = CCCCCC P

Es As + Ec Ac

Ec Ac
Pc = P - Ps = CCCCCC P

Es As + Ec Ac

Ps P Es Pc P Ec
s = C = CCCCC c = C = CCCCC

As EsAs + EcAc As EsAs + EcAc

the shortening of the assembly  is

Ps L Pc L P L
 = CCC = CCC = CCCCC

Es As Ec Ac Es As + Ec Ac

stiffness method : Ps and Pc in terms of displacement 

Es As Ec Ac
Ps = CC Pc = CC

L L

equation of equilibrium

Ps + Pc = P
Es As Ec Ac
CC  + CC = P

L L
P L

it is obtained  = CCCCC same result as above
Es As + Ec Ac
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Example 2-6

a horizontal bar AB is pinned at end

A and supported by two wires at points

D and F

a vertical load P acts at end B

(a) (all)CD = 1 (all)EF = 2

wire CD : E1, d1; wire EF : E2, d2

Pall = ?

(b) E1 = 72 GPa (Al), d1 = 4 mm, L1 = 0.4 m

E2 = 45 GPa (Mg), d2 = 3 mm, L2 = 0.3 m

1 = 200 MPa2 = 125 MPa

Pall = ?

take the bar AB as the free body

MA = 0=> T1 b + T2 (2b) - P (3b) = 0

i.e. T1 + 2 T2 = 3 P

assume the bar is rigid, the geometric relationship between elongations is

2 = 21

T1 L1 T2 L2
1 = CC = f1 T1 2 = CC = f2 T2

E1 A1 E2 A2

f = L / E A is the flexibility of wires, then we have

f2 T2 = 2 f1 T1

thus the forces T1 and T2 can be obtained

3 f2 P 6 f1 P
T1 = CCCC T2 = CCCC

4 f1 + f2 4 f1 + f2
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the stresses of the wires are

T1 3 P f2 1 A1 (4 f1 + f2)
1 = C = CC ( CCC ) => P1 = CCCCCC

A1 A1 4 f1 + f2 3 f2

T2 6 P f1 2 A2 (4 f1 + f2)
2 = C = CC ( CCC ) => P2 = CCCCCC

A2 A2 4 f1 + f2 6 f2

Pallow = minimum (P1, P2)

(b) numerical calculation

A1 =d1
2 / 4 = 12.57 mm2 A2 =d2

2 / 4 = 7.069 mm2

f1 = L1 E1 / A1 = 0.442 x 10-6 m/N

f2 = L2 E2 / A2 = 0.9431 x 10-6 m/N

with 1 = 200 MPa and2 = 125 MPa

we can get P1 = 2.41 kN and P2 = 1.26 kN

then Pallow = 1.26 kN

at this load, Mg = 175 MPa,

at that time Al = 200 (1.26/2.41) = 105 MPa < 200 MPa

2.5 Thermal Effects, Misfits and Prestrains

temperature change => dimension change => thermal stress and strain

for most materials, thermal strain T is proportional to the temperature

change T

T = T

: thermal expansion coefficient

(1/oC or 1/oF)

T : increase in temperature
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thermal strain usually are reversible, expand when heard and contract

when cooled

no stress are produced for a free expansion body

but for some special material do not behave in the customary manner,

over certain temperature range, they expand when cooled and contract when

heated (internal structure change), e.g. water : maximum density at 4oC

for a bar with length L, its elongation

t due to temperature change T is

t = t L = (T) L

this is the temperature-displacement

relation

no stress are produced in a statically

determinate structure when one or more

members undergo a uniform temperature

change

temperature change in a statically

indeterminate structure will usually produce

stress in members, called thermal stress

for the statically indeterminate structure, free expansion or contraction is

no longer possible

thermal stress may also occurs when a member is heated in a nonuniform

manner for structure is determinate or indeterminate
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Example 2-7

a prismatic bar AB of length L

the temperature is raised uniformly by T

Fy = 0 RA = RB = R

displacement at A due to

T : t = (T) L (↑)

R : R = R L / E A (↓)

A = t - R = 0
R L

∴ (T) L = CC
E A

R = E A(T) and  = R / A = E(T)

the stress is compressive when the temperature of the bar increases

Example 2-8

a sleeve and the bolt of the same length L are made of different

materials

sleeve : As,s bolt : Ab, b s > b

temperature raise T, s, b, = ?



16

take a free body as remove the head of the bolt

for temperature raise T

1 = s (T) L 2 = b (T) L

if s > b => 1 > 2

the force existing in the sleeve and bolt, until the final elongation of the

sleeve and bolt are the same, then

Ps L Pb L
3 = CC 4 = CC

Es As Eb Ab

equation of compatibility

 = 1 - 3 = 2 + 4

Ps L Pb L
s (T) L - CC = b (T) L + CC

Es As Eb Ab

equation of equilibrium

Pb = Ps

it is obtained

(s -b) (T) Es As Eb Ab
Pb = Ps = CCCCCCCCCCC

Es As + Eb Ab

the stresses in the sleeve and bolt are

Ps (s -b) (T) Es Eb Ab
s = C = CCCCCCCCC

As Es As + Eb Ab

Pb (s -b) (T) Es As Eb
b = C = CCCCCCCCC

As Es As + Eb Ab

and the elongation of the sleeve and bolt is
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(s Es A + b Eb Ab) (T) L
 = CCCCCCCCCCC

Es As + Eb Ab

partial check :

if s =b =, then Pb = Ps = 0, and =(T) L (O.K.)

stiffness method : choose the final displacement as an unknown

quantity

Es As
Ps = CC [s (T) L - ]

L
Eb Ab

Pb = CC [ - b (T) L]
L

∵ Ps = Pb, it is obtained

(s Es A +b Eb Ab) (T) L
 = CCCCCCCCCCC same result

Es As + Eb Ab

Misfits and Prestrains

For the length of the bars slightly different

due to manufacture

if the structure is statically determinate, no

prestrains and prestress

if the structure is statically indeterminate, it

is not free to adjust to misfits, prestrains and

prestresses will be occurred

if CD is slightly longer, CD is in

compression and EF is in tension
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if P is added, additional strains and stresses will

be produced

Bolts and Turnbuckles

for a bolt, the distance traveled by the nut is

 = n p

where p is the pitch of the threads

for a double-acting turnbuckle, the shortenis

 = 2 n p

Example 2-9

(a) determine the forces in tube and cables when the buckle with n turns

(b) determine the shorten of the tube

1 = 2 n p

2 = Ps L / Es As

3 = Pc L / Ec Ac

eq. of compatibility 1 -2 = 3

Ps L Pc L
2 n p – CCC = CCC (1)

Es As Ec Ac

eq. of equilibrium 2 Ps = Pc (2)

(1) and (2)
2 n p Ec Ac Es As 4 n p Ec Ac Es As

Ps = CCCCCCCC Pc = CCCCCCCC
L (Ec Ac + 2 Es As) L (Ec Ac + 2 Es As)

Shorten of the tube is
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Pc L 4 n p Es As
3 = CCC = CCCCCCC

Ec Ac Ec Ac + 2 Es As

2-6 Stresses on Inclined Sections

consider a prismatic bar subjected

to an axial load P

the normal stress x = P / A

acting on mn in 3-D and 2-D views

are shown

also the stress element in 3-D

and 2-D views are presented (the

dimensions of the element are

assumed to be infinitesimally

small)

we now to investigate the stress on

the inclined sections pq, the 3-D and

2-D views are shown

the normal and shear forces on pq

are calculated

N = P cosV = P sin

the cross-sectional area of pq is

A1 = A / cos

thus the normal and shear stresses on pq
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are
N P cos 

 = C = CCCC = x cos2
A1 A / cos
V P sin

 = - C = - CCCC = -x sincos
A1 A / cos

sign convention : positive as shown in figure

also using the trigonometric relations, we get
x

 = C (1 + cos 2)
2
x

 = - C sin 2
2

it is seen that the normal and shear

stresses are changed with the angle  as

shown in figure

maximum normal stress occurs at = 0

max = x

maximum shear stress occurs at  = 45o

max = x / 2

the shear stress may be controlling stress

if the material is much weaker then in

tension, such as
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short block of wood in compression

mild steel in tension (Luder's bands)

Example 2-10

a prismatic bar, A = 1200 mm2

P = 90 kN  = 25o

determine the stress state at pq section

show the stresses on a stress element

P 90 kN
x = - C = - CCCC = - 75 MPa

A 1200 mm2

 = x cos2 = (- 75 MPa) ( cos 25o)2 = - 61.6 MPa

 = -x sincos = 28.7 MPa

to determine the complete stress state

on face ab,= 25o, the stresses are calculated

on face ad,= 115o, the stresses are

 = x cos2 = - 75 cos2115o = - 13.4 MPa

shear stress is the same as on face ab, the complete stress state is

shown in figure

Example 2-11

a plastic bar with square cross section of

side b is connected by a glued joint

along plane pq

P = 8000 lb  = 40o
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all = 1100 psiall = 600 psi

(glude)all = 750 psi (glude)all = 500 psi

determine minimum width b

A = P /x

∵  = 40o ∴ = - = - 50o

     
x = CCC x = - CCCCC

cos2   sincos

(a) based on the allowable stresses in the glued joint

= - 750 psi = - 50o ==> x = - 1815 psi

= - 500 psi = - 50o ==> x = - 1015 psi

(b) based on the allowable stresses in the plastic

x = - 1100 psi

max = 600 psi occurs on the plane at 45o = x / 2

=> x = - 1200 psi

(c) minimum width of the bar, choose x = - 1015 psi, then
8000 lb

A = CCCC = 7.88 in2

1015 psi

bmin = √A = √7.88 in2 = 2.81 in, select b = 3 in

2.7 Strain Energy

the concept of strain energy principles

are widely used for determining the

response of machines and structures to both
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static and dynamic loads

consider a prismatic bar of length L

subjected to tension force P, which is

gradually increases from zero to maximum

value P, the load-deflection diagram is

plotted

after P1 is applied, the corresponding

elongation is , additional force dP1

produce d1, the work done by P1 is

d W = P1 d1

and the total work done is


W = ∫ P1 d1

0

the work by the load is equal the area under the load-deflection curve

strain energy : energy absorbed by the bar during the load process

thus the strain energy U is


U = W = ∫ P1 d1

0

U referred to as internal work

the unit of U and W is J (J = N．m) [SI], ft-lb [USCS]

during unloading, some or all the strain

energy of the bar may be recovered
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if P is maintained below the linear

elastic range
P

U = CC = W
2

P L P2 L E A 2

∵  = CC∴ U = CCC = CCC
E A 2 E A 2 L

E A P2 k2

also k = CC thus U = CC = CC
L 2 k 2

the total energy of a bar consisting of

several segments is

n n Ni
2 Li

U = Ui = CCC
i=1 i=1 2 Ei Ai

the strain energy for a nonprismatic bar

or a bar with varying axial force can be

written as

L Px
2 dx

U = ∫ CCC
0 2 E Ax

displacements caused by a single load

P 2 U
U = W = CC ==>  = CC

2 P

U = UAB + UBC

strain energy density u is the total strain energy U per unit volume

for linear elastic behavior

U U P2 L 1 x
2 E 2 x 

u = C = CC = CCC CC = CC = CC = CC
V A L 2 E A A L 2 E 2 2
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modulus of resilience ur

2
pl

ur = CC
2 E

pl : proportional limit

resilience represents the ability of the material to absorb and release

energy within the elastic range

modulus of toughness ut is the area under the stress-strain curve when

fracture, ut represents the maximum energy density can be absorbed by

the material

strain energy (density) is always a positive quantity

Example 2-12

3 round bars having same L but

different shapes as shown

when subjected to the same load P

calculate the energy stored in each bar

P2 L
U1 = CCC

2 E A

n Ni
2 Li P2 (L/5) P2 (4L/5) P2 L 2 U1

U2 = CCC = CCCC + CCCC = CCC = CC
i=1 2 EiAi 2 E A 2 E (4A) 5 E A 5

n Ni
2 Li P2 (L/15) P2 (14L/15) 3 P2 L 3 U1

U3 = CCC = CCCC + CCCCC = CCC = CC
i=1 2 EiAi 2 E A 2 E (4A) 20 E A 10

the third bar has the least energy-absorbing capacity, it takes only a small

amount of work to bring the tensile stress to a high value

when the loads are dynamic, the ability to absorb energy is important, the
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presence of grooves is very damaging

Example 2-13

determine the strain energy of a prismatic

bar subjected to (a) its own weight (b) own

weight plus a load P

(a) consider an element dx

N(x) = A (L - x)

: weight density

L [N(x)]2 dx L[A(L - x)]2 dx 2 A L3

U = ∫ CCCC = ∫ CCCCCC = CCC
0 2 E A(x) 0 2 E A 6 E

it can be obtained from the energy density

N(x)
 = CC = (L - x)

A

2 2 (L - x)2

u = CC = CCCC
2 E 2 E

L L [A(L - x)]2 dx 2 A L3

U = ∫u dV = ∫u (Adx) = ∫ CCCCCC = CCC
0 0 2 E A 6 E

same result as above

(b) own weight plus P

N(x) = A (L - x) + P

L [A(L - x) + P]2 dx  2 A L3 P L2 P2 L
U = ∫ CCCCCCCC = CCC + CCC + CCC

0 2 E A 6 E 2 E 2 E A

note that the strain energy of a bar subjected to two loads is not equal to

the sum of the strain energies produced by the individual loads
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Example 2-14

determine the vertical displacement B

of the joint B, both bar have the same

axial rigidity E A

equation of equilibrium in vertical

direction, it is obtained
P

F = CCCC
2 cos

the strain energy of the two bars is

F2 L1 P2 H
U = 2．CCC = CCCCC L1 = H / cos

2 E A 4 E A cos3

the work of force P is

W = P B / 2

equating U and W and solving for B

P H
B = CCCCC

2 E A cos3

this is the energy method to find the displacement, we did not need to

draw a displacement diagram at joint B

Example 2-15

a cylinder and cylinder head are clamped by bolts as shown

d = 0.5 in dr = 0.406 in g = 1.5 in t = 0.25 in L = 13.5 in

compare the energy absorbing of the three bolt configurations
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(a) original bolt

n Ni
2 Li P2(g - t) P2 t

U1 = CCC = CCCC + CCC
i=1 2 EiAi 2 E As 2 E Ar

d2 dr
2

As = CC Ar = CC
4 4

thus U1 can be written as

2 P2 (g - t) 2 P2 t
U1 = CCCCC + CCC

 E d2 E dr
2

(b) bolt with reduced shank diameter

P2 g 2 P2 g
U2 = CCC = CCC

2 E Ar E dr
2

the ratio of strain energy U2 / U1 is

U2 g d2 1.5．0.52

C = CCCCCC = CCCCCCCCCCCCC = 1.40
U1 (g - t) dr

2 + t d2 (1.5 - 0.25) 0.4062 + 0.25 x 0.5

(c) long bolts

2 P2 (L - t) 2 P2 t
U3 = CCCCC + CCC

E d2 E dr
2

the ratio of strain energy U3 / 2 U1 is

U3 (L - t) dr
2 + t d2

CC = CCCCCCCC
2 U1 2 [(g - t) dr

2 + t d2]
(13.5 - 0.25) 0.4062 + 0.25．0.52

= CCCCCCCCCCCCCCC = 4.18
2 [(1.5 - 0.25) 0.4062 + 0.25 ．0.52]

thus, the long bolts increase the energy-absorbing capacity
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when designing bolts, designers must also consider the maximum tensile

stresses, maximum bearing stresses, stress concentration, and other matters

2.8 Impact Loading

2.9 Repeated Loading and Fatigue

2.10 Stress Concentrations

2.11 Nonlinear Behavior

2.12 Elastoplastic Analysis


