

 63

CHAPTER 5 A POWER-DRIVEN

MULTIPLICATION INSTRUCTION-SET

DESIGN METHOD FOR ASIPS
Power consumption has become one of the most important design issues for DSP

designs targeted to multimedia and handheld applications. An important trend for low

power DSP designs is to customize the instruction set for accommodating program

characteristics with ASIPs (Application Specific Instruction-set Processors) [5].

Due to the large area, critical timing and high power dissipation, multipliers are

the most critical components in an application-specific design. In [8], a configurable

structure was proposed to reduce the power consumption of multiplier design. The

key idea of a configurable multiplier-structure [8] to save power consumption is that

the multiplier has two configurations. When the smaller multiplication is performed,

unused parts of the multiplier are turned off, where “turn off” means gating input

signals. This technique has been proven to be very effective in power reduction.

Nevertheless, these techniques focus on ASIC (Application Specific Integrate Circuit)

designs rather than processor designs. Moreover, the bit-width of the smaller

configuration is simply chosen as the half bit-width of the larger multiplier.

However, we have observed that a smaller configuration with half of the

maximum bit-width is not necessarily a good choice for the bit-width distribution of

multiplication instructions for some specific applications. For example, in IDCT of

MPEG2 (video decoder) [52], one of the operands in mostly frequent executed

multiplication is constant, whose maximum bit width is not whole or half of the bit

width. Figure 5.1 illustrates the bit-width distribution of multiplication instructions by

analyzing the C source program of an MPEG2 video decoder. The data is collected by

assuming that two operands of a multiplication instruction are the same bit-width.

 64

Figure 5.1: The bit-width distribution of multiplication-instructions of an MPEG2

decoder design.

To achieve low power, one efficient multiplier design is using the configurable

multiplier structure described in [8] to realize all multiplication instructions. A

straightforward bit-width selection as described in [8] is to have the smaller

configuration with the half bit-width of the large one. That is, a 24-by-24 bits

multipliers with two configurations, 24-by-24 and 12-by-12. Then, using this

straightforward configurable multiplier, the power consumption is 24 × 24 × 0.49Ctotal

(instructions with operands’ bit-widths greater than 12) + 12 × 12 × 0.51Ctotal

(instructions with operands’ bit-widths equal to and smaller than 12) = 355.68 × Ctotal

(area × execution cycle count), where Ctotal is the total execution cycle count.

Instead, we can also execute the multiplication instructions with two

configurations, 24-by-24 and 13-by-13. By using this selection, the power

consumption is 24 × 24 × 0.10Ctotal (instructions with operands’ bit-widths greater

than 13) + 13 × 13 × 0.90Ctotal (the instructions with operands’ bit-widths equal to and

smaller than 13) = 209.70 × Ctotal.

Obviously, the latter configurable multiplier (24-by-24 and 13-by-13) is 41.04%

better than the straightforward one (24-by-24 and 12-by-12) in terms of power

consumption. This motivates us to investigate how to determine the bit-width of a

multiplication instruction-set using a dual-&-configurable multiplier (will be depicted

 65

in the following section) for power reduction.

The rest of the section is organized as follows. Section 5.1 presents the multiplier

structure. Section 5.2 presents the multiplication-instruction formation method.

5.1 A dual-&-configurable-multiplier structure
Before introducing the dual-&-configurable-multiplier structure, we define the

notation {M, N} as a multiplication instruction with two operands where the bit-width

of the first operand is M and the second one is N.

To speed up performance, most state of art DSP processors provide two

multipliers. Table 5.1 lists the summarized results of several processors and their

multiplication instructions. The table shows that most DSP processors provide dual

multipliers and two multiplication modes. A dual-multiplier can implement two

multiplication modes: dual-multiplication and single-multiplication. In the

dual-multiplication mode, two multipliers can execute two single multiplication

instructions in parallel. In the single-multiplication mode, two multipliers are

configured to operate on one single long bit-width multiplication. From the table, we

observe that all of multipliers (32 bits) are composed of two smaller multipliers (16

bits, half of maximum bit-width) of equal size. It seems that designers suggest that

two equal bit-widths to form a square multiplier is an efficient bit-width in terms of

area and parallelism. We would like also to exploit this problem in this thesis.

 66

Table 5.1: The survey of several DSP processors and their multiplication instructions.

Names
Type and number of

multiplier
Multiplication instructions

Analog Device TigerSharc 8 16-by-16 multipliers {16,16} and {32,32}
DSP Group OAK, Teak, Palm 2 16-by-16 multipliers {16,16} and {32,32}
Lucent Technology DSP
16000

2 16-by-16 multipliers
{16,16}, {16,32}, and
{32,32}

PHILIPS REAL DSP 2 16-by-16 multipliers {16,16}
TI TMS320C6000 2 16-by-16 multipliers {16,16}
ZSP 400 2 16-by-16 multipliers {16,16} and {32,32}

In this thesis, we adopt a dual-&-configurable multiplier as our target multiplier

structure. Figures 5.2 and 5.3 show an example of the dual-&-configurable structure.

Figure 5.2 shows our dual structure that includes two multipliers, Multiplier1 and

Multiplier2, to execute {m, n1} and {m, n2}, respectively, and the control

multiplexers. When control is set to zero, the multiplexers forward all zero values to

carry (borrow) inputs of the adders and subtraters of Multiplier1. Hence, the two

multipliers can execute two multiplications, {m, n1} and {m, n2}, in parallel. When

control is set to one, the multiplexers select the carry and borrow values of

Multiplier2 to Multiplier1 and produce one product of a multiplication {m, n1+n2}.

Figure 5.3 shows the configurable-multiplier structure used in each multiplier

which is based on the configurable-multiplier structure described in [8]. A

configurable multiplier can execute two or more multiplication instructions with

different bit-widths. Figure 5.3 shows a configurable multiplier with two

configurations that can perform two multiplication instructions: {m, n1} is executed

in Multiplier1 and {m1lp, n1lp} in Multiplier1lp. When the control is set to one, the

entire multiplier (i.e., Multiplier1) is activated. When the control is set to zero,

Multiplier1lp is activated alone. In the following section, this dual-&-configurable

multiplier structure is used as our target structure.

 67

Figure 5.2: The block diagram of a dual-multiplier.

Multiplier 1lp

A[m1lp-1:0]

control

0

1 carry & borrow

0 1control A[m-1:0]

control

0

1

0

0 1control

0 B[n1-1:0]

B[n1lp-1:0] Multiplier 1

m

n1

m1lp

n1lp
Figure 5.3: The block diagram of a configurable multiplier with two configurations.

5.2. The multiplication instruction-set formation

algorithm
This section presents the detailed multiplication instruction-set formation

algorithm. Section 5.2.1 gives the problem definition and overview of the

multiplication instruction-set formation algorithm. Section 5.2.2 describes the

algorithm to determine the bit-widths of a dual-multiplier. Finally, Section 5.2.3

presents the configurable-multiplier formation algorithm.

 68

5.2.1 Problem definition and overview of the algorithm

In an application-specific system design, the bit-widths of multiplication

operands usually have a wide variation range from different applications. Often, the

behavior of the application-specific system is statically known. Hence, it is feasible to

analyze the application programs and utilizing their characteristics to further optimize

the application-specific systems. Based on this observation, our problem is defined as

follows: Given an application specific program (or a set of programs) and input data

set, generate a set of multiplication instructions such that both the power consumption

and the execution time of multiplication instructions are minimized.

Figure 5.4(a) presents the design flow of the proposed algorithm that consists of

three steps:

Step 1: For a given application program and input data, we analyze the variables

of each multiplication statement at instruction level and report the effective bit-width

[53] of variables. In this thesis, we use the effective bit-width proposed in [53], where

the effective bit-width is calculated as the smallest size that can hold both maximum

and minimum values of a variable. We use two methods [54][55] to analyze the

effective bit-width of variables. One is the static analysis and the other is the

simulation-based dynamic analysis. After analyzing multiplication instructions in the

program, a set of initial bit-widths for multiplication instructions is determined.

Step 2: Based on the analyzed results including effective bit-width and profiling

execution sequence generated in Step 1, an instruction transition graph is thus

constructed. We, from the instruction transition graph, then determine the bit-widths

of two multiplication instructions that can be executed by each multiplier, one

multiplication instruction that can be executed by both multipliers in parallel, and one

multiplication instruction that can be executed by the concatenated multipliers. The

 69

details will be discussed in Section 5.2.2.

Step 3: After determining the bit-widths of the dual-multiplication instructions,

we apply the VLIW compiler techniques [56] to parallelize multiplication instructions

into dual multipliers. After that, we build an instruction transition graph for each

individual multiplier. For each graph, we apply a node-merging procedure as a

pre-processing step and then a graph partitioning algorithm [57] to determine the

multiplication instruction-set for the configurable-multiplier. The details will be

presented in Section 5.2.3. After determining the multiplication instruction set, we

generate the dual-&-configurable-multiplier.

Figure 5.4(b) shows a simple example of the design flow. In Step 1, the target

program is analyzed. In Step 2, a transition graph is built according to the analyzed

result. The four multiplication instructions, M1, M2, M3, and M4, and a

dual-multiplier are generated after the bit-width determination for the dual multiplier.

M1 performs {m, n1} in Multiplier1, M2 {m, n2} in Multiplier2, M3 {m, n1} and {m,

n2} in the dual multiplication mode, and M4 {m, n1+n2} in Multiplier1 + Multiplier2

by concatenating Multiplier1 and Multiplier2. In Step 3, a transition graph for each

multiplier is built according to the parallelized multiplication instruction code and the

dual-multiplier. The multiplication instruction-set for each multiplier is generated

according to the transition graph. In Figure 5.4(b), configuration number is set to two.

In Multiplier1, M1lp is generated for low power configuration, while in Multiplier2,

M2lp is generated.

 70

Target Program &
Input Data

Variable Effective
Bit-width Analysis

Bit-width
Determination for
Dual-multiplier

The Configurable-
Multiplier Formation

VLIW
Compiler

Target Program

Paralleled
Multiplication

Instruction

Step 1

Step 2

Step 3

Multiplication
Instruction-Set

M1 {m, n1}
M2 {m, n2}

{20,20}

{6,6}

{12,15}

{15,12}

{10,10}

0

Type II_1

Type II_0

0

1

0

1

Type II_0

Type II_1

0

1

0

1

0 1

{15,12}
{15,12}
{10,10}

{12,15}

{20,20}

{6,6}

{12,15}

{15,12}

{10,10}

m

0

1

0

1

m1lp
n1lp

M1lp{m1lp, n1lp}
M2lp {m2lp, n2lp}

Paralleled
Multiplication

Instruction

(a) (b)

Multiplier1 Multiplier2

{20,20}

{6,6}

{12,15}

{15,12}

{10,10}

M3: M1 and M2 in parallel
M4 {m, n1+n2}

Multiplier1 Multiplier2

m2lpn2lp

m m
n1 n2

Figure 5.4: The design flow of the multiplication instruction formation algorithm.

5.2.2 Bit-width determination for the dual-multiplier

In Step 2, bit-width for dual multiplier will be determined. First, we construct a

weighted graph to model the execution frequency and transitions among

multiplication instructions with different bit-widths. The weighted graph is

constructed from the profiling of the multiplication instruction execution sequences

generated from the target application programs. Let G=(V, WV, E, WE) be a weighted

graph, where V is a node set, WV weights on the nodes, E an edge set, and WE

weights on the edges. A node v in V represents one multiplication instruction in the

program, the weight on the node, v, represents the execution frequency of the

instruction v, an edge between node v1 and node v2 represents that instruction v1 is

 71

executed before instruction v2 or v2 is executed before v1, and the weight on the edge

represents the transition frequency between v1 and v2.

Execution sequence

Figure 5.5: A transition graph example.

 Figure 5.5 shows a transition graph example. In Figure 5.5(a), there are 5 types

of multiplication instructions in the execution sequence. Hence, there are 5 nodes in

the graph as shown in Figure 5.5(b). The numbers next to the nodes are the execution

frequencies of the instructions. For example, {20, 20} is executed 5 times (marked by

dots in Figure 5.5(a)) and there are 15 multiplication instructions in total. As a result,

the execution frequency of node {20, 20} is 5/15. The edges between nodes and the

weights on the edges are constructed also by tracing the multiplication instruction

execution sequence. For instance, in Figure 5.5(a) the three arrows show that the {20,

20} is executed before {15, 12} twice and {15, 12} before {20, 20} once and the total

number of transition is 14. Hence, there is an edge between nodes {20, 20} and {15,

12} and the weight of the edge is 3/14.

 After generating a transition graph, we determine the bit-widths of two

individual multiplication instructions for the dual-multiplier. The goal of selecting the

bit-width is to minimize the total energy consumption while taking execution time

into consideration. To that end, the first objective is to minimize the total area and

hence power consumption. The second objective is to allow as many multiplication

 72

instructions with small bit-widths executed in parallel as possible. In this case, the

total execution time is minimized.

To determine the bit-width of the dual-multiplication instructions, a

straightforward algorithm is to enumerate all possible configurations. This

enumeration takes exponential time in terms of the number of possible bit-widths, i.e.

the number of nodes in the transition graph. Instead, we consider only the

configurations presented in the nodes and edges of the instruction transition graph.

For a node v representing a multiplication instruction of {m1, n1} in G, we consider a

dual-multiplication instruction that allows two m1-by-n1 multiplication instructions to

be executed in parallel. For an edge e representing transition between multiplication

instruction of {m1, n1} and multiplication instruction of {m2, n2} in G, we consider a

dual-multiplication instruction that allows multiplication instructions of m1-by-n1 and

of m2-by-n2 multiplications to be executed in parallel. Moreover, when a

dual-multiplier is in single-multiplication mode, the bit-width must be large enough to

hold the largest operands of the multiplication instruction.

Therefore, the configuration of the dual-multiplier is determined as follows. Let

max_m and max_n be the maximum bit-width of the first operand and the second

operand of all multiplication instructions. For the configuration corresponding to a

node v representing multiplication instruction of {m1, n1}, we have a

dual-multiplication instruction with two individual multipliers of max_m-by-n1 and

max_m-by-(maximum of max_n-n1 and n1). This dual-multiplier, in the

single-multiplication mode, can support one multiplication instruction of {max_m,

max_n} and in the dual-multiplication mode, can support two multiplication

instructions of {max_m, n1} and {max_m, n1}. Similarly, for the configuration

corresponding to an edge e representing multiplication instruction of {m1, n1} and

multiplication instruction of {m2, n2}, we have a dual-multiplication instruction with

 73

two individual multipliers of max_m-by-n2 and max_m-by-(maximum of max_n-n2

and n1). This dual-multiplier can support {max_m, max_n} multiplication instruction

in the single-multiplication mode and support two multiplication instructions of

{max_m, n1} and {max_m, n2} in the dual-multiplication mode. Figure 5.6 shows a

configuration for an edge connecting nodes of {m1, n1} and {m2, n2}.

Figure 5.6: A configuration-determination example.

For each configuration c, we compute the cost function, Energy(G,c). When c

corresponds to a node, v, we have

,),(maxareatimingparallelwvcGEnergy
v

vv ××⎟
⎠

⎞
⎜
⎝

⎛
×= ∑

where wvv represents execution frequency of instruction v, parallelv is 1 if the

bit-width of multiplication instruction at node v is smaller than or equal to one single

multiplier, parallelv is 2 otherwise, timing is the critical timing of the generated

multiplier and areamax is the area of this dual-multiplier. Similarly, when c

corresponds to an edge, e, we have

,),(maxareatimingparallelwecGEnergy
e

ee ××⎟
⎠

⎞
⎜
⎝

⎛
×= ∑

where wee represents transition frequency on the edge e. If two nodes of an edge can

be executed in parallel, parallele is 1. Otherwise, parallele is 2.

 The reason behind this cost function is to minimize the total energy consumption.

The first two terms represent the execution time required to complete the job with

achievable maximum parallelism and the third term is the power consumption of each

clock cycle estimated by the total area. The total number of configurations considered

is (|e| + |v|). The configuration that results in the minimum cost is selected.

 74

5.2.3 The configurable-multiplier formation

After determining the bit-width of dual-multiplier, we need to determine the low

power configuration of each multiplier in the dual-multiplier. To decide the

configuration of each multiplier, a possible execution sequence on each multiplier

needs to be known. Since a dual multiplier allows instructions to run in parallel, the

source code is recompiled by the VLIW tool, Trimaran [56], to parallelize the

executions of multiplication instructions.

Now, for each multiplier, we have an instruction execution sequence. The next

step is to build an instruction transition graph described in Section 5.2.2 for each

individual multiplier according to the generated instruction execution sequence. The

next step is applying the multilevel partitioning algorithm [57] to the transition graph.

To determine the low power configuration, total energy cost instead of cut size is used

as the cost function of the partitioning algorithm. The cost is defined as follows.

Suppose the reduced graph G is partitioned into π = (G1, G2,…,Gn), where n is the

number of partitioning. Let GSFi denote the frequency that transitions will bring an

instruction of Gi to Gi itself and GCFij the transition frequency occurs between

instructions in Gi and instructions in Gj (where i ≠ j). Hence, GSFi is calculated as the

sum of transition frequencies (weight) of edges that connect two instructions in Gi,

and GCFij the summation of transition frequencies of edges that cross two sub-graphs,

Gi and Gj. The energy cost is defined as

,)(
,
∑∑ +×+×=

ji
jiijii overheadGareaGCFGareaGSFtEnergy_Cos |

where Gareai represents the area of the maximum bit-width instruction that can hold

all instructions in the group i, Gareai|j the area of the configuration multiplier for

group i and j and overhead the selection multiplexer overhead. The partitioned result

has two properties. One is that group with smaller area will have a higher self

 75

transition. The other is that the cross transition between groups is minimized. Clearly,

multiplication instructions with high self-transition frequencies, low cross-transition

frequencies, and low energy are desirable.

Based on the results produced by partitioning algorithm, low power

multiplication instructions and low power configurations are generated for each

multiplier. For each partitioned group, a low power configuration and its

corresponding low power multiplication instruction is generated. The bit-width of the

configuration is set to be the maximum bit-width of the multiplication in that group.

5.3 Experimental results
We have conducted two sets of experiments by using the MediaBench [52] as the

target application. Our experimental platform used the Trimaran infrastructure [56].

In the first experiment, we compared the average power consumption and area

overhead with/without applying the configurable-multiplier formation algorithm in

Section 5.2.3. In the second experiment, we compared the average power

consumption, execution time, and area of equal-size partitioning square-multipliers

design method and our proposed bit-width determination algorithm described in

Section 5.2.

We used three representative benchmarks from the MediaBench suite: one for

video decompression (MPEG2), one for audio codec (G721), and one for image

compression (EPIC). We obtained the input data of each program from [65][66][67].

Based on the profiling result on these programs, a 24-by-24 bit was selected as the

maximum bit-width.

After determining the bit-width of multipliers, we generated the Verilog design

description. The final circuit was generated by the Synopsys Design Compiler with the

TSMC 0.25um cell library. Throughout the entire experiments, we used Synopsys

 76

PrimePower to calculate average power consumption. Both dynamic and leakage

power are considered. The area and timing data was reported by Design Compiler

with the report_area and report_timing options.

5.3.1 The configurable-multiplier formation algorithm

In this experiment, we evaluated our method for the configurable multiplier with

the configurable-multiplier formation algorithm proposed in Section 5.2.3.

Figure 5.7 shows the power consumption and area comparisons with different

configuration numbers and timing constraints on the three benchmarks. Since the

results of the three benchmarks show the same trend, we only used MPEG2 (Figure

5.7(a)) as a demonstrated example. The timing constraints ranging from 32.22ns to

40.27ns (Figure 5.7(a)) were obtained by first synthesizing the 24-by-24 multiplier

with the fastest timing option, and then based on the fastest timing, gradually relaxing

the timing constraints from 105% to 125%. For each multiplier, we performed

experiments on four different numbers of configurations (from one to four

configurations).

The results show that the multipliers with two configurations achieved the

highest power reduction. For example, at the timing constraint of 32.22ns, the

two-configurations achieved 17.92% power reduction with only 7.46% area overhead.

Since more configurable control circuits are needed when increasing the number of

configurations, the result also shows that the total area is proportional to the number

of configurations.

 77

Figure 5.7: Power consumption and area of a configurable multiplier with different

configurations.

Table 5.2: The multiplication instruction-set generated by the configurable-multiplier
formation algorithm.

Bench
Multiplication
Instruction-Set

MPEG2 {24, 24} and {13, 13}

G721 {24, 24} and {16, 16}

EPIC {24, 24} and {14, 14}

Table 5.3: Power comparisons of the low power configuration with the bit-width
being the half of the larger multiplier and that instruction generated by our algorithm.

Bench
Half of Large
Multiplier(W)

Our
Algorithm(W)

Power
Improvement

MPEG2 1.22E-2 1.11E-2 9.02%
G721 1.27E-2 1.14E-2 10.23%
EPIC 1.19E-2 1.07E-2 10.08%

 78

Table 5.2 shows the generated configurations for the three benchmarks when the

configuration number is set to two. For these three benchmarks, the best bit-width of

the smaller configuration is not half of the bit-width of the large multiplier. Take

MPEG2 as an example, we can find that the bit width of a smaller configuration is

13-by-13 rather than 12-by-12. Table 5.3 shows the comparison results of the low

power configuration with the bit-width being the half of the larger multiplier (i.e., a

multiplier has two configurations, 24-by-24 and 12-by-12) and that instruction

generated by our algorithm (shown in Table 5.2). The results also show that our

method achieves 10% improvement.

5.3.2 The multiplication instruction-set formation

algorithm

In this experiment, we applied the multiplication instruction-set formation

algorithm presented in Section 5.2. The number of configurations of the multiplier is

set to two. Table 5.4 shows the multiplication instruction-sets generated by our

algorithm. For these three benchmarks, we found that the best bit-width of the smaller

multiplier in each configurable multiplier selected by our algorithm would not be half

of maximum bit-width. Moreover, two combined dual multiplier do not form a square

multiplier. Take MPEG2 as an example, two low power configurations of two

multipliers are 20-by-13(out of 24-by-13) and 13-by-13(out of 24-by-13). Two dual

multipliers are 24-by-13 and the combined larger multiplier is 24-by-26 bits.

Moreover, for the example of EPIC, the bit-widths of the two multipliers are not the

same (24-by-13 and 24-by-16).

 79

Table 5.4: The multiplication instruction-set generated by the multiplication
instruction-set formation algorithm.

Bench Multiplication Instruction-Set

MPEG2 M1 performs {24, 13} and {20, 13},
M2 performs {24, 13} and {13, 13},
M3 performs dual-multiplication, and
M4 performs {24, 26}.

G721 M1 performs {24, 16} and {14, 16},
M2 performs {24, 16} and {16, 16},
M3 performs dual-multiplication, and
M4 performs {24, 32}.

EPIC M1 performs {24, 13} and {13, 13},
M2 performs {24, 16} and {14, 14},
M3 performs dual-multiplication, and
M4 performs {24, 29}.

Tables 5.5, 5.6, and 5.7 show the comparison results of equal bit-width

partitioning of square multiplier; that is, two 24-by-12 bits multipliers (each multiplier

has two configurations, 24-by-12 and 12-by-12) and multiplication instructions

generated by our algorithm (shown in Table 5.4). From Table 5.5 and 5.6, it can be

seen that power and execution time are improved by using the instructions produced

by our algorithm. Take MPEG2 as an example. The power reduction achieves 17.91%

improvement by replacing the equal-size partitioning multiplication instructions with

the instructions shown in Table 5.4. Although the critical timing of the multipliers

generated by our method is longer than that of traditional one (32.22ns), the number

of execution cycles is reduced. As a result, the total execution time using our

instruction set is shorter than that using the traditional multiplication instruction set.

For the other two benchmarks, similar results were observed. Tables 5.6 and 5.7 show

the improvement of execution time and the area overhead. For MPEG2, the execution

time is 3.51% faster with only 8.02% area overhead. For G721, at the area overhead

of 28.27%, the execution time is improved to 10.43%.

 80

The results demonstrate that our method can improve the power consumption

and execution time of multiplication instructions with some increase in area overhead.

The results also show that the bit-width of the smaller multiplier in a

configurable-multiplier is not necessary to be half of maximum bit-width. Moreover,

the two multipliers in a dual-multiplier do not necessarily form a square multiplier.

Table 5.5: Power comparisons on an equal bit-width partitioning of square multiplier
and our algorithm.

Bench
Square

Multiplier(W)
Our

Algorithm(W)
Power

Improvement
MPEG2 2.01E-2 1.65E-2 17.91%

G721 2.32E-2 1.89E-2 18.53%
EPIC 1.84E-2 1.56E-2 15.22%

Table 5.6: Timing and execution time comparisons on an equal bit-width partitioning
of square multiplier and our algorithm.
Critical

Timing(ns)
Cycle Count

(Average)
Execution Time(s)

Bench
Square
Mul.

Our
Method

Square
Mul.

Our
Method

Square
Mul.

Our
Method

Imp.
(%)

MPEG2 32.22 33.51 8.62E6 7.99E6 277.74 267.99 3.51
G721 32.22 34.14 4.85E6 4.10E6 156.27 139.97 10.43
EPIC 32.22 33.72 2.38E6 2.11E6 76.68 71.15 7.21

Table 5.7: Area comparisons on an equal bit-width partitioning of square multiplier
and our algorithm.

Bench
Square

Multiplier
Our

Algorithm
Area

Overhead
MPEG2 188527 203646 8.02%

G721 188527 241829 28.27%
EPIC 188527 222800 18.18%

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

