Chapter 2  Axial Loaded Members

2.1 Introduction

Axia loaded member : structura components subjected only to tension or
compression, such as trusses, connecting rods, columns, etc.
change in length for prismatic bars, nonuniform bars are determined, it
will be used to solve the statically indeterminate structures,
change in length by thermal effect is aso considered
stresses on inclined sections will be calculated
severa additional topics of importance in mechanics of materials will be
introduced, such as strain energy, impact loading, fatigue, stress

concentrations, and nonlinear behavior, etc.

2.2 Changesin Length of Axial Loaded Members

consider a coil spring with natural length L ’;T"Hx.‘
subjected to an axial load P | j&‘
If the material of the spring islinear elastic, then i J
P=%ké o = fP s e
k : stiffness (spring constant) e ¥ )Y

f : flexibility (compliance)

with kf = 1 C D
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prismatic bar : a member having

straight longitudina axis and constant

Cross section " }\{
consider a prismatic bar with cross-sectional area A and length L
subjected to an axia load P
then c = P/A
and e = olL
materia iselastic o = Ee¢

E A: axid rigidity of the bar

comparewithP = ko we have
EA
k = — or f = —
L EA

Cable : used to transmit large tensile forces

the cross-section area of a cable is equal to the total cross-sectional area
of the individual wires, called effective areq, it is less than the area of a
circle having the same diameter

also the modulus of elasticity (called the effective modulus) of a cableis
less than the modulus of the material of which it is made



Example 2-1
a L-snapeframe ABC with
b=105in c=64in
spring constant  k=4.2 Ib/in ik,
pitch of thethreads  p = 1/16in Roord oot

[ . Threaded — = = _x
it W =21Ib, how many revolutions rod =

UI

of the nut are required to bring the
pointer back to the mark ?
(deformation of ABC arenegligible)

Mg = 0=>F = Whb/c

theelongation o of thespringis
o = F/Ik = Wb/ck = np

Then (b)
Wb (21b) (10.5in) _
n = = = 125revolutions
ckp (6.41in) (4.21b/in) (1/16in)
Example 2-2 . -
the contraption shown in figure @;D i [ ] i @
AB=450mm BC=225mm Pl o -
BD =480 mm CE =600 mm ‘ 600 mm
Agp = 1,020 mm® Ace = 520 mm® il
E = 205 GPa ds = 1 mm e . oy
Prax = ? ABC isrigid =
P =
take thefreebody ABC, %QF} f{f] % ‘—H
ZMg=0and X F,=0, wehave : | '!!-‘m, lm-

450 mm | 225 mmi |

(h)



FCE =2P FBD =3P
the shorteningof BD is

Fao L 3P) (480 mm
by = b BRI ) —6887Px10° (P: N)

EAs (205 GPa) (1020 mnr)
and the lengthening of CE is

Fce Lee (2 P) (600 mm)

dce = = =11.26 Px 10° (P:N)
EAc (205 GPa) (520 mm?)
”
| | | B NG 2
a displacement diagram showing the beam 4| (¢
s B
is deformed from ABC to ABC usng s P 4
similar triangles, we can find the relationships i
b etween dlq)l acements 450 mm 225 mm |
©
A'A" B'B" 5A + 5(;5 55[) + 5CE
_ = —  or - = —
A'C B"'C 450 + 225 225
oa+ 11.26 Px 10° 6.887 P x 10° + 11.26 P x 10°
or =
450 + 225 225

substitute for  J, = 1 mm and solve the equation for P
P = Pmx = 23200N = 23.2kN
also the rotation of the beam can be calculated

AA" On+ O 1+0.261) mm
tana = _ Oatoce _ ( ) = 0.001868

A'C 675 mm 675 mm
a = 011°




2.3 Changesin Length Under Nonuniform Conditions
consider a prismatic bar isloaded by one

or more axial loads, use the free body | ! j, ij
diagrams, the axial forces in each segment 8 I S I N
can be cal cul ated ] l i ) I ) [ :
Nl — ) PB + PC + PD Pr 4 Pe P
N = P + P N = P Dl n D D
i : i ’ ° ~er- T[ VP P
the changesin length of each segment are @ ) © @
N;L; N,L, NsLs
o1 = 0 = 03 =
EA EA EA

and the changein length of the entire bar is
0o = 51 + 52 + 53

the same method can be used when the

bar consists of several prismatic segments, .
each having different axia forces, different 5 J
dimensions, and different materials, the 1

change in length may be obtained
n Ni I—i

)

= EA

o =

when ether the axial force N or the cross-sectional area A vary

continuoudy aong the bar, the above equation no longer suitable



consider a bar with varying cross-sectional area and varying axial force

ot N7 N
.(_>{u.u < {_]_E“' q——(\L—:}—q—
¢

C
X —J —-‘ L Ix

for thedement dx, theeongationis
N(X) dx
E A(X)
the elongation of the entire bar is obtained by integrating

do =

L SL N(X) dx

%
1
—
o
%
1

0 °  EA®X

in the above equation, ¢ = P/A is used, for the angle of the sides is 20°,
the maximum error in normal stressis 3% as compared to the exact stress,
for a smal, error isless, for a large, more accurate methods may
be needed

Example 2-3
L, =20in A =0.25in? 7 A
L,=348in A,=0.15in? . pe
E=29x10°ps a OD b ;;:la
a=28inb=25in — j’
P, =21001b P,=56001b 7 )
(@

caculate oc apoint C



taking moment about D for the free body BDE

Ry
P; = P,b/a =5600x25/28=5000Ib |
)
onfreebody ABC -
| ——1 [
Ra = P;-P, =5000-2100=29001b  “{ ]f £ y
then the elongation of ABC is @ (‘
‘.i)
n NiL Ny Ly N, L, P
o = Z = + (©)
=B A EA EA,
(-2900 1b) (20 in) (2100 Ib) (34.8in)
= +
(29 x 10° psi) (0.25in?) (29 x 10° ps) (0.15in?)

-0.0080in + 0.0168in = 0.0088in
§ = dc = 00088in (|)

this displacement is downward

Example 2-4
atapered bar AB of solid circular cross section with length L is supported

toatensleload P, determine o

" g
A I _T | . [ =
' — I
~a-——I——‘ dp U——_—:_____J?{I I:J" l dir) dy
t — l I-_—_ . ==
s L_-| » L :'

"
() )

L d d(x X da X

ba G d o x dx) = —

Ls dg da La La



the cross-sectional area at distance X IS

7 [d(X)]2 7 02 X
AX) = — = = 2
4 4L,

then the elongation of the bar is

N(X) dx L Pdx(4LAY) APLy 1 dXx
E A(X) L E(mda®x) nEdy L X
APLYY 1 . 4PLY2 1 1 AP L)% Lg-La
o = [-—] = (— - —) =
nE dA2 X La nE dA2 La Lg nE dA2 Lalg
_ 4PL L, 4PL
nE dA2 LB n E dA dB

foraprismaticbar da=ds=d

APL PL
o = =
nEd EA

2.4 Statically Indeter minate Structures
flexibility method (force method) [another method is stiffness method
(displacement method)]
consider an axial loaded member
equation of equilibrium f’

SF, = 0 Ry-P+Ry = 0

one eguation for two unknowns
[statically indeterminate]

B
. bothends A and B arefixed, thus ]«R

oas = Oac t 0 = O



thisis called equation of compatibility
elongation of each part can be obtained

Rna Rg b pod )
— dgc = -—— ,

EA EA g
thus, we have |

Raa Rs b
— — =0 Ul .. Bl
EA EA b Ry

Opc =

then R. = Pb/L Re = PallL

Raa Pab

and Oc = Oac =
EA LEA

summarize of flexibility method : take the force as unknown guantity,
and the elongation of each part in terms of these forces, use the equation of

compatibility of displacement to solve the unknown force

stiffness method to solve the same problem

Ry Ra
) A o R
a
& lv < c =$£ &
P b Ra ks
B Ay B
TRB Es
theaxial forces Ry, and Rz canbeexpressedintermsof oc
EA EA
Ry = oc Re = oc
a b

eguation of equilibrium



Ra + Rs = P

EA EA Pab
5(; + 5(; = P => 5(; =
a b EAL

and R. = Pb/L Re =PallL

summarize of stiffness method : to select a suitable displacement as
unknown guantity, and the unknown forces in terms of these displacement,

use the equation of equilibrium to solve the displacement

Example 2-5
a solid circular sted cylinder S is
encased in a hollow circular copper C o
subjected to acompressive force P |
for stedl : Eg, As
for copper : E., A

determine P, P, o, 0., 0

Ps: forcein steel, P, : forcein copper

force equilibrium
Ps + P. = P
flexibility method
for the copper tube

P.L PL PsL
50 = = — -
ECAC ECAC ECAC

for the steel cylinder
PsL
EsAs

O0s =

10



Ps L PL Ps L
0s = O¢ = — -
Es As EcAc Ec A
EsAs
P, = P
EsAs+ E: A
Ec A
P. = P - Py = P
EsAs+ E: A
Ps P E P P E.
GS = R = _— GC = —_— = _—
A EAs + EA: As EAs + EA
the shortening of theassembly ¢ is
L P.L PL
EsAs Ec A EsAs+ E: A
stiffnessmethod: Ps and P. intermsof displacement o6
EsAs Ec A
Ps = ) P. = —9¢
L L
eguation of equilibrium
P, + P. = P
Es A Ec Ac
o + o = P
L L
PL
itisobtained o = same result as above

EsAs+ EcAc

11



Example 2-6
a horizontal bar AB
A and supported by two wires at points

is pinned at end ol

D and F
avertica load P actsatend B

@ (a)ep = 01 (Ca)er = 02

(a)

T Ti A1
D ¥ B
&

wireCD : E;, di; wireEF: E,, d, e I;‘:l
Pai = ? [y
(b) Ey=72GPa(Al), di=4mm,L;=04m
E>=45GPa(Mg), d>=3mm,L,=03m
g1= 200MPa 125 MPa A_
Pay = ?

takethebar AB asthe free body

gy =

ZMA =
+ 2T2 =

0=> T]_ b + T2 (Zb) -

I.e T, 3P

(h)

(c)

P@Bb) = O

assume the bar isrigid, the geometric relationship between elongationsis

0, = 201
TiL T2 L
01 = = fiTh 0 = =
El Al EZ A2
f=L/EA istheflexibility of wires, then we have
f2 T2 = 2 fl Tl
thustheforces T, and T, can beobtained
3LP 6f, P
T = —— T, = ———
41, + 1, 4f, +f,

12
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the stresses of the wires are

Tl 3 P f2 01 Al (4 fl + fz)
oL = — = ( ) => P, =

A]_ A]_ 4 f]_ + fz 3 f2

T2 6P fl () A2 (4 f]_ + fz)
g, = — = ( ) => P, =

A2 A2 4 f]_ + f2 6 f2
Paiow = minimum (Py, P,)

(b) numerical calculation
A, =7 di?/ 4=1257 mm? A, =7 dy* [ 4 =7.069 mm?
f, = LiEi/A, = 0.442x10°m/N
f, = LEJ/A, = 09431x10°nm/N
with  o;= 200MPa and o,= 125MPa
we can get P, = 241kN and P, = 1.26kN
then  Pagow = L1.26kN
atthisload, oug = 175MPa,
athattime o, =200(1.26/2.41)=105MPa < 200MPa

2.5 Thermal Effects, Misfitsand Prestrains
temperature change => dimension change => thermal stress and strain
for most materials, thermal strain ey isproportional to the temperature
change AT

et = aAT i |
a : thermal expansion coefficient
(U°C or 1°F) : A

AT increasein temperature

13



thermal strain usually are reversible, expand when heard and contract

when cooled

no stress are produced for a free expansion body

but for some specia material do not behave in the customary manner,

over certain temperature range, they expand when cooled and contract when

heated (internal structure change), e.g. water : maximum density at 4°C

for abar with length L, itselongation
oy duetotemperature change AT is
oo = &L = a(AT)L

this is the temperature-displacement
relation

no stress are produced in a statically
determinate structure when one or more
members undergo a uniform temperature

change

temperature change in a dsaticdly
Indeterminate structure will usually produce
stressin members, called thermal stress

r T~y

for the statically indeterminate structure, free expansion or contraction is

no longer possible

thermal stress may aso occurs when a member is heated in a nonuniform

manner for structure is determinate or indeterminate

14



Example 2-7
aprismaticbar AB of length L ] )
the temperatureisraised uniformly by AT l N l

=1
-

SF, = 0 Ry = Rs = R

AT L AT

displacementat A dueto

AT: o = a(AaT)L (1)
R: Or RL/EA (}) [H"

RL
. a(AT)L = ——
EA

R = EAa(AT) and ¢ = RIA = Ea(AT)

the stress is compressive when the temperature of the bar increases

Example 2-8
a deeve and the bolt of the same length L are made of different
materials

deeve: A, as bolt : A,, ap as > ap

temperatureraise AT, 0g, 0p,0 = ?
Nut Washe: Sleeve Bolt head
— /
m B,,':.!f ]
& | . |
|Ir AT i:b ikl
| ]
: N
&) : ) I“*“‘
mmm } Fr ]’P

(c)

15



take afree body as remove the head of the bolt
for temperatureraise AT

o1 = as(AT)L 62 = ap(aT)L

if as > ap => o1 > 0o

the force existing in the deeve and bolt, until the final elongation of the

sleeve and bolt are the same, then
P L P, L

53 = 54 =
EsAs Ep Ay

eguation of compatibility
5=51-53=52+54

PsL Py
as(AT)L - = a(AT)L +
E. A Ep Ap
eguation of equilibrium
Pb = PS
it is obtained
as- dp) (AT) ESASE
b = p o (@ w ONEAEA

EsAs + B A
the stresses in the sleeve and bolt are

Ps _ (as- ap) (AT) EsEp Ay

os = — =
As EsAs + B A
_ P _ (as- ap) (AT) EsAsEp
Op — — =
As EsAs + B A

and the elongation of the Sleeve and bolt is

16



(asEsA+ap Ex Ay) (AT) L
EsAs + B A

partial check :

if as=ap=a, thenP,=Ps=0, and J=a(aAT)L (O.K)

stiffness method : choose the final displacement 6 as an unknown

guantity
EsAs
Ps = [as(AaT)L - 4]
L
Es A
P, = [0 - ap(AT) L]
L

P, = P, itisobtaned

(asEsA+an Ex Ay) (AT) L
0o = same result

EsAs + B/

Misfits and Prestrains

For the length of the bars slightly different ==
due to manufacture D L
A b} B
if the structure is statically determinate, no |.§ — D

prestrains and prestress ®
If the structure is statically indeterminate, it
is not free to adjust to misfits, prestrains and

prestresses will be occurred

if CD is dightly longer, CD is in

compression and EF isin tension

17



if Pisadded, additional strains and stresses will
be produced

Bolts and Turnbuckles
for abolt, the distance ¢ traveled by the nut is
o = np

where p is the pitch of the threads
for a double-acting turnbuckle, the shortené is
o = 2np

Example 2-9
() determine the forcesin tube and cables when the buckle with n turns
(b) determine the shorten of the tube

Copper tube Steel cable Turnbuckle

< . = '
o1 = 2np “N — ?
9, = PsL/EAs - _ — s
03 = PcLIEA = ;
4
eq. of compatibility 6,-d, = 65 | = .t
P L P.L .
2np - = 1)
Es As Ec Ac
eg. of equilibrium 2Ps = P, (2
(1) and (2)
_ 2npEAEA - AnpE.AEsAs
j L (EcAc+2EsA) i L (EcAc+2EsA)

Shorten of thetubeis

18



P.L 4npEsAs
EcAc ECAC+2ESAS

2-6 Stresses on Inclined Sections

consider a prismatic bar subjected

toan axial load P
the normal stress o, = P/ A L .
acting on mn in 3-D and 2-D views s e

are shown ,
-
also the stress element in 3-D ’
and 2-D views are presented (the ——
dimensions of the element are a | —=
assumed to be infinitesmally "
small) '" ®
we now to investigate the stresson = /0 ______ \_\?:’*
the inclined sections pq, the 3D and P _’
2-D views are shown A \F ...... £
A mu
the norma and shear forces on pqQ \ P
are calcul ated s \ e - .
N = Pcosf V = Psinf A A B
the cross-sectional areaof pg is : " S,
A = Alcosf .= \4 |

thus the normal and shear stresses on pg

19



P\
N P cos N N
6p = — = — = g,c050 A
Aq A/ cosb YT
\% Psné _
T, = -— = -———— = -gySnfcosh
A A/ cos0 "
Ny
. . . . . . /}\. A
sign convention : positive as shown in figure \
4= L'Hitl ‘ \\-(f
(d)
also using the trigonometric relations, we get
Ox
g, = —(1+ cos20)
2
Ox .
7, = -— Sn20
2
it is seen that the norma and shear
stresses are changed with the angle 6  a D %
shown in figure 7 %
e N
maximum normal stressoccursat =0 71 N
| A lu‘\:i«;"n”
O'max = GX ~0.50; ,,,,,:{i;}:-‘; /
maximum shear stressoccursat 0 = +45°
Tmax = Ox/l2
L (9 A— X -—Z‘
. A
the shear stress may be controlling stress
if the material is much weaker then in
1 5. A

tension, such as

20
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short block of wood in compression
mild steel in tension (Luder's bands)

Example 2-10

aprismaticbar, A = 1200 mm? y i
P = 90KN o = 25° TS |
determinethe stressstateat pgq section
show the stresses on a stress element b o |

oy = L -75MPa

A 1200 mm?

g, = o0x0080 = (-75MPa)(cos25°)? = -61.6MPa

Ty = -oxSnfcos = 28.7MPa e
to determine the complete stress state o S . S |
onface ab, 0= 25° the stresses are caculated ;;,';.",I"“"‘a,u z S

onface ad, 0= 115° the stresses are
g, = 0,0080 = -75c05°115° = -134MPa

shear stress is the same as on face ab, the complete dress state is

shown in figure

Example 2-11 I
a plastic bar with square cross section of -1
sde b is connected by a glued joint 1
aong plane pq , /b;
P = 8000lb a = 40° —

21



1100 pS Tar =

Oal =

600 psi

Irl

P 0 P

//’
(Ugl ude)al = 750 psi (Tgl ude)al = 500 psi .-;/gz\():\ﬁ —90°
determine minimum width b v =
g=-f=-50"
A = P / G-X ih)
a = 40° S 0= -B = -50°
Oy Ty
Oy = Oy -—
cos’0 sin 6 cos 6
(a) based on the allowable stresses in the glued joint
g,=-750ps 0=-50° ==> ,=-1815ps
7,=-500ps 0=-50° ==> g,=-1015ps
(b) based on the allowable stresses in the plastic
ox = -1100ps
Tmax = 600ps occursontheplanea 45° = oy /2
= g, = -1200ps
(c) minimum width of the bar, choose o, = -1015 pd, then
8000 Ib .
= — = 7.88in
1015 psi
bin = VA = ,/788in° = 28lin, sdect b = 3in

2.7 Strain Energy
the concept of strain energy principles
are widely used for determining the

response of machines and structures to both

22
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static and dynamic loads

consider a prismatic bar of length L -

subjected to tension force P, which is
gradually increases from zero to maximum
vaue P, the load-deflection diagram is
plotted

after P, isapplied, the corresponding
elongation is ¢, additional force dP;
produce do;, thework doneby P; is

dw = Pldél

and the total work doneis

W = SZ Pldél

.....................

the work by the load is equal the area under the |oad-deflection curve

strain energy : energy absorbed by the bar during the load process

thusthestrainenergy U is
o
u = W = SO Pl d 51

U referred to asinterna work

theunitof U and W is J(J=N-m)[S],

during unloading, some or al the strain

energy of the bar may be recovered

23
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if P is maintained below the linear A
. // i U= @
elastic range ; o du
Pé //'J‘ i
u = — = W B
2 TJL 5 +i 8
PL P”L EAS
o = —.. U = =
EA 2EA 2L
EA P ko
aso k = — thus U = =
L 2k 2
the total energy of a bar consisting of
A Al
several segmentsis \ i / }‘
N? L '
u =32y = & = Nk :{; L
1= 1= 2 Ei A| | \ l / dy
the strain energy for a nonprismatic bar . \ L |'
or a bar with varying axia force can be | P, ! I )
written as
. P2dx
u = §
° 2EA
displacements caused by a single load
Po 2U
U = W = —— ==> o0 = — g
2 P
B'?_'_- B
U = U + Ug g

strain energy density u isthetota strainenergy U per unit volume

for linear eastic behavior

U §] PPL 1 o’ Ee  oyc

u= = = = = =

vV AL 2EA AL 2E 2 2

24



modulus of resilience u,

2

u =

2E

gp - proportiona limit

resilience represents the ability of the material to absorb and release

energy within the elastic range
modulus of toughness u;

fracture, u;

the materia

strain energy (density) is aways a positive quantity

Example 2-12

3 round bars having same L

but
different shapes as shown
when subjected to the sameload P

calculate the energy stored in each bar

P L
U1 =
2EA

» N2L  P?(L/5)  P*(4L/B)  PAL 2U,
U2 :_Z = + = =

=2 EA 2EA 2E(4A) 5EA 5
Lol N’L; P?(L/15) P*(14L/15) 3P°L 3U,

3 = ) = + = =
L2 EA 2EA 2E(4A) 20EA 10

is the area under the stress-strain curve when

represents the maximum energy density can be absorbed by

the third bar has the least energy-absorbing capacity, it takes only a small

amount of work to bring the tensile stressto a high value

when the loads are dynamic, the ability to absorb energy is important, the

25



presence of groovesis very damaging

Example 2-13
determine the strain energy of a prismatic ~ + =+ + =
bar subjected to (a) its own weight (b) own l !
weight plusaload P L_ | |
(8) consider an element  dx l | (_j\_ Il

NX) = yA(L-X ' 1
y . weight dengity ) (b)
§ [N(X)]? dx Sdm@»mwx ¥ AL

° 2EA(XX) 0 2EA 6 E

it can be obtained from the energy density

N(X

g = ﬁ = y(L-X)
A

. _ 02 _ VZ(L'X)Z
2E 2E

L L [YA(L - X)]? dx ¥ AL®
U = fudv = fu(Adx) = § =
0 0 2EA 6E

same result as above
(b) own weight plus P

Nx) = yA(L-x) + P

L [YA(L - X) + P]? dx »¥AL® yPL® PL
U= § = + +
0 2EA 6E 2E 2EA

note that the strain energy of a bar subjected to two loads is not equal to
the sum of the strain energies produced by the individual |oads
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Example 2-14

determine the vertical displacement g

of the joint B, both bar have the same Al Oy
B e B
axial rigidity EA \ﬁ/ \//// p
equation of equilibrium in vertica Y :
direction, it is obtained 15
P
F = ——
2cosf

the strain energy of thetwo barsis

F*L, P°H
u = 2- = — L, = H/cosp
2EA 4 E A cos’B

the work of force P is
W = Pogl/2

equating U and W andsolvingfor og

PH
58 = - @
2 E Acos’

this is the energy method to find the displacement, we did not need to
draw adisplacement diagram at joint B

Example 2-15
acylinder and cylinder head are clamped by bolts as shown
d=05in d,=0.406in g=15in t=0.25in L=135in
compare the energy absorbing of the three bolt configurations

27



(a) original bolt

U]_:Z =
=l 2EA 2EA 2EA
r o 7 d,°
AS - Ar =
4 4

thus U; can bewritten as
2P?(g-1) 2 P?t
+

Ul =
n Ed 7 E d?
(b) bolt with reduced shank diameter g ‘_ JLL,
P*g 2P%g Slerem—=
U2 = = ‘ : s .
2E Ar nE drz SEE —
k- i %
theratio of strainenergy  U>/U; is o
U gd’ 15 - 0.5?
o = 140

U, (g-t)d?+td® (1.5-0.25)0.406°+0.25x 0.5
(c) long bolts
2P%(L-1) 2Pt
+

U3 =
n Ed? 7 Ed?

theratio of strainenergy Us/2U; is

Uz (L-t)d?+td?

2U, 2[(g-t) d*+ td
(13.5- 0.25) 0.406° + 0.25 - 0.5

= = 4.18
2 [(1.5- 0.25) 0.406° + 0.25 - 0.5

thus, the long bolts increase the energy-absorbing capacity

28



when designing bolts, designers must also consider the maximum tensile

stresses, maximum bearing stresses, stress concentration, and other matters

2.8 Impact Loading

2.9 Repeated L oading and Fatigue

2.10 Stress Concentr ations

2.11 Nonlinear Behavior

2.12 Elastoplastic Analysis
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