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Abstract

Power optimization has always been an important issue for modern IC design.
In this paper, we present a power optimization technique for clock tree by
applying multi-bit flip-flops and reducing total wire length. Through merging
flip-flops into MBFFs, we effectwelgg—neduce _power consumption caused by
clock buffers. Moreover, by j_HdﬂGlOuS.,l:y m@?glng and placing the MBFF's, the

total wire length is also slg;n.}ﬁcam'}y tred;_geed \'The combined effect of both
% |L| i‘:‘ ST e

clock network.
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Chapter 1

Introduction

In modern VLSI design, power has become a critical issue. With limited
power/thermal budget, as well as the i 1ncreasmg demand of reducing power

dissipation, minimizing power consIIInptlon -has become one of the most im-

portant objectives.

Power consumption. of and Crchi 1E:_C:ar,;r.be Qcaitegorlzed into two types: dy-

namic and static power cdr;,sﬂmpti C'l@ck- t}'ee is one of the major causes

of both types of power dlssrpau‘ff-i.c}n1 nsume as much as 40% of the

I ey €0

total power [1] of the IC due to 1ts ﬁequent switching activity; clock tree is

also the major consumers of leakage power because of the large number of
buffers it contains. A lot of work related to reducing power consumption of
clock tree has been proposed. Some address this problem when constructing
clock network, reducing power consumption by planning a suitable topology
and inserting buffer wisely [11]. Creating multiple supply voltage [3] is an-
other approach. Donno et al. [9] and Mahmoodi et al. [8] use clock gating
to resolve this problem. Energy recovery is also a feasible approach adopted

in [8]. Lu et al. [6] and Lou et al. [10] focus on minimizing clock networks
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Figure 1.1: An Example of merging two 1-bit FF's into one 2-bit FF

through replacing non- tlmlng—cmj;k%—-l_ 'Q-GHS Wl.th their high V; counter parts.
Hou [5], Kretchmer [7] Jam}d @h@flg ZT took another direction: applying

multi-bit flip-flop (MBFFj,i,_ﬁi‘i.regwtﬁ_bank‘s rMBFF is one of the most effec-

tive methodologies in sav1ﬂgéoth@1p;q®§nd power consumption. Hou [5]
proposed an incremental clobk t'f'e.q p,lmeﬁheﬂ’t Hlow applying MBFF. Kretch-
mer [7] introduced a design methodol,ogy o create the models of multi-bit
registers in the cell library to be inferred by logic synthesis tools. Chang [2]
incrementally applied MBFF's at post-placement stage.

Figure 1.1 shows an example of merging two 1-bit flip-flops into one 2-
bit flip-flop. Originally each flip-flop requires two inverters to generate clock
signal respectively. However, due to the manufacturing ground rules, in-
verters in flip-flops tend to be oversized; as the process technology advances

into smaller geometry nodes like 65nm and beyond, even the minimum-sized

inverter-chain can still drive more than one flip-flop. We can merge multiple

1-bit FF ‘ c».;.si;i “““ Sharing clk signal



Table 1.1: Industrial Test Cases

H Bit Number H Power per Bit ‘ Area per Bit

1 100 100
2 86 96
4 78 71.25

flip-flops into a multi-bit flip-flop; through sharing of the clock signal, the
number of inverters required, as well as the power consumption and area
occupied can be significantly reduced; Table 1.1 shows comparisons of power
consumption and area of flip-flops with different bit numbers. Also, through
choosing proper clusters and placement location, the wire length can also be
reduced.

We address the problem__ of .applymg i -1-11'ti—bit flip-flops when perform-

ing synthesis of clock netwt}r_ W pmp(}se a’ novel power optimization

':"ng l}m Wlth zh chque—based approach. The

method of clock tree by abﬁl'

cluster problem of flip- ﬂops &s faxrhl}lattéd __'w chque finding and maximum
independent-set problems Throd.gﬂ R’eeratWe window-based optimization,
the flip-flops are gradually clustered mto MBFFS, reducing the total power
consumption and area of the clock tree; the total wire length is also taken
into consideration to avoid additional driving load and further reduce power
consumption caused by long metal wires.

The remaining chapters of this paper is organized as follows: Chapter 2
gives the motivation of our approach; the weakness of previous work is ana-
lyzed. Chapter 3 describes the problem formulation. Chapter 4 details our
proposed algorithm. Chapter 5 presents the experimental results. Chapter 6

gives the conclusion of this paper.



Chapter 2

Previous Work and Motivation

In Chang et al’s work [2], they proposed an algorithm to reduce the power

consumption of clock tree by replacing flip-flops into multi-bit flip-flops. To

realize this process, each t1me a ijibw "s:'_selected For flip-flops within the

window, a set of chques COIlSl 1'rfg Gf Theges” ﬂlp ﬂops is computed, where each

is evaluated in terms of power.-co:n:s-ﬁrﬁﬁ‘@g(jn-:and wire length overhead. The
algorithm repeats the above procedure until the whole chip is processed.
This flow is capable of effectively merging flip-flops into multi-bit flip-flops.
However, there are three key factors of this algorithm left to be discussed.
First is the size of the selected window. In Chang’s work, the window size
is fixed to two values. We found it is better to adjust it dynamically. A sim-
ple example of our reasoning is shown in Figure 2.1. Initially the distribution
of flip-flops is relatively dense; a smaller window size suits (Figure 2.1(a)).

However, as the clustering process proceeds, the distribution of flip-flops be-



(a) (b)

Figure 2.1: As the distribution of FFs becomes sparser, a larger window size
is preferred.

comes sparser. A larger window size is required in order to reach solutions

involving clustering distant ﬂlp ﬂopS‘(Figure 2.1(b)). We proposed a mech-

anism to dynamically ad‘]us"- ) Slﬂe'-oi"-ﬁle"selected window to reflect the

merged is not considered anymoré "As shovvn in Figure 2.2, Figure 2.2(a) is
the original flip-flops. If the cluster state of Figure 2.2(b) is reached first,
the solution of clustering the flip-flops as Figure 2.2(c) will not be considered
anymore. In order to rectify this deficient, we proposed disruptive collec-
tion, which is to decompose the merged multi-bit flip-flops so that a broader
solution space can be explored.

Last is the process of generating clique set that corresponds to cluster
combinations satisfying the given constraints. An accurate and fast wire es-

timation for cliques is proposed to identify potential long metal wires. A
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Figure 2.2: (a) Given flip-flops. (b) Clustering status in [2]. (c) A better
solution.
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pruning mechanism using this method to eliminate inferior cluster combina-
tions is adopted in our synthesis flow. Benchmarking results show that by
applying this estimation mechanlsm we significantly reduce the total wire
length for merged flip-flops a,nd,ﬂre-:;@sultmg‘ power consumption.

e 7éiﬁplaﬁned in Chapter 4.

.!_t a

The details of our alg;om‘jahrﬁ it




Chapter 3

Problem Formulation

This chapter is to describe the problem formulation in detail. The section is
organized as follows: Section 3.1 gives the detail and definition of input data;

Section 3.2 formally defines theobﬁmv?fuhctlons, Section 3.3 specifies three

major constraints of thi_g._ﬁ_ bler’n :

Lk

This problem has the fOHOW-:l.:ﬁg'_';l_-:'Il__‘@_u_ST'_____

e The width W, and height H, of t.he chip C.

e The width W, and height H, of placement grid. Placement grid is the
basic resolution unit; pins and flip-flops must be placed on grids. There

can be only one pin or one flip-flop on each placement grid.

e A set of pre-placed flip-flops F'. Each flip-flop f; € F' is with its coor-

dinate (xy,,yy,), and can be either 1-bit or multi-bit.

e A cell library L containing a set of flip-flop cells. For an m-bit flip-flop



Ji" in L, the power consumption PCym of fi", and the area of f™ Asm

are specified.

A set of pins P. Each pin p; € P has its coordinate (,,,y,,;), which

can be either an input pin or an output pin.

A set of net N describing the connections between F and P. For each
m-bit flip-flop f/* € F, there are total 2m nets, where m nets connect
to m input pins of f™ and m nets connecting m output pins of f/*. For
a net n;;(p;, f;) connect to a pin p; € P and a flip-flop f; € F, there is

a specified slack S;;, where S;; >= 0.

A set of bins B with glven Wldth Wb and height H,. The chip C is
covered by b; € B

A set of pre—placed .l@gK:"jbI%_ K '.ET,Ch k; € K is with its own

coordinate (xy,, yk )| aﬁdffﬁe area Of k; Ayt The maximum placement

density Dynqz-

3.2 Objective Functlon |

The Synthesis of Multi-bit Flip-flops for Clock Power Reduction Problem is

to minimize the total power consumption of all flip-flops f; € F' by replacing

flip-flops with MBFF's specified in the given cell library L, as well as the the

total wire length of every net n;;(p;, f;) € N.

The total power consumption of all flip-flops f; € F' is calculated by

aggregating the power consumption PCY, of each flip-flop f; € F.

PCp=Y PCy Nfi€F (3.1)

8



The total wire length of N is the aggregation of the wire length of every
net g € N.
Ly =Y Ly, Vn; €N (3.2)

The wire length L,,,; of net n;;(p;, f;) is defined as the Manhattan distance
between p; and flip-flop f;. Let (x,,,y,,) be the coordinate of pin p;, and
(zy,,yy,) be the coordinate of flip-flop f;,

LNi :| (xpi - xfj) | + | (ypi - yfj) | (33)

3.3 Constraint

In this optimization problem there are. three constraints: Non-overlap con-

3.3.1 Non—Overlap .Cons _,ra].n

Placement grid is the basic r-e_sel_t;_ct_ pms and flip-flops must be placed

forinit;
on grids. Each placement grid i only be occupled by either one pin or one
flip-flop. For a chip C' with width W, and height H,., there are total % X %
placement grids. When generating multi-bit flip-flops, one must avoid placing
the new flip-flop onto an occupied grid.

Also note that the coordinate of pins cannot be changed. However, the
flip-flops in original design can be re-placed in order to optimize the total

wire length.



congestion, there is a placemen’t densﬂ:y Constralnt D,q. to all bins. When

a new flip-flop is generated, it can only be placed into a bin where the area
consumption of the bin after adding up the area of the new flip-flop does not
exceed D, as stipulated.

An example is shown in Figure 3.1. Each square denotes a bin. The
number on each bin is the total area of pre-placed logic blocks and flip-flops
within the bin. Let D,,., equal to 10. In this example, the grey bins in
Figure 3.1 violate the placement density constraint since the total area of

those bins exceed D,,q., while the white bins satisfy it.

10



To further define this constraint: Let Ag,, be the total area of pre-placed
logic blocks within bin b;, and Ap,, be the total area of flip-flops in b;.

AKIn‘ + AFM <= Dmaxavzji eB (34)

3.3.3 Timing Slack Constraint

For each n;;(pi, f;) € N, there is a slack S;; given in the input file for the net.
Si; is the additional driving load that pin p; could afford. The timing slack
constraint demands the slack of every net remains larger than or equal to zero.
This constraint may be violated when reposition of flip-flops. If a flip-flop
f; of a net n;;(p;, f;) is relocated, the slack of the net will increase/decrease

according to additional dlstance between the pln and flip-flop. When merging

f1 and f5; fi is connected t@ pl an‘d- b_lz"‘by et _nn and ngy; respectively; f2 is
connected to p3 and p4 by net n32 and” n42 :fl and f are to be merged into a
2-bit flip-flop f3, which connects to all four pins, pq, p2, p3 and ps. As shown
in Figure 3.2(b), due to relocating and merging f; and fs, the additional wire
length and the resulting driving load lead to a negative slack on ny3(p1, f3)
and ns3(ps, f3), violating the timing slack constraint.

The timing slack constraint can be formulated as follows:

Let T;;max be the maximum timing tolerance of net n;;(p;, f;), where f;

is the original locations of flip-flop sink specified in the golden input.
Tijpax =| wp, — g, [+ | Yp = ys,, | +5 (3.5)

11
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Figure 3.2: After merging f; and f5 into f3, the additional wire length caused
timing violation on net nz and ny.

After repositioning flip-flops or merging them into MBFFs, for every net

ni;(pi, f;) € N on the chip, the.corresponding 7;; must remain equal to or

— .

less than its Tjjapax.

e
| Ry i

The golden input des_l-grf:sh ?M;ﬁ:lss;’f

e

I I:Qe@ﬁall aforementioned constraints
L oA L T
before performing power/wire. length-optimization.

A,
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Chapter 4

Synthesis of MBFF

Based on the aforementioned problem descriptions, we proposed a window-
based cluster algorithm, which 1terat1vely selects a window from the chip and

merge the flip-flops within the Wl‘IIdUW"l to multi-bit flip-flops.

Our optimization proce.ss

‘dw'ided'iﬁt 5 foy__r phases, as shown in Fig-
ure 4.1. Each phase performs ﬁ'r_atxgn_gf ?ur window-based cluster al-
gorithm. The first phase -E;eg [" 'r' o.-'ﬁzér@p‘twe Clustering (RNDC) gen-

erates an initial solution; the_s” “Dynamic Non-Disruptive Clus-
tering (DNDC) and the third phase Dy-nam%c Disruptive Clustering (DDC')
further refine the result; the last phase, Corner Case Refinement (CCR) fo-
cuses on enhancing corner cases. The detailed differences and transitions of
these four phases will be explained in the later sections of this chapter.

A detailed pseudo code of our window-based optimization is shown in
Figure 4.2. In the first stage, a window W is selected. In the second stage,
we collect Fjoeqr, the set of flip-flops within W, and based on Fj,.,; we compute

Fiarget, which is the target set for our algorithm to generate MBFFs. In the

third stage, a clique set C' for Fi,, 4 is computed, and each ¢* € C'is a legal

13



Regular Non-Disruptive Clustering (RNDC)

v

Dynamic Non-Disruptive Clustering (DNDC)

v

Dynamic Disruptive Clustering (DDC)

v

Corner Case Refinement (CCR)

Figure 4.1: Four phases of our optimization process: RNDC, DNDC, DDC
and CCR and the transitions between them.

cluster corresponding to a celi type_ f“’f.-E L.__The algorithm greedily selects a

There are two key factors @f dlﬂ-fi wunda\;«based clustering algorithm. First
is the size of the selected WlndOW W Second is the mechanism to compute
Fiarger- Instead of adopting all flip-flops in Fj,.q directly as in [2], we intro-
duce disruptive collection, optionally decomposing flip-flops in Fj,.,; before
merging them. The details will be discussed in the later sections.

The remaining sections of this chapter are organized as follows: Sec-
tion 4.1 renders the transitions between the four phases of our optimization
process; Section 4.2 focuses on deciding the size of selected window. Sec-
tion 4.3 gives details of disruptive collection, our proposed mechanisms to

compute target set of flip-flops to merge. Section 4.4 explains the clique-

14



Algorithm 1 Window-Based Clustering
while termination condition not met do

if non-disruptive collection then
-F}.Grget +— K local
else

| for all fi € Flocar do

Fromponent +— component FF's of f;

-
| Earget — m |
|
|
| Compute Target FF Set
|
|

| Fe—F—f
| -Fr.urger, — Fmrger, + chnponen:
end for

| Compute clhique set C' |
while C' £ 0 do |
| ¢ 4—€ C with the lowest cost
| if there is a legal placement grid for ¢ then |
Create an m-bit flip-flop f™ to merge all f; € ¢ |
| C+—C—ct Generate MBFFs
| Flocat + Flocal — fi = C:;n |
F+ F— f?; = E‘?’ |
| end if

end while

Figure 4.2: Window-Based Clustering

15



based merging process. The generation of cliques and pruning of solution

space will also be discussed.

4.1 Phase Transition
4.1.1 RNDC

In the first phase of our optimization process, Reqular Non-Disruptive Clus-
tering (RNDC), the chip is equally divided into windows with same size.

This phase ends after clustering of all windows is completed.

4.1.2 DNDC and DDC

For the second and the third phases (DNDC'and DDC'), these two phases end

when the solution conver_g;es..— P hg &éﬁmﬁo_: of -convergence is as follows: Each

8| -WLthln this window is clustered

i :|.- 1

is called a round. After cq)m-

.|i'_

o d, .the reduction of total power

guaranteed to be either equai to OF: larger- than zero. If the number of rounds

with zero gain consecutively is larger than a threshold T, our optimization

process will end current phase and continue to next phase.

Threshold T is defined as follows:

# of FFs in input
# of bits of MBFF in L with smallest bit number

T=ax (4.1)

where L is the library of MBFFs given in the input.
Ideally during each round the process should be able to merge several

flip-flops into one MBFF with the minimum bit number. We use the ratio

16



of the original number of flip-flops in the input to the number of bits of the
smallest MBFF as the threshold to indicate time to end current phase. For
DNDC| « is set as 1; for DDC| in order to pursuit the quality of solution
more persistently, a is set to 5 to allow more rounds of attempts to search

for better cluster.

4.1.3 CCR

The last phase of our optimization process, Corner Case Refinement focuses
on enhancing flip-flips with the highest 20% power consumption. Each round
one of those flip-flops is used as the center of the selected window to perform
our window-based clustering. This phase ends after all the aforementioned

flip-flops are processed.

4.2 Select Wlndo

We apply a Wlndow—based a‘p‘pr

processing only a window 1nstead -Ofl —the Whole Chlp at a time, the original
problem is divided into smaller ones o be conquered.

In Chang et al.’s work [2], the size of the selected window is fixed as
either 2 x 2 or 4 x 4 bins. We observe that the window size should relate
to the specific volume of the chip instead of bins. Moreover the window
size should be able to adjust more freely. Our algorithm adopts fixed and
dynamic window size according to different stages of clustering. Here we

introduce the specific value o to control the window size.

17



_ Width x Height
~ number of FFs

The details of our mechanism will be discussed in the following subsec-

(4.2)

tions.

4.2.1 Fixed Window Size

When computing an initial solution of our algorithm in RN DC phase, a fixed
window size is preferable. In consideration of run time and the relatively
dense nature of the initial input, we use a fixed specific value 0 ¢izeq in this
stage.

O fized 1S set as:

(4.3)

where W, and H, are the W:[d:b ! &iel_ght

Since the number of “ﬂlpaﬁops.-m. the-__r@?ut as Well as W, and H, are all

constants, o izeq is also constan-t-.':The thp 1s d1v1ded into identical windows

with the same width and helght (Jf,-md) to be processed.

4.2.2 Dynamic Window Size

After the initial solution is computed, in order to retrieve a further refined
solution, the algorithm should allow distant flip-flops being merged together.
A larger window size is thus required. It is dynamically adjusted according

to O dynamic-

W.x H,
current number of FFs on the chip

(4.4)

O dynamic =

18



where W, and H,. are the width and height of the chip respectively and are
both constant. As the clustering process proceeds, the number of FFs on the
chip decreases, leading to a larger og4ynemic. This trend fits our requirement
of a growing window size.

In DNDC and DDC phases, the exact coordinates of the selected window
are randomly decided, with the size computed as oaynamic-

In C'CR phase, we focus on clustering poorly merged flip-flops. The flip-
flops with the highest 20% power consumption are to be re-processed. The
window size in this stage is computed in same fashion as ogynamic. However,

the flip-flops to be processed are set as the center of the selected windows.

4.3 Compute Target,—FFSet

In Chang et al’s work |2 [ ],,dnee.@ ﬂ1p floptis: erge into a multi-bit flip-flop,

other solutions 1nv01v1ng t. i lop 'being merged is not considered

anymore. In order to overeerﬁe th&_.weakpess When computing Figpget, the
set of flip-flops to merge 1nto MBF Ij's, We propose the option of disruptive
collection, which is to decompose the merged flip-flops into its component flip-
flops and re-cluster these component flip-flops instead of directly adopting

the existing Fjoeq (non-disruptive collection). The details of both mechanisms

will be elucidated in the following subsections.

4.3.1 Non-Disruptive Collection

In our algorithm, each time for a window W selected to be processed, Fjocq
is the set of flip-flops whose coordinated are within W and Fi,ge is the set

of flip-flops to be merged. If Fi, 4 is computed in the fashion of directly

19
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Figure 4.3: Possible composition of a merged MBFF: the 4-bit flip-flop f! is
composed two 1-bit flip-flops fI and f3, and a 2-bit flip-flop f7.

adopting Fjocq, it is called non-disruptive collection. The advantage of this
method is that it is easy for computation with fast run time. However,
as mentioned before, this mechanism lacks the ability to reach for a broader

range of solution space. We utlhzeth'.rs approach in RN DC phase to compute
-~ 4

initial solution, generatl_p_g N

_F!F_-'Wlth fi:ist" un time and fair quality.

4.3.2 Disruptive (:TJ' ]

After initial solution is con_lpl__l_.t_‘g?d,,

]

_f_
j‘no

|'

_Fder___:___ ] ;e'a-rch the solution space more
thoroughly, we propose disrﬁpzﬁ%@e _c?l_l_ec_tzén-,: which decomposes the merged
flip-flops and re-cluster.

As shown in Figure 4.3, each newly merged multi-bit flip-flop is con-
structed by several component flip-flops. For a merged 4-bit flip-flop f}, it
is composed of three flip-flops: two 1-bit flip-flops f} and f}, and one 2-bit
flip-flop fZ, while f? is composed of two 1-bit flip-flops, f3 and f}. f{ can in
fact be decomposed back into f{, fa and f2, or into f}, f3, f3, and f}.

In the example in Figure 4.4, originally Fj,.q has two 1-bit flip-flops, f}

and fy, and a 4-bit flip-flop f}, where f} is composed of four 1-bit flip-flop f1,
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Figure 4.4: Decomposition the 4-bit flip-flop f{: (a) Original clustering. (b)
Target set after disruptive collection. (¢) A better solution.
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fi, f4, and f§ and f{ and f; cannot be merged together due to violation of

timing slack constraint. If we adopt non-disruptive collection, we cannot find

any better solution. However if disruptz’ve collection is performed and f{ is

flip-flop and one 4-bit ﬂlp ﬂ@rp-:- fi '::' *hmwn-ln Flgure 4.4(c).

The procedure to decompo-s Iafgwen ﬂ,}iﬂ ﬂops is shown in Algorithm 1.
F' is the global set of flip- ﬂops inthﬁTélusterlng result. Figrger is the set of
target flip-flops to be merged, 7; s the-ﬂlp—ﬂops to be decomposed, and f; is

recursively broken down into its component flip-flops.

Algorithm 1 decompose fI (F, Fiarget, fi)

if f; is not basic FF then
for all f;’s component FF f; do
decompose f(F, Fiorget, f5)
end for
F <+ F—f
end if
Earget < _Ftarget + fz
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In our algorithm, disruptive collection is adopted in DN DC', DDC'" and
CCR phases to compute Fjgge. If the quality of the solution in measure
of power consumption deteriorates after performing disruptive collection and
re-clustering, our algorithm would restore the cluster status back to before

decomposing and re-clustering.

4.4 Generating MBFF

Once a window is selected and the set of flip-flop Fi4pger Within the window
is obtained, the clustering of Fj,,4¢ is performed. We propose a clique-based

algorithm to decide how to cluster flip-flops in Fj4,4e; into multi-bit flip-flops,

while satisfying the constramts in Chapter 3 Section 3.3.

In order to meet the tlmmg SIack_c‘onstD&mE a'll ﬂlp flops must be placed on

a grid on which all nets connectfﬁg'ﬂb‘ th -:ﬂlp flop are with a slack larger
than or equal to zero. For a ﬁlp—ﬁop fir let P; be the set of pins connected
to f; by a set of nets N;. Let Ty;prax be the maximum timing tolerance for
net ng;(pr, fi) € Ni,pr € P, as defined in Equation (3.5). Let VT'SR of pin
pr be the set of grids with the Manhattan distance from the grid to pj less
than or equal to the Ty;pax. To satisfy timing slack constraint for all nets
in N;, f; must be placed within the intersection of VT'SR of every pin in
P;. The intersection of VI'SR of every pin of a flip-flop f; is defined as the
valid timing slack region of f;, VI'SRy,. An example is shown in Figure 4.5.
f1 is an 1-bit flip-flop with two pins p; and py connected. VT'SRy, is the
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tﬁeiﬁzi:’ﬁéi's'__ t:i'p-ri'_of the VT'SRs of the pins
2

Figure 4.5: The VTSR fof! f
connected to the f; = f;lr_"

VT SRy, = intersection of VISR of every pin connecting to f; (4.5)

Given two flip-flops f; and f;, let P; be the set of pins connected to f;
by net set N;, and P; be the set of pins connected to f; by net set N;. If
fi and f; are to be merged into a new flip-flop f;, the timing slack on all
nets in /V; and N; must be satisfied after reconnecting to fi. VI'SRy, is the
intersection of VI'SR; and VT'SR;, which are the intersection of VI'SR of
all pins in P; and P; respectively as Equation (4.6).
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VTSR, = VTSR, NVTSRy, (4.6)

If f; and f; are to be merged into a new flip-flop f but VI'SRy, is null,
fi and f; cannot be merged together since the timing slack constraint cannot
be met. Figure 4.6 shows an example. f; and fy are the flip-flops to be
merged, and VI'SRy, and VI'SRy, are the valid timing slack region of f;
and f; respectively. VI'SRy, and VI'SRy, does not intersect; VI'SRy, 4, is a
null set. f; and f, cannot be merged together since there is no grid satisfies
the timing slack constraints for every net connecting to f; and f.

Let F' be the set of flip-flops to cluster together, the VT'S R for the merged
multi-bit flip-flop is the mtersectlon of YV SR for every f; € F. For exam-
ple, in Figure 4.7, f1, f5, f3 i ¢
VTSRy,, VI'SRy, and VTSR'
tively. The merged MBFF: mu

all the four flip-flops, VTS Rfl f.ﬂjéfl‘

ry

'_ .--| |_

4.4.2 Valid Tlmlng Slack Cllque (VTSC) Generation

A VTSR intersection graph is a non-directed graph G(V,E), where each
vertex v; € V corresponds to a flip-flop f; in the design. e;; between vertex
v; and vj exists if the intersection of VI'SRy, N VTSRy, # (.

If a set of flip-flop is to be merged, as aforementioned, there must be a
non-null intersection of the V'S Rs of every flip-flop in the set, which means
that there is an edge e;; between every v;,v; € V. In other words, for all v;
corresponds to the set of flip-flops, they form a clique.

Let a window W be selected, and the target set of flip-flop to merge
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Figure 4.6: f; and f5 are to FFs be merged. If the intersection of VT'SRs of
f1 and f5 is a null set, f; and f5 cannot be merged together.
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Figure 4.7: The merged MBFF must must be placed within VT'SRy, 4,41,
which is the intersection of VT'SRs of f1, fa, f3 and fy.
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Figure 4.8: (a) intersection graph of six FFs. (b) enumeration of correspond-
ing cliques of (a).

Fiarget is collected. To explore the cluster combination of Fjgg4e, the VISR
intersection graph of F' is ﬁrsthﬂ_é?;‘tgd’l“hen we enumerate cliques with

degree less than m in the'i

séct%)nrgrabhwhere there is a corresponding
cell type in the input hbrr«ilrg"l} g{lt%ltﬂ;m}?ﬁr m.

To enumerate cliques, hh?‘?aﬁ-r 9ps1ﬁ:fbhﬁf,1ﬂbut forms the initial cliques in
the clique list. Each time tWQcququ;bﬁ J@m%ésted to see whether their VI'SR
have non-null intersection; if--y(;s--,- th?s_e :-f;;f-é"(-z-liques forms a new clique. This
new clique will also be tested with other cliques to derive larger cliques.
The process repeats until all combinations to form cliques corresponding to
multi-bit flip-flop with the maximum bit number in the library is explored.
An example is shown in Figure 4.9. Figure 4.8(a) is the VTSR intersection
graph of six flip-flops. Figure 4.8(b) shows the corresponding enumerated
cliques.

However, if the above clique generation method is utilized straight for-

ward, many redundant solutions with large wire length cost may be generated
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quQ ()

Figure 4.9: (a) intersection graph of six FFs. (b) enumeration with pruning
of corresponding cliques of (a).

and consumes momentous computation time A branch-and-bound method

is applied to eliminate these undﬁSl@ ?chque$ and limit their number. If the

g’
e

estimated wire length of the;c‘l}aqﬁé aﬂdi lts*é respondmg flip-flop is too long,

this clique is considered 1;11}_@&1‘&15

II&._ané bep-pruned In Figure 4.9(b), the
grey cliques are cliques pruﬂé&_b&_sgd -'-nllabave pruning mechanism. Cliques
with too large wire length are céhalld?md hndesnable and will not be used to
derive more cliques. For 1nstan(‘;e Cog m Flgure 4.9(b) is pruned, along with
its derivative caz4.

The pruning procedure is shown as Algorithm 2. In this algorithm,
AV W L is the average wire length of each pin in the golden input, computed
as Equation (4.7).

Vn;; €N
wire length of ni;

# of pins
To estimate the wire length of clustering flip-flops, EW L is defined. It

AVWL = (4.7)

is computed as follows. For an m-clique ¢, which corresponds to an m-bit
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Algorithm 2 Prune Clique (7", f}")

if ow < 0goiden then
return false;

else if estimated wire length EWL > #pins X AVW L then
return true;

else
return false;

end if

flip-flop f}", an estimation point EPfjm is the point within VTSRme used to
estimate wire length for f;". The estimated wire length (EW L) of ¢* and its
corresponding flip-flop f/™ is the aggregation of Manhattan distance between
EP and every pin connected to f/".

To compute the coordinate of the EP, first we need to compute three
types of estimation points, inner ‘point (IP), meso-point (MP), and outer
point (OP). The estlmatlon pomi:- _Ei_ fm---is the weighted center of its inner

S ronp bt vrsn %
Bimmer = —PECEAPE WIWTL VISE) P (4.8)

# of component FF

Winner, 18 the weight of z;,,e- and is computed as Equation (4.9).

VVinnerﬂc - g | Linner — Lpy | (49)
(Vpr€P;j,pr Within VTSR)

Yinner and its corresponding weight Winner, are computed in similar fashion.
For pin p,, which is outside VT'S Ry, but within bounding box of VI'S Ry,
the estimation point for p,, M P,, is the point on the edge of VT'SRy, with

the minimum Manhattan distance to p,. meso-point can be obtained by
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Figure 4.10: An Example of inner point (IP), meso-point (MP) and outer
point (OP).

solving linear equations. The Welght of M (a:mesops,ymesops), Winesop, > 18

point outer point is the Gd.l: -_
distance to p;. The Welé'htl 4:15 (
between p; and OP,,. Ly o . _

Figure 4.10 shows an exam.l-ol-e of eé’tiﬁation points. f; is a 2-bit flip-flop
with four connected pins, p1, ps, p3 and py. First, p; and ps are inside VI'SR
of f1. The inner point for p; and p, is computed as Equation (4.8), as point
IP marked on the Figure. Next, ps is outside of VT'SR of f; but within
bounding box of VI'SR of f;. Thus M P of ps is the point on the edge of
VTSRy, with the minimum Manhattan distance to ps. Finally, ps is outside
of the bounding box of VI'SRy,. The estimation point of ps, OF,, is the
corner of VI'SRy, closest to py.

The estimation point of f", EPme (Zestimate, Yestimate) 18 the weighted cen-
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ter of inner points, meso-points and outer points of all pins connected to

e

Linner X VVinnerz + Z('xmesopS X Wmesops$> + Z(xouterpt X Wouterpt .’L’)

Lestimate = VVinneT‘z + Z Wmesopsx + Z WOut@Tpt €
(4.10)

Yestimate 18 computed in similar fashion.

4.4.3 Clique Selection

Let C be the set of all VT'SC' of the flip-flop set F' explored by method in

Section 4.4.2. To select VT'SC's to merge into multi-bit flip-flops, we propose

Each time our algori't'hr:ﬂﬁ___p*i@kg fﬁgﬁ'éﬁqu_e-lémm with the minimum cost

to perform clustering; then-eve-fi;: &her liques with flip-flops in ¢y, are

removed from the set.

4.4.4 Decide Location of MBFF

When an multi-bit flip-flop f™ is generated, the coordinate of f™ is decided
by searching VISR of f™. The grid within the VTSR that satisfy the den-
sity constraint and with the minimum wire length to all pins connected is

chosen.
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Algorithm 3 Selection of VIT'SC

Sort C' in descending order with respect to R; of ¢;
while C' # () do
if there is a legal placement. grid: Wlthm VTSR
Merge f; in ¢pip into: MBF-F:}‘;_ - "..
F < F — (fiincyin) vj;-f':% . fi Ep

then

Cmin

“"-“‘1

___.
7

for all ¢; € C do~ .-":- el {E 3y !.‘-"". ¥
if any f; in ¢ aléb‘"—mh%j,ﬁ ea“f,'-. | 2
C<—C’—cl_ II,_.;_? .--.Ir
end if & '-.__ :E—f._&::\_ {;-'f..h:’; 2 ; )
end for ya .}:\____ N
end if -~ =
end while SN
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Chapter 5

Experimental Result

We implement our algorithm in C programming language under Linux oper-
ating system. We applied six industrial test cases to corroborate the quality

of the solution our algorlthm The J:r[IIrrber of flip-flops in these cases ranges

from approximately 100 to | 0()’0@ "Thﬁ *&kact compos1t10n of the test cases
are listed as Table 5.1. W'e- adof!f;

kinds of flip-flops. The spéqxﬁc&ﬁo _Qf fhe:}_f-brhry is shown as Table 5.2.

with 4-bit, 2-bit and 4-bit, three

Our experiments 1nclude tw‘ artﬁ_ 'EIIS -JS to validate the effectiveness

of our pruning mechanism and wire length estimation method. Second we
compare the power reduction, wire length ratio, and runtime of our algorithm

with Chang et al’s work [2].

33



Table 5.1: Industrial Test Cases

H Case H # of 1-bit FFs \ # of 2-bit FF's \ # of 4-bit FFs \ HPWL H

cl 76 22 0 89425
c2 366 o7 0 60132
c3 1464 228 0 240528
c4 4378 751 0 772076
cd 9150 1425 0 1083300
cb 146400 22800 0 24052800

Table 5.2: Area and Power of Industrial Test Cases

H # of bit \ Power \ Area H
Sl 1000 | 172
~ A 720, "1192

A 'n'rn.
In Chapter 4 we proposed an appmach to estlmate the wire length of a

clique based on its correspondmg 1mplementat10n of multi-bit flip-flop, and
use this information to prune inferior cliques. Table 5.3 shows the number of
cliques enumerated during computing each case with and without applying
our pruning mechanism. The result demonstrate the effectiveness of our
pruning mechanism to reduce the computation time. Table 5.4 further shows
the average wire length estimation error percentage of each test case. Among
all cases the maximum average estimation error is less than five percent,
manifesting the accuracy of our estimation mechanism, which is capable of

predicting the wire length without actually searching every placement grid
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Table 5.3: Number of Cliques Enumerated of Each Case

w/o pruning | w/ pruning

# of cliques | # of cliques
cl 1,454,263 649,129
c2 1,916,864 1,508,818
c3 2,172,782 1,241,211
4 || 4,290,655 1,450,271
5 | 2,228,695 1,446,202
cb 72,644,440 7,547,874

Table 5.4: Error Percentage of Wire Length Estimation of Each Case

H Case \ Average Error % H
cl | 4.28%

in VT'SC of the clique.

Figure 5.1 visualizes the es’t'in;;f-xtg(.i:-\-'v'i'fé“length and the actual minimum
wire length for all cliques generated during computing test cases c1. The blue
line is the estimated wire length, and the red line is the actual minimum wire
length for the clique. We can see that the two lines are almost identical in

their trends, proving the accuracy of our estimation.
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Figure 5.1: Estimated wire length and actual minimum wire length for case
cl

5.2 Power, Wire. Leugth and Run Time
PEt

Table 5.5 shows the results df-}ouw Q-luséﬁrq,ng;.:ailgonthm and Table 5.6 shows

i ittty

the comparison between Ch&r;g ot %@
cell library. Our work haé g‘gmpetiﬁlv

ogk-’@h and ours based on the given

,Jrf:p{)t" Shghtly finer performance in

i

power consumption of ﬂ1p~ﬂ0‘p53 é-ﬁ \A;lell!-“as sig;mﬁcantly improvement in wire
length. Our algorithm takes longer t*l,rrze £ compute due to a more thorough
search in solution space, but the run time is still acceptable in every cases.
Even in the largest case with around 170000 flip-flops, our program still takes

less than five minutes.
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Table 5.5: Number of Each Type of FFs and Total Wire Length

H Case H # of 1-bit FFs \ # of 2-bit FF's \ # of 4-bit FFs \ HPWL H

cl 2 3 28 48740
c2 4 12 113 206960
c3 18 o1 450 816720
c4 84 258 1320 2492860
cd 240 286 2647 4975180
cb 5456 15686 38793 71458816

Table 5.6: Comparisons of Ratio of Power and HPWL After Clustering

Chang’s in [2] Ours
Case || Power % | WL%_|r Tlm_(s) { Power % | WL% | Time(s) |
cl 85.2% | 9LTV 7 G011 83.08% | 54.50% | 6.60
c2 83.1% ' 0, 8L 59.31% 9.90
c3 82.9% S 81 34% | 58.52% 12.74
cd 83.2% TRIL95% | 58.10% | 15.28
ch 82.9% “81.95% |57.03% | 20.18
c6 82.8% 82:69% | 51.20% | 299.07

Compared with Chang’s Work, (-)ur -\'Ndrk addresses the importance of wire
length reduction more. As the manufacturing technology evolves, the ratio of
power consumption caused by metal wires becomes more and more significant
among the whole chip. In addition to power reduction through merging flip-
flops, we further model the benefits in power due to reduced wire length into
consideration.

Under 65nm technology node, assume the grid size is equal to the mini-
mum distance between two flip-flops, which is 0.56 micron. The power ratio

of an 1-bit flip-flop to 1-micron of metal wire under 65nm technology node
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is 250:1, thus the normalized power of 1-bit flip-flop to one unit-length (one
grid) of metal wire is 140. We estimate the power consumption of 2-bit and 4-
bit flip-flops based on the ratio of their area. Table 5.7 shows the normalized

power of each cell type.

Table 5.7: Normalized Power of Each Cell (to per Unit Wire)

| # of bit | Normalized Power/Unit Wire ||

1 140
2 156
4 232

Based on above normalized cell power we compute the combined power

consumption of both flip- ﬂops and—r{'r"eta,l eres before and after our clustering

A

process. The impact of _reducec'l.wr ﬂgtlr IS. shown in Table 5.8.

Table 5.8: Comblrled;

_,.——-

on.-s “mp!t.llon of FFs and Wires

Case Before ClusterL A e'r-l.Clusterlng Ratio
Pg L

cl 103497 " 55984 54.09%
c2 406052 T 235608 57.60%
c3 1636208 931596 56.94%
c4 2062731 2851108 56.32%
cd 9806300 5714300 58.27%
cb 163620800 83669648 51.14%
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Chapter 6

Conclusion

In this paper, we introduced a problem formulation to synthesis multi-bit

flip-flop to optimized the power consumption of clock tree, as well as the

wire length consumed. We prOpOSed.‘aL Wlndow—based algorithm, in which a
==

7 ’med' Ep:p‘emmental results based on indus-

TP

decreasing wire length. In-a}ddluon o th bﬁneﬁts of applying multi-bit flip-

clique-based clustering is’ p

trial cases show the effectweneé"s algqut]hm in merging flip-flops and

flops, comparing with prev1(3us Wﬁr “puﬁ a .gomthm has stronger impact on
total power dissipation since e are-capable of reducing the wire length more

significantly.
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