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Abstract

Functional decomposition is an e�ective technique to restructure logic networks. Pre-

vious researches have studied how to select variables in bound set, how to encode

compatible classes, etc. However, most of previous works consider non-overlapping

structures [2, 4, 8, 9, 15]. Circuit structures with overlapping variable are more exi-

ble and may have lower area costs than the non-overlapping structures in some cases

[1]. Therefore, in this paper, we will study nondisjunctive functional decompositions

for Boolean functions.

We �rst propose an algorithm to select overlapping variables from the bound set

of a function. After the overlapping variable selection algorithm is applied, the com-

patible classes are paired to assign don't cares. The objectives of the don't care

assignment heuristic are to reduce the compatible classes and to increase the decom-

posability of the image function that will be decomposed in the next level. Finally, we

proposed an algorithm to improve the compatible class encoding algorithm proposed

in HYDE [2]. Then, we apply this nondisjunctive functional decomposition technique

to look-up table (LUT) based FPGA synthesis. The experimental results show that

our overlapping approach can lead to better mapping results on some particular cases

of benchmarks.
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Chapter 1

Introduction

Multilevel logic synthesis is performed in two phases: technology independent opti-

mization and technology mapping. In the �rst phase, Boolean network is re-structured

and optimized by functional transformations. In the second phase, the results of the

�rst phase are mapped to library cells which are de�ned by such technologies as

standard cells, FPGA's, etc..

Functional transformation (network re-structuring) techniques include algebraic

decomposition and functional decomposition. In algebraic decomposition, common

subexpression identi�cation is used to restructure a logic network. In common subex-

pression identi�cation, �nding divisor of an expression is a key operation (We say that

p is a divisor of function f if f = p �q+r and p �q 6= 0). In functional decomposition, a

function f(X) is transformed to g(�(X1); X2) where X1[X2 = X. By this approach,

how to select X1 from X so that the decomposed function is minimized is one of the

key steps. It is clear that algebraic decomposition can be seen as a special case of

functional decomposition where divisor p corresponds to the subfunction �(X1). In

this thesis, we will study functional decomposition to restructure a network.

Disjunctive functional decomposition �rst proposed by Ashenhurst [15] and Roth

& Karp [4] is one of two types of functional decomposition. It has been adopted by

many Look-Up-Table based (LUT-based) technology mappers [1, 2, 6, 16] which have
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produced good results. However, disjunctive functional decomposition requires that

function f be decomposed so that f(X) = g(�(X1); X2) where X1 [ X2 = X and

X1 \X2 = ;. This constraint of non-overlapping variable partition is too restrictive

for some functions to result in satisfactory decomposition. Therefore, in this thesis,

we will relax this constraint and discuss functional decomposition for overlapping

variable partitions.

First, we will propose an algorithm to select variables that are overlapping between

the two partitioned input sets for nondisjunctive functional decomposition. After the

overlapping variable selection algorithm is applied, the don't care sets produced by

variable overlapping can be utilized to reduce the complexity of subfunctions. We

will then propose an algorithm to encode subfunctions so that the decomposability

of resultant functions can be improved. Finally, we will apply our nondisjunctive

functional decomposition technique to technology mapping for LUT based FPGA.

The remainder of this thesis is organized as follows. In Chapter 2, we review

previous work on functional decomposition and give de�nitions and terminologies.

In Chapter 3, the overlapping variable selection algorithm and compatible classes

pairing strategy for don't care assignment are discussed. In Chapter 4, we improve

the HYDE algorithm [2] for the compatible class encoding problem. Then, we utilize

our proposed method to perform technology mapping for LUT-based FPGA synthesis.

Chapter 5 shows the experimental results and concluding remarks will be given in

Chapter 6.
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Chapter 2

Functional Decomposition

In Section 2.1, we present the de�nitions of functional decomposition and terminolo-

gies. In Section 2.2, we will review the synthesis of disjunctive and nondisjunctive

functional decompositions based on OBDD representation [1, 6].

2.1 De�nition and Terminology

Functional decomposition of a function f(x1; :::; xn) is de�ned as

f = g(�1(X
B); :::; �t(X

B); XF ) = g(~�(XB); XF ); (2.1)

whereXB andXF are sets of input variables andXB[XF = fx1; :::; xng. The setsX
B

and XF are called the bound set (� set) and the free set (� set), respectively. If

XB\XF = ;, this decomposition is called disjunctive decomposition . Otherwise,

it is called nondisjunctive decomposition . These two forms of decomposition of

f are illustrated in Figure 2.1. In this Figure, input variable set is partitioned to two

sets XB and XF where XB = fx1; x2; :::; xkg and XF = fxk+1; xk+2; :::; xng in Figure

2.1(b) while XB = fx1; :::; xi; :::; xjg and XF = fxi; :::; xj; :::; xng in Figure 2.1(c).

Note that in Figure 2.1(c) input set XB \ XF = fxi; :::; xjg is called overlapping

variables with respect to this nondisjunctive decomposition.
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With respect to a partition X = (XB; XF ), we say that x1 and x2 are in the

same compatible class denoted as x1 � x2 if x1; x2 2 XB and f(x1; y) = f(x2; y)

for all y 2 XF . The minimum number of � function is log(the number of compatible

classes). The goal of functional decomposition is to �nd the minimal number of �

functions and encode the � functions so that the � functions and g function (called

image function) are minimal. However, it is very di�cult to take both � functions

and image function into consideration when encode � functions. In most of previous

work [1, 2, 4, 8, 15, 16], functional decomposition is used in synthesizing LUT-based

FPGA. Since the complexity of � function does not a�ect the quality of synthesis

result, only minimizations of image functions are considered.

2.2 Synthesis of Disjunctive and Nondisjunctive

Functional Decompositions

Functional decompositions have been implemented using Ordered Binary Decision

Diagram (OBDD) [1, 6]. We illustrate the previous synthesis of � and image functions

for disjunctive and nondisjunctive functional decompositions using OBDD. First, we

give two de�nitions.

De�nition 2.2.1 A Given OBDD with variable ordering x1 < ::: < xn representing

f(x1; :::; xn). Let cut set(f; l) denotes the set of nodes whose level are greater than l

and that have edges from nodes of level less than or equal to l. These nodes are the

compatible classes of function f .

For an n-variable function f with a �xed variable order, if jcut set(f; l)j � 2t, there

exists a disjunctive decomposition as shown in Figure 2.1(b), where XB = fX1; :::; Xlg

and XF = fXl+1; :::; Xng. jcut set(f; l)j is the number of compatible classes, and t is

the number of � functions.
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De�nition 2.2.2 A Given OBDD with variable ordering x1 < ::: < xn represent-

ing f(x1; :::; xn). Let s � l and i 2 f0; 1gl�s+1. The cut set nd(f; l; s; i) denotes

cut set(fi; l), where fi is the function resulting from assigning i to f at the variables

from level s to level l.

For an n-variable function f with a �xed variable order, if jcut set nd(f; l; s; i)j �

2t, there exists a nondisjunctive decomposition as shown in Figure 2.1(c), where

XB = fX1; :::; Xlg and XF = fXs; :::; Xng. jcut set nd(f; l; s; i)j is the number of

compatible classes of function fi, and t is the number of � functions of function fi.

Take Figure 2.2 for example. Let the decomposition be disjunctive and XB =

fx1; x2; x3g and XF = fx4g. The cut set(f; 3) = fv0; v1; v2g, which represents the set

of compatible classes in Figure 2.2. Since the j cut set(f; 3) j= 3 � 22, we require two

3-input � functions. It can be described as f = g(�1(x1; x2; x3); �2(x1; x2; x3); x4).

If we encode � functions as (�1; �2) = (0; 0), (0; 1), and (1; 0) to compatible classes

v0, v1, and v2 as in Figure 2.3(a), OBDD's representations of these � functions and

image function are shown in Figure 2.3(b) and (c), respectively.

Now, consider overlapping decomposition. Suppose x3 is selected to be overlapping

variable. The cut set nd(f; 3; 3; 0) = fv0; v1g, and the cut set nd(f; 3; 3; 1) = fv1; v2g

in Figure 2.2. Because the j cut set nd(f; 3; 3; 0) j= 2 � 21 and j cut set nd(f; 3; 3; 1) j=

2 � 21, it only requires one 3-inputs � functions. The nondisjunctive decomposition

form is f = g(�1(x1; x2; x3); x3; x4). Moreover, if we encode the compatible classes v0

as 0 and v1 as 1 when overlapping variable x3 = 0, and encode v1 as 0 and v2 as 1

when x3 = 1 in Figure 2.4(a), the OBDD representing � function and image function

are showed in Figure 2.4(b) and (c).
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Chapter 3

Overlapping Variable Selection and

Don't Care Assignment

In functional decomposition, initially, we have to select adequate bound set variables.

In this problem, we apply the lambda set selection algorithm proposed in [7] for

our variables partition. This method based on OBDD is to minimize the number of

compatible classes. After we obtain bound set variables from this method, we have

to select proper overlapping variables from the bound set to perform nondisjuntive

decomposition. In previous researches [1, 6], overlapping variable is searched by

putting candidates on the bottom of variable ordering of the bound set in OBDDs

to compute the compatible classes of the OBDD. These method are very ine�cient

because for each candidate overlapping variable, OBDD needs to be re-constructed

with respect to the new variable ordering. In this chapter, we will present an algorithm

by only investigating the minterms of each compatible class. If implemented on an

OBDD, our approach constructs OBDD just once. After the overlapping variable is

selected in Section 3.1, we propose a don't care assignment algorithm in Section 3.2.

These don't cares produced from overlapping can help to minimize the number of

compatible classes in nondisjunctive decomposition.
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3.1 Overlapping Variable Selection for Nondisjunc-

tive Decomposition

3.1.1 Nondisjunctive Decomposition Chart

We �rst review the decomposition chart de�ned in [2] in this subsection.

De�nition 3.1.1 A decomposition chart of function F is a 2-dimensional array. Its

x-axis is indexed by variables in bound set while the y-axis is indexed by variables in

free set. A column pattern in a decomposition chart forms a compatible class.

Example 3.1.1 illustrates a decomposition chart of a function.

Example 3.1.1 Let function F (a; b; c; d; e; f) be partitioned to have bound set fa; b; cg

and free set fd; e; fg. Then, its decomposition chart and compatible classes are shown

in Figure 3.1. In this decomposition chart, column and row are indexed by bound

set fa; b; cg and free set fd; e; fg, respectively. There are three column patterns and

hence three compatible classes as denoted as X, Y , and Z.

For nondisjunctive decomposition, we will develop a modi�ed decomposition chart

called nondisjunctive decomposition chart which can characterizes the relations of

overlapping variables and compatible classes.

De�nition 3.1.2 A nondisjunctive decomposition chart of function F is a 2-dimensional

array. Its x-axis is indexed by variables in bound set with the overlapping variable

as the �rst variable of the index while the y-axis is indexed by variables in free set

with the overlapping variable as the �rst variable of the index. Let the overlapping

variable be v. Then, the upper-left corner submatrix gives the function value when

v = 0 and the lower-right corner submatrix gives the function value when v = 1.

The upper-right and lower-left submatrices are don't cares of the function because in

these submatrices, index variable v are assigned v = 0 and v = 1.
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Figure 3.1: The decomposition chart

Since the lower-left and upper-right submatrices are don't cares, we can assign

any value to these submatrices. Hence, the number of compatible classes for v = 0

and v = 1 are determined by the upper-left and lower-right submatrices, respectively.

A column pattern in upper-left and lower-right submatrices forms a compatible class

for v = 0 and v = 1, respectively.

Take the function in Figure 3.2(a) as an example. In this example, function

F (a; b; c; d; e; f) is partitioned to bound set fa; b; cg and free set fa; d; e; fg with over-

lapping variable a. In this Figure, the upper-left submatrix represents the function

when a = 0 and the lower-right submatrix represents the function when a = 1.

There are three column patterns in the upper-left submatrix. Hence, there are three

compatible classes when a = 0. Similarly, there are three compatible classes when

a = 1.
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Since overlapping variable will also appear in image function (the overlapping

variable can be used to distinguish two compatible classes for v = 0 and v = 1 having

the same code), we need only to ensure that the encoding of compatible classes (�

functions) for v = 0 (or v = 1) is unique. That is, the same code can be assigned

to the column pattern in v = 0 and v = 1. Therefore, the minimum number of �

functions decomposed from F is logarithm of the maximum number of the compatible

classes of v = 0 and v = 1 when v is selected as overlapping variable.
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Lemma 3.1.1 Given a function F and its overlapping variable v. The minimum of

� functions decomposed from function F is logarithm of the maximum number of

compatible classes of v = 0 and v = 1.

For di�erent overlapping variable, the resultant decomposition chart will be dif-

ferent. For example, in Figure 3.2, the nondisjunctive decomposition charts with a,

b, or c is overlapped in the function are shown in Figure 3.2(a), (b) and (c), respec-

tively. In this example, variable b is the best candidate to be selected as overlapping

variable because the number of � functions can be reduced from 2 to 1 as compared

to disjunctive decomposition.

3.1.2 Overlapping Variable Selection Algorithm

With respect to a disjunctive decomposition, we want to select one variable in bound

set to be the overlapping variable. We do not want to construct di�erent OBDD for

di�erent variable ordering corresponding to di�erent overlapping variable as in [1].

We propose an algorithm that only examines the minterms in each compatible class

to determine overlapping variable.

Let's examine the decomposition charts for disjunctive decomposition and nondis-

junctive decomposition in Figure 3.1 and Figure 3.2(a). In Figure 3.2(a), variable a

from bound set is selected as overlapping variable. Notice that in this �gure all col-

umn patterns in upper-left submatrix (a = 0) and lower-right submatrix (a = 1) are

column patterns from disjunctive decomposition chart. The appearance of each col-

umn pattern in submatrices is determined by the minterms in each compatible class.

For example, there are three minterms f(0; 0; 0); (1; 0; 0); (1; 0; 1)g in the compatible

class corresponding to column pattern X in Figure 3.1. If a is selected as overlap-

ping variable, minterm f(0; 0; 0)g will appear in submatrix a = 0, and minterms

f(1; 0; 0); (1; 0; 1)g will appear in submatrix a = 1. Hence, column pattern X will

14



appear in submatrices for a = 0 and a = 1 Similarly, compatible classes correspond-

ing to column patterns Y and Z both have minterms with a = 0 and minterms with

a = 1. Hence, column pattern Y and Z will appear in both submatrices. Therefore,

the column patterns for both submatrices a = 0 and a = 1 are fX; Y; Zg.

From the above observation, our overlapping variable selection algorithm proceeds

as follows. First, with respect to a disjunctive input partitioning, we �nd the minterms

in each compatible class. For each candidate overlapping variable, we check the value

of minterms for the candidate variable in each compatible class. If the value is 0

(1), the column pattern corresponding to that compatible class will appear in the

submatrix for the overlapping variable being 0 (1). Then, the overlapping variable

is selected as the variable which results in the smallest maximum number of column

patterns of two submatrices.

The result of running the overlapping variable selection algorithm on Exam-

ple 3.1.1 is shown in Figure 3.3. In this Figure, we have three minterms, two minterms

and three minterms in the compatible classes corresponding to column patterns X,

Y , and Z, respectively. Three tables show the number of minterms appears in the

upper-left and lower-right submatrices when a, b, and c are considered as overlapping

variable. For example, in the second table, b is considered as overlapping variable.

Since all minterms in compatible class corresponding toX column pattern have b = 0,

we have three minterms for b = 0 and zero minterm for b = 1. Similarly, one minterm

in compatible class corresponding to Y column pattern have b = 0 and one minterm

have b = 1, we have one minterm for b = 0 submatrix and one minterm for b = 1

submatrix.

From these three tables, we can see that variable b will result in minimum number

of � functions because there are only two column patterns for b = 0 and two column

patterns for b = 1 and maximum of the two submatrices is two, which is smaller than
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3 of the �rst table and 3 of the third table. The overall algorithm for overlapping

variable selection is described in Figure 3.4.
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Figure 3.3: Number of minterms with respect to di�erent overlapping variable

3.2 Compatible Class Pairing

As shown in Figure 3.2, upper-right and lower-left submatrices are don't care. How-

ever, before we synthesize image functions, don't care needs to be assigned values.

There are two objectives of the don't care assignment. The �rst objective is that the

number of column patterns after don't care assignment can not exceed the maximum

of column patterns of upper-left and lower-right submatrices. The second objective

is to increase the decomposability of image functions. To these ends, we develop a

bi-partite matching algorithm.

Since after don't care assignment, the number of column patterns of the whole

matrix can not exceed the maximum number of column patterns of upper-left and
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Input : Bound Set B and Compatible Class Functions fc0s ;
Output: Overlapping Variable v ;
Internal: Ni=0; Ni=1; maxi ;
Begin

(1) For each variable i 2 bound set B ;
(2) Ni=0 is the number of compatible classes with i = 0 ;
(3) Ni=1 is the number of compatible classes with i = 1 ;

(4) For each variable i 2 bound set B ;
(5) maxi is the large number between Ni=0 and Ni=1 ;

/* maxi is the number of compatible classes for i is overlapped*/

(6) For all the maxi ;
(7) The minimal value of maxi is maxv;
(8) return v ;

End

Figure 3.4: An Overlapping Variable Selection Algorithm

lower-right submatrices, for don't care in lower-left submatrix, we can select only

column patterns from lower-right submatrix. Similarly, for don't care in upper-right

submatrix, we can select only column patterns from upper-left submatrix. Moreover,

once a column in lower-left submatrix whose corresponding column in the upper-left

have a column pattern P1 select a column pattern P2 from lower-right, then the upper-

right column whose corresponding column of lower-right column have column pattern

P2 must select P1 as its column pattern. We take the nondisjunctive decomposition

chart with the best overlapping result in Figure 3.2(b) as an example. If the �rst

column of the submatrix in lower-left whose corresponding column in upper-left has

column pattern X is assigned column pattern Z, then columns in upper-right whose

corresponding columns in lower-right have column pattern Z must be assigned X as

in Figure 3.5. From the above description, the don't care assignment problem is a bi-
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partite matching problem. We model the problem as follows. We build a bi-partite

graph G(V; U; E) where the column patterns (compatible classes) in the upper-left

submatrix corresponds to a vertex vi in V , the column pattern (compatible classes)

in the lower-right submatrix corresponds to a vertex ui in U , and each pair of vertices

of (vi; ui) is connected by an edge. For instance, the example in Figure 3.2(b) has

a bi-partite graph as shown in Figure 3.6. Nodes X and Y in V correspond to the

column patterns in the upper-left submatrix of Figure 3.2(b), and nodes Y and Z in

U correspond to the column patterns in the lower-right submatrix of Figure 3.2(b).0

There are 4 connections of (X; Y ), (X;Z), (Y; Y ), and (Y; Z) between V and U in

the graph. Each connection represents a paired compatible class.
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Figure 3.5: Compatible class pairing in nondisjunctive decomposition chart

Now, we have model our problem as a bi-partite matching problem. A matching

will correspond to a don't care assignment which achieve our �rst objective. However,
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X Y

ZY

V U

Figure 3.6: A bi-partite graph in Example 3.1.1

for the same graph, there may be many matchings and di�erent matching may result

in di�erent decomposability of the next level image function. Hence, to achieve the

second objective, we will assign weight on each edge of a bi-partite graph. The weight

is assigned to reect the decomposability of the next level image function. Our weight

assignment heuristic is developed inspired by the compatible classes encoding method

in [2]. Before we present our heuristic, we �rst give the following de�nition.

De�nition 3.2.1 A partition vector ��(F ) of function F with bound set � is denoted

as < s0; :::; sk > for k = 2jBound Setj � 1 where < s0; :::; sk > is a symbolic notation

of n column patterns < c0; :::; cn�1 > and element si equals to sj if and only if the

column pattern ci equals to column pattern cj.

For example, in Example 3.1.1, with respect to bound set � = fa; b; cg, the parti-

tion vector ��(F ) of F is < 0; 1; 2; 2; 0; 0; 1; 2 >. Furthermore, as for the compatible

function X(d; e; f) of F , its partition vector ��(X) with bound set � = fd; eg is

< 0; 0; 1; 0 >, which is shown in Figure 3.7.

Now, we explain our edge weight assignment heuristic algorithm. First, we must

decide which variables to be in the bound set when the image function in the next
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Figure 3.7: Partition of compatible function X with bound set � = fd; eg

level is decomposed. From [2], we know that only variables in the free set of the

current decomposition need to be considered. The bound set of image function is

selected from free set of the current partition using � set selection algorithm in [7].

Now, for a given bound set �, we want to know the decomposability of the whole

column pattern in which one half of the column having column pattern P1 is in care

set and the other half of the column is don't care and assigned certain pattern P2. The

decomposability can be determined by the number of column patterns with respect

to the bound set � after decomposing the paired columns. The number of patterns

of decomposing the combined column of P1 and P2 is computed by concatenating the

partition vectors of P1 and P2 and compute the number of patterns.
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For example, in Figure 3.5, if column X is paired with Z, we will have a column

pattern denoted as (X;Z) as shown in Figure 3.8. If bound set is selected as � =

fd; eg, then the number of column patterns of the column (X;Z) with this bound

set is 4 as shown in Figure 3.8. The number is computed by concatenating the

partition vectors of X and Z.

Therefore, to compute the weight on an edge is to compute partition vectors for

columns in upper-left and lower-right submatrices with respect to the selected bound

set �. And, the decomposability of pairing two columns is to compute the number of

column patterns of the concatenated partition vectors of the two columns.

We take Example 3.1.1 to illustrate the computation of the weight on each edge.

Suppose we select fd; eg as bound set for the subsequent decomposition. There are

totally three column patterns X, Y and Z in upper-left and lower-right submatrices.

With respect to the bound set � = fd; eg, the three columns are decomposed as

shown in Figure 3.9.

If the column X is paired with Y , the decomposition chart of (X; Y ) is shown

in Figure 3.10(a) and the number of column patterns with bound set � = fd; eg

is 4. Similarly, paring (Y; Y ) (X;Z), and (Y; Z) are shown in Figure 3.10(b)(c)(d)

and the number of column patterns for these three pairings are 3, 4, and 4, respec-

tively. Therefore the weight assigned on each edge of the bi-partite graph is shown

in Figure 3.10(e). The best matching is found by minimal cardinality matching of

the bi-partite graph G. If the number of vertices in the two parties of the bi-partite

graph is not the same, then there will be vertices without mapping edge. In this case,

connect them to the vertices in the opposite party with minimum cost on the edge.
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Chapter 4

Compatible Class Encoding

In this chapter, we will discuss the encoding problem of nondisjunctive decomposition.

Instead of reducing the number of cubes or literals in the image function as suggested

in [1, 8], our heuristic will put emphasis on reducing the number of compatible class

of the decomposition at the next level suggested in the HYDE algorithm [2].

4.1 Encoding in Functional Decomposition

After we �nish our compatible class pairing procedure, the next step is to perform

encoding of the paired compatible classes. First, an encoding chart is introduced

which is used to show the relation between encoding and the number of compatible

classes of the decomposition at the next level image function.

De�nition 4.1.1 An encoding chart is a 2-dimensional array used to encode func-

tions. It is similar to the decomposition chart except that it is indexed by the encoding

bits. Its x-axis is indexed by bits that are selected as the bound set of the next level

decomposition and its y-axis is indexed by bits that are selected as the free set of the

next level decomposition.

In [2], it has been shown that the encoding of � functions will have no e�ect on

the decomposability of the image function if all � bits are partitioned into the same

25



set. Hence, the following theorem was derived.

Theorem 4.1.1 The � bits must be separated into bound set and free set of the

decomposition at the next level image function such that the encoding can have

e�ects on the number of compatible classes in the subsequent decomposition.

Figure 4.1 illustrate an example of our encoding problem. Let function F be

partitioned to have three compatible classes X, Y , and Z. Therefore, two �-bits, �0

and �1, are needed to encode these three compatible classes and the image function is a

�ve-input function g(�0; �1; d; e; f). Let the next level image function be partitioned

so that fd; eg is in the bound set. Suppose we choose �0, d, and e as the bound

set and �1 and f as the free set of the decomposition for function g(�0; �1; d; e; f).

Then, without considering the encoding bits of � functions, the partitioned X, Y ,

and Z with respect this partitioning is shown in Figure 4.1(a). Assume that X,

Y , and Z are encoded as (0; 0), (1; 0), and (0; 1) where the two bits corresponds to

�0 and �1 functions, respectively. Then, its encoding chart is shown in the left of

Figure 4.1(b) and the corresponding decomposition chart is shown in the right, where

the symbol " � " means don't care. In this case, we will have six column patterns

of the decomposition of the g-function. However, if we choose the codings (�0; �1)

as (1; 1), (0; 0), (1; 0) for X, Y , Z as shown in Figure 4.1(c), we will have only four

column patterns in the decomposition of the g-function.

From the above example, we know that the encoding will a�ect the number of

compatible classes of the decomposition for the g-function. The fewer the number

of compatible classes is produced in the decomposition of the image function, the

fewer bits are needed to encode these compatible classes of the next decomposition.

Moreover, it can be seen that encoding problem is in e�ect the determination of the

position of X, Y and Z in the encoding chart. The following theorem was derived.
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Theorem 4.1.2 Once variables in the bound set of the decomposition for an image

function have been selected, determining which compatible class functions in the

same column and in the same row in the encoding chart will decide the number of

compatible classes of the image function. The exact codes of these columns and rows

do not a�ect the number of compatible classes of the image function.

In the following, we review how HYDE [2] performs the encoding. In its column-

set and row-set combination approach, they evaluate which compatible classes should

be bound in the same column or in the same row to the encoding chart. Compatible

classes with the same positions having same column patterns are preferred to be

bound to the same column. By this way they get smaller set of column patterns in

the encoding chart. However, involving the row-set combination approach may break

the well-mapped results of column sets. For Figure 4.2, There are ten compatible

classes with their partitions �0; :::; �9. After their column-set and row-set combination

procedures, the column sets are f�3; �4; �6; �8g, f�2; �7g, f�0g, f�1g, f�5g, and f�9g,

and the row sets are f�7; �8g, f�5; �6g, f�2; �4g, f�0; �9g, and f�1; �3g. In its encoding

chart, the partitions �1 and �5 were inserted into the column between �2 and �7, which

increase the number of column patterns of the column set f�2; �7g from 3 to 4.

For this reason, We raise an column pattern matching algorithm that can fairly

reect on our heuristic without corrupting well-mapped column-set combinations.

4.2 Column Pattern Matching Algorithm

In order to reduce the number of compatible classes in the encoding chart, we pro-

pose a method to form new column vectors based on the column patterns previously

formed.

Initially, we apply a heuristic similar to column-set combination cited above to

select one column set which has minimal number of column patterns in the decompo-
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sition chart. We call it primary column pattern set. Then we form the next column

vector based on the column patterns in the primary column pattern set. We repeat

this step until all the compatible classes are placed into the encoding chart. In this

way, the previously well-formed column sets will not be destroyed by the later step.

Moreover, the don't care blocks can be utilized more e�ciently. We described these

steps of our pattern-matching algorithm in more detail in the following section and

take Example 4.2.1 for demonstration.

Example 4.2.1 Assume we have ten compatible class functions, fP0; :::; fP9, with

their partitions �0; :::; �9 respectively as follows.

�0 =< 0; 3; 3; 0 >; �1 =< 1; 2; 2; 3 >; �2 =< 3; 0; 0; 1 >; �3 =< 0; 1; 0; 2 >,

�4 =< 1; 2; 1; 3 >; �5 =< 2; 3; 2; 1 >; �6 =< 2; 0; 1; 2 >; �7 =< 3; 2; 0; 3 >,

�8 =< 0; 0; 3; 1 >; �9 =< 1; 2; 3; 0 > :

Step 1 Taking the maximal column set with minimal column patterns to be the

primary column set and indicating the produced primary column patterns.

The same concept as in column-set combination in HYDE algorithm is invoked.

Binding the compatible classes with the same positions having identical partition

elements into a column, will reduce their column patterns to minimal. In order to �nd

the maximal set of compatible classes with the same positions having same partition

elements, we denote position i in a partition as �i for convenience. In Example 4.2.1,

for partition �0, the contents of �1 and �4 are the same, and the contents of �2 and �3

are the same, we say that positions with the same content of �0 are �1�4 and �2�3. �1

also have same contents in �2�3. So we can put �0 and �1 in the same column to reduce

number of column patterns. We record these position information in Figure 4.3. The

gain of each set is (number of positions with same content) � (number of partitions

in the set). Find the maximal gain column set.
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Table 4.1: The primary column pattern set

Q
0 0 3 3 0

Q
1 1 2 2 3

Q
2 3 0 0 1

Table 4.2: The remaining compatible classes

Q
3 0 1 0 2

Q
4 1 2 1 3

Q
5 2 3 2 1

Q
6 2 0 1 2

Q
7 3 2 0 3

Q
8 0 0 3 1

Q
9 1 2 3 0

In Example 4.2.1, the column sets with minimal number of column patterns are

f�0; �6; �7g f�0; �1; �2g and f�3; �4; �5g. Suppose we select f�0; �1; �2g to be the

primary column set, and put �0; �1; �2 from top to bottom in the �rst column of the

encoding chart. Then, we have the primary column pattern set shown in Table 4.1

and the remaining �'s to be placed are shown in Table 4.2. The primary column

patterns in the encoding chart is also shown in Figure 4.4(a) and the three column

patterns are X, Y , and Z.

Step 2 Compute the weight of placing a � on a particular row of the next column

in the encoding chart. The weight is de�ned to reect the similarity of the present �

and the primary column patterns at the corresponding row position. The weight is

computed as the number of elements in the � that is the same as the elements of the

primary column pattern in the same row. In the new column, the partition � with

the maximal weight is selected as candidate to be put on that row.

In Figure 4.4(a), assume that we are to decide which � to be put in the second
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column of the encoding chart. For example, if �7 is put in the �rst row, since �7 =<

3; 2; 0; 3 > has 2 elements, "3" and 1 element of "0" that are the same as the elements

in �0 =< 0; 3; 3; 0 >, its weight is 3. Similarly, we can compute the weight for putting

other � in the �rst row and the results are shown in Figure 4.4(b). Since �7 and �8

have the maximal weight, they are selected as candidates to be placed on row 1.

Similarly, we can compute candidates to be put in row 2 and row 3. Since �4 and

�5 have the maximal weight of 4, they are selected as candidates to be put in row 2.

Finally, �8 is selected to be put in row 3.

Step 3 For each column pattern in the primary column pattern set, �nd out

useful � combinations from all the combinations of the candidate sets.

A useful � combination means that a column in the encoding chart formed from

the candidate set will have the same column patterns as the patterns in the primary

column pattern set. From Step 2, we have two candidates for row 1, two candidates

for row 2, and one for row 3 as shown in the encoding chart of Figure 4.5(a). There

are 3� 3� 2� 1 = 17 combinations to form the column patterns for the new column

of the encoding chart. However, only a part of them are useful. For example, if �8

and �4 are selected from candidate set of row 1 and row 2, we will have a new column,

(�8; �4; �; �), where * means don't care in the encoding chart (that is four columns in

the decomposition chart) as shown in Figure 4.5(b). For the �rst column of the four

newly formed columns, this combination is useful because the �rst column pattern

is the same as a pattern X in the primary pattern set. Similarly, combination of

�7; �5; �8 from row 1, row 2 and row 3, and combination of �8 from row 1 are useful

for the �rst column because the �rst column of the �rst combination is the column

pattern Y and the �rst column of the second combination is the column pattern Z

as shown in Figure 4.5(c) and (d). However, also in Figure 4.5(e), combination such

as (�8; �5; �; �) is not useful for the �rst column because its �rst column pattern is
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< 0; 2; �; � > which is not the same as any pattern in the primary column pattern

set. Note that if a useful column combination has only one element in it such as the

combination of (�8; �; �; �), we will ignore this combination because too much don't

care will be used.

For the �rst, second, third and fourth newly formed column, we compute their

useful combinations. For example, for the �rst column, we have two combinations

of (�8; �4; �; �) and (�7; �5; �8; �). For the second column, we have two combinations

of (�; �4; �8; �) and (�8; �5; �; �). For the third column, we have two combinations

of (�7; �4; �8; �) and (�8; �5; �; �). For the fourth column, we have one combination

of (�; �4; �8; �). The results are shown in Figure 4.6. Among them, there are only

5 di�erent combinations (�; �4; �8; �), (�8; �4; �; �), (�8; �5; �; �), (�7; �4; �8; �), and

(�7; �5; �8; �).

Step 4 Select the best combination. The gain of each combination is com-

puted as (the number of elements in the combination)� (the number of columns this

combination appears) . The combination with the maximal gain is selected as the

next column vector in the encoding chart because it will produce maximal number of

primary column patterns.

For instance, there are 2 elements in (�; �4; �8; �), and this combination appears in

three columns (the secord, the third, and the fourth columns) in Figure 4.6, twice for

(�; �4; �8; �), and once for the subvector of (�7; �4; �8; �). Therefore, the gain of this

combination is 2� 3 = 6. We compute the gains of all other column combinations,

gain(�8; �4; �; �) = 2� 1 = 2

gain(�8; �5; �; �) = 2� 2 = 4

gain(�7; �4; �8; �) = 3� 1 = 3

gain(�7; �5; �8; �) = 3� 1 = 3
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Since the column vector (�; �4; �8; �) has the maximal gain, it is selected as the next

column vector in the encoding chart. In this newly formed column, there are 4

column patterns < �; 1; 0; � >, < �; 2; 0; � >, < �; 1; 3; � >, and < �; 3; 1; � >. Only

the pattern < �; 1; 0; � > is not in the primary pattern set and is a new column

pattern.

Step 5 Update the set of primary column patterns by adding the newly created

patterns. If there still have free columns in the encoding chart and unassigned �,

go to Step 2. Otherwise, if there are no free columns for assignment, the remaining

partitions are assigned to free blocks in the column according to the initial column-set

combination result and in the row with the most number of don't care blocks. This

procedure is terminated when all � are assigned.

For the same example, in the next iteration, (�; �5; �3; �) is selected as the third

column of the encoding chart and in the last iteration (�; �9; �6; �) is selected as the

last column. There is still one unassigned � (�7) which is assigned to the column as

the partitions (�6) together in the same column set in step 1, and to the row with

maximal free blocks in it (the last row).

Finally, we have our encoding chart as shown in Figure 4.7. In this chart, we have

only six column patterns which is smaller than the result of HYDE in Figure 4.8,

which has 8 column patterns for the next decomposition.

4.3 Application to LUT based FPGA Synthesis

FPGA is an important technology in VLSI designs because of its short design cycle

and low manufacturing cost. Among di�erent FPGA's, LUT-based FPGA is one of

the most popular architecture which has been used in many commercial products such

as Xilinx [19] 3000/4000 series. In an LUT-based FPGA, the basic programmable
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logic block is a k-input lookup table which can implement any Boolean function of up

to k variables. The previous LUT-based FPGA mapping algorithms can be divided

into three classes. The �rst class emphasizes on minimization the number of LUT's

in the mapped results [2, 6, 8, 9]. The second class stresses on the delay minimization

of the mapped solutions [10, 11, 12, 13]. The third class emphasizes on maximization

of routability [17, 18].

Functional decomposition is one of most popular synthesis method to extract k-

input subfunction for look-up table based FPGA. We will apply our nondisjunctive

decomposition to synthesize LUT-based FPGA. Our nondisjunctive decomposition

will transform a Boolean network into a functionally equivalent network of k-input

LUT's under area consideration. First, we choose the bound set size as the input size

k of a LUT and pick the overlapping variable from the bound set that will reduce the

number of �-functions. Then we apply our encoding algorithm to each �-function to

get a g-function with a minimal number of compatible classes for next decomposition.
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Chapter 5

Experimental Results

Our overlapping decomposition algorithm has been implemented for LUT based

FPGA's synthesis under SUN-Ultra 60 workstation. The implemented software is

embedded in SIS environment. A set of experiments are carried out on MCNC bench-

mark circuits. Initial circuits are �rst optimized by SIS to obtained a minimized

technology independent circuit descriptions. For small circuits, they are collapsed

to two-level representations. For large circuits, they are optimized by SIS algebraic

script. Then, the optimized initial circuits are technology-mapped to �ve-input one-

output RAM-based FPGA using the following script. For two-level circuits, the script

is: our decomposition, xl partition -tm, xl cover and for multi-level circuits: simplify,

our decomposition, xl partition, xl cover. For multi-level circuits, the script are ap-

plied several times to improve the results by taking advantage of extracting the local

don't care set.

We compare our results to those produced by other synthesis techniques reported

in [1] and [2], where [1] used not only disjunctive decomposition but nondisjunctive

decomposition and encoded compatible classes in a straightforward way: assigning

the binary representation of i to the i-th element. We only list its decomposition

results without resubstitution. Column 3 are the results of HYDE algorithm [2] that

only used disjunctive decomposition. These results are shown in Table 5.1.
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Table 5.1: Results for 5-input 1-output LUT's

Circuit no resub. HYDE My
in [1] Decomp

name in out LUT LUT LUT
5xp1 7 10 15 13 13
9sym 9 1 7 6 7
alu2 10 6 48 50 54
alu4 14 8 172 206 199
apex6 135 99 192 186 173
apex7 49 37 120 54 50
b9 41 21 53 36 30
clip 9 5 18 14 15
duke2 22 29 175 116 103
f51m 8 8 12 12 15
misex1 8 7 12 13 13
misex2 25 18 40 29 28
rd73 7 3 8 6 7
rd84 8 4 12 9 10
sao2 10 4 23 22 21
vg2 25 8 44 18 17
z4ml 7 4 6 5 5
Total 957 795 760

From this table, it can be seen that on an average, our algorithm produces about

21% less number of logic cells as compared to [1] and about 5% less number of logic

cells as compared to HYDE. It can be noted that our overlapping decomposition is

not suitable for all circuits. It is especially good for arithmetic type of circuits with

some control signals. We can see that our overlapping advantage is more apparent in

the large circuits.
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Chapter 6

Conclusions

Nondisjunctive decomposition is a functional decomposition method for logic synthe-

sis. In some cases, adopting not only disjunctive decomposition but nondisjunctive

decomposition will have better results if it can derive less image functions than pure

disjunctive decomposition. The way to selecting a bene�cial overlapping variable

for nondisjunctive decomposition is �rst proposed in this thesis. We also solve the

compatible class encoding problem for our nondisjunctive decomposition approach.

Application of this method to the synthesis of LUT-based FPGA's was discussed.

Experimental results show that our approach is practical and promising in particular

benchmarks.
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