
Chapter 2

Interpolation Algorithm and New
Instructions

2.1 The Interpolation Procedure

The interpolation procedure is used to predict each block from a reference picture. Since

the luma and chroma samples at sub-sample positions do not exist in the reference picture,

interpolation from nearby coded samples is used to compute that.

2.1.1 Motion Vectors

Interpolation operation is performed based on a given motion vector. Before we review

the interpolation operation, we give the definition of motion vector. Movement of a reference

block is described by a motion vector. The motion vector of a partition in the current frame

is predicted from an area of the same size in the reference frame. Fig. 2.1 shows an example

of motion vector. Fig. 2.1(a) is a 4×4 block in current frame, and Fig. 2.1(b), Fig. 2.1(c) give

two different motion vectors based on two different reference frames. If the horizontal and

vertical components of the motion vector are integers (Fig. 2.1(b)), the referenced samples

in the reference block actually exists (grey dots). Thus, prediction samples are readily

computed. However, if one or both vector components are fractional values (Fig. 2.1(c)), the

prediction samples are generated by interpolation between adjacent samples in the reference

frame (white dots).

4

(a) 4 4 block in current frame (b) 4 4 reference block: vector (1, -1) (c) 4 4 reference block: vector (0.75, -0.5)

Figure 2.1: Movement of a block depending on different motion vectors.

2.1.2 Generation of Interpolated Samples

The half-way samples between integer-position samples are generated first. Each half-pixel

sample that is adjacent to two integer samples is interpolated with weights (1/32,−5/32, 5/8,

5/8,−5/32, 1/32). For example, in Fig. 2.2, gray squares with upper letter denote integer

sample position while the white ones with lower letter denote fractional sample position.

Half-pixel sample d is calculated from the six horizontal integer samples {E, F, G, H, I, J}
with the following formula:

d = round((E − 5F + 20G + 20H − 5I + J)/32) (2.1)

Similarly, m is interpolated by sampling {A,C, G,M, R, T}.
Once all of the samples horizontally and vertically adjacent to integer samples have been

calculated, the remaining half-pixel positions are calculated by interpolating six horizontal

or vertical half-pixel samples. For example, o is generated by filtering {j, k, m, q, r, s} (note

that the result is the same whether o is interpolated horizontally or vertically; note also that

un-rounded versions of m and q are used to generate o). The six-tap interpolation filter is

relatively complex but produces an accurate fit to the integer-sample data and hence good

motion compensation performance.

Once all the half-pixel samples are available, the samples at quarter-step (quarter-pixel)

positions are produced by linear interpolation (Fig. 2.3). Quarter-pixel positions with two

horizontally or vertically adjacent half- or integer-position samples (e.g. {a, c, i, k} and

5

A B

C D

E F G H I J

K L

a

M N P Q

R S

T U

b

d

x

y

z

j k q r s

c e

hg i

on p

vu w

f

m

t

Figure 2.2: Pixel locations in the sub-pixel interpolation scheme

6

{d, f, n, q} in lower part of Fig. 2.3) are linearly interpolated using these adjacent samples,

for example:

a = round((G + b)/2) (2.2)

The remaining quarter-pixel positions ({e, g, p, r} in lower part of Fig. 2.3) are linearly inter-

polated using a pair of diagonally opposite half-pixel samples. For example, g is interpolated

between b and m.

G d H

qom

xM

c e

n p

f h

t v

g i

u w

G b H

qom

NxM

G b H

qom

NxMN

G H

M N

d

x

q

c e

hg i

on p

vu w

f

m

t

dy

0 1 2 3

0

1

2

3

=
=dx

Figure 2.3: Interpolation of quarter-pixel positions

2.1.3 Algorithm Flow

The interpolation procedure consists of six cases: Full-pixel position, Vertical inter-

polation (no-horizontal interpolation, NH), Horizontal interpolation (no-vertical interpola-

tion, NV), Vertical after Horizontal interpolation (VH), Horizontal after Vertical interpo-

lation (HV), and Diagonal interpolation(D). Since each case performs similar operations,

we could improve the computation time using dedicated instructions with little overhead.

Upper part of Fig. 2.3 shows the positions of pixels which are used to predict sample pix-

7

els according to the motion vector. {G, H, M , N} are current pixels while others are

positions we want to predict. According to Fig. 2.2, we show all the formula to calculate

{c, d, e, f, g, h, i,m, n, o, p, q, t, u, v, w, x} as follows.

d = (E − 5F + 20G + 20H − 5I + J + 16)/32 (2.3)

x = (K − 5L + 20M + 20N − 5P + Q + 16)/32 (2.4)

m = (A − 5C + 20G + 20M − 5R + T + 16)/32 (2.5)

q = (B − 5D + 20H + 20N − 5S + U + 16)/32 (2.6)

{
o = (a − 5b + 20d + 20x − 5y + z + 512)/1024
or o = (j − 5k + 20m + 20q − 5r + s + 512)/1024

(2.7)

c = (G + d + 1) >> 1 (2.8)

e = (d + H + 1) >> 1 (2.9)

f = (G + m + 1) >> 1 (2.10)

g = (d + m + 1) >> 1 (2.11)

i = (d + q + 1) >> 1 (2.12)

n = (m + o + 1) >> 1 (2.13)

p = (o + q + 1) >> 1 (2.14)

8

t = (m + M + 1) >> 1 (2.15)

u = (m + x + 1) >> 1 (2.16)

v = (o + x + 1) >> 1 (2.17)

w = (x + q + 1) >> 1 (2.18)

Upper part of Fig. 2.3 also shows the value of dx and dy that represent the motion vector.

By the equations above and Fig. 2.4, we can easily figure out that:{c, d, e, x} are interpolated

by NV procedure, {f, m, t, q} are interpolated by NH procedure, {h, o, v} are interpolated

by VH procedure, {n, p} are interpolated by HV procedure, and {g, i, u, w} are interpolated

by D procedure.

In our experiment, we analyze JM code written in C in detail. We found that the

interpolation procedure contains a loop of three levels in each case. Fig. 2.5 shows the

structure of the loop. Each time the interpolation procedure runs one case which is selected

according to the motion vector. The first for-loop chooses a raw/column of the block, and the

second decides which element in the block will be interpolated. By equation (2.1), we know

that the inner for-loop requires six multiplication to produce the result of current pixel. Each

computation consist of three steps: Checking Boundaries, Load Pixel, and Multiply Addition

as shown in Fig 2.5.

Load Pixel and the Multiply Addition steps perform loading the value and calculating

operations, respectively. Checking Boundaries is to check if the referenced pixel is out-

side the frame. Without this step, the procedure may load the wrong value and results in

unpredictable fault.

2.2 New Instructions

From the analysis, we discovere that Checking Boundaries is redundant during most of

the executions. The new instructions we propose are to reduce these checking actions.

9

input x_pos, y_pos

computing dx, dy (the motion vector)

dx==0 & dy==0

dy==0

dx==0

dx==2

dy==2

Full-pel

No-Vertical

interpolation

Horizontal and Vertical

interpolation

Diagonal

interpolation

Vertical and Horizontal

interpolation

No-Horizontal

interpolation

no

yes

yes

yes

yes

yes

no

no

no

no

Figure 2.4: The flow chart of the algorithm of the interpolation procedure

10

for (each row of the block)

for (each column of the block)

for (each multiplication)

Checking Boundaries

Load Pixel

Multiply and Addition

Figure 2.5: Computation structure of the three level loop

LOOP(six times) :

R_to_load = MIN (R_UpperBound, R_ref_pel) || NOP || R_coef = [I2 ++]

R_to_load = MAX (R_Lowerbound , R_to_load)

P_to_load = R_to_load

P_to_load = P_base + P_to_load

R_tmpresult = B [P_to_load] (Z)

R_tmpresult *= R_coef

R_result = R_result + R_tmpresult

R_ref_pel = R_ref_pel + R3 // R3 = 1

Checking Boundaries

Load Pixel

Multiply_Addition

Figure 2.6: Code sequence generated by VisualDSP4.0

11

2.2.1 CHKB instruction

Current DSP instructions include MIN/MAX instruction. But it still requires many

instructions to accomplish the checking step. In interpolation procedure, to perform checking

, the procedure extracts the minimum between the value loaded and the upper bound of the

referenced block. Then, it extracts the maximum between the result and the lower bound

(always zero). Current ISA can use the MIN/MAX instructions to achieve this goal. After

that, we move the result into pointer-register for the use of load. It takes at least three

instructions to accomplish the checking step and takes about 35% of instructions in the

inner for-loop.

Since our goal is to decrease the number of instructions in the inner for-loop, we first

focus on reducing these instructions. The regulation of Checking-Boundaries give us clue to

design CHKB instruction. Here is the syntax of CHKB instruction:

Preg0 = CHKB(Preg1, P reg2) (2.19)

Main functionality of CHKB instruction is simple. The semantic of CHKB instruction

is to first take the minimum, minp, of Preg1 and Preg2, then take the maximum of minp

and zero, and finally store the result to Preg0. The original code sequences shown in Fig 2.6

is changed to codes with the CHKB as shown in Fig. 2.7. Furthermore, this instruction is

designed to perform on DAG (Data Address Generator) so that it will not need redundant

move instructions.

P_to_load = CHKB (P_UpperBound, P_ref_pel)

ACC = 0

P_to_load = P_base + P_to_load

MNOP || R_coef = [I2 ++] || R_tmpresult = B [P_to_load] (Z)

LOOP: (five times)

P_ref_pel = P_ref_pel + P3 // next pixel to reference (P3 = 1)

P_to_load = CHKB (P_UpperBound, P_ref_pel)

ACC += (R_coef * R_tmpresult) (IS) || R_coef = [I2 ++] || R_tmpresult = B [P_to_load] (Z)

ACC += R_coef.L * R_tmpresult.L (IS)

R_result = ACC

Figure 2.7: The code sequence applying the CHKB instruction

12

The original code sequences will take 46 instructions. With CHKB instruction, it only

take 22 instructions to complete each calculation.

2.2.2 BFLOAD instruction and LDMVBF instruction

Now we focus on the Load action. In a more detailed analysis, we checked the pixels

required in each calculation. As shown in Fig. 2.8, the grey squares represent the pixel

referenced and the white ones represent the predicted position of horizontal interpolation.

Each horizontal interpolation will require six loads to get the reference pixels. In Fig. 2.8(a),

performing horizontal interpolation on a needs to load A,B, C, D, E, and F one at a time.

Then, in the next iteration, interpolation on b requires loading B, C, D, E, F, and G as

shown in Fig. 2.8(b). Apparently, where five loads are redundant which are B, C, D,E, and

F . Fig. 2.9 shows a similar case where vertical interpolation is performed. Unfortunately,

the number of registers is not enough to store those values temporally in CPU. Therefore,

new instructions and a new buffer are developed to achieve this goal.

A B C D E F Ga

A B C D E F Gb

(a) Step1: No-Vertical interpolating on position a

(b) Step2: No-Vertical interpolating on position b

Figure 2.8: Pixels referenced to perform horizontal interpolation on position a and b

The idea is to design a buffer just for interpolation. Tracing the assembly code generated

by VisualDSP4.0 of JM, we discover that each load of pixel only loads a byte then zero-

extension is performed. This means that each entry of buffer have one byte in size. There

13

A

B

C

D

E

F

G

a

(a) Step1:

No-Horizontal interpolating on position a

(b) Step2:

No-Horizontal interpolating on position b

A

B

C

D

E

F

G

b

Figure 2.9: Pixels referenced to perform vertical interpolation on position a and b

14

are five loads that overlap. Therefore, the number of entries of buffer is five. By the above

observation, we could design new instructions whose syntax are:

Dreg = LDMV BF [Preg] (2.20)

Dreg = BFLOAD (2.21)

The LDMV BF instruction performs operations similar to Dreg = B[Preg](Z), which

loads byte of the data pointed by Preg, zero-extends the value, and finally stores it into des-

tination Dreg. The only different part between LDMV BF and Load-Byte-Zero-Extension

is that the lower order byte of the loaded result is copied into the bottom of the buffer by

LDMV BF . The buffer acts like a circular array. While a new data is to stored, the oldest

data will be overwritten. That is, assuming we have a buffer named BF and indexed 0-4.

LDMV BF will cause the effect of moving the data of {BF[1], BF[2], BF[3], BF[4]} into

{BF[0], BF[1], BF[2], BF[3]}, respectively. Meanwhile lower order byte of the data loaded

by LDMV BF will be stored into {BF[4]}.
The BFLOAD instruction performs a simpler operation. It loads the top value of the

buffer into the destination Dreg and zero-extends. When the load is done, this instruction

rotates the buffer by eight bits. Let {BF[0], BF[1], BF[2], BF[3], BF[4]} store the data

of {a, b, c, d, e} respectively, the new buffer will become {b, c, d, e, a} after BFLOAD is

performed. The reason to design the new instruction is because in interpolation procedure,

a data loaded from memory, it can remain in buffer for five operations. To make the hardware

implementation more efficient, the new buffer is not required to be byte-accessible.

These special instructions are used dedicately. Therefore, a macro is written to utilize

these instructions. While writing these parts of code, we have to break the inner loop to

make these instructions work efficiently. Fig 2.10 shows the original assembly code, and

Fig. 2.11 shows the code with BFLOAD and LDMV BF instructions. The original code

will take about 1168 instructions, while the new code takes only about 564 instructions. In

our design, these instructions can be eecuted in parallel with other instruction to obtain

more efficiency.

The reason not using another loop for the second iteration is the pipeline issue. There’s

enough instructions independent from those parallel ones for programmers to fill into the

15

LOOP: (four times) {

 …

/* calculating the base of block*/

 /* push registers */

 …

LOOP: (four times) {

…

/* calculating the base of pixel to load*/

…

ACC = 0

R_to_load = MIN (R_UpperBound , R_ref_pel) || NOP || R_coef = [I2 ++]

LOOP: (six times)

R_to_load = MAX (R_LowerBound, R_toload)

P_to_load = R_to_load //check boundaries done

R_ref_pel = R_ref_pel + R3 //next pixel to reference (R3 = 1)

P_to_load = P_base + P_to_load //offset

R_tmpresult = B [P_to_load] (Z) //load pixel

R_to_load = MIN (R_UpperBound , R_ref_pel)|| NOP || R_coef = [I2 ++]

ACC += R_tmpresult.L * R_coef.L (IS) //calculate result

R_result = ACC.W

...

/* calculating the address of block[i][j] and stores the result into it */

...

}

 /* pop back values in register */

}

Figure 2.10: Original code sequence

16

LOOP: (four time) {

 …

 /* calculating the base of block and the pixel to load, then push registers */

…

R_to_load = MIN (R_UpperBound , R_ref_pel) || NOP || R_coef = [I2 ++]

LOOP: (six times)

R_to_load = MAX (R_LowerBound, R_toload)

P_to_load = R_to_load //check boundaries done

R_ref_pel = R_ref_pel + R3 //next pixel to reference (R3 = 1)

P_to_load = P_base + P_to_load //offset

R_tmpresult = LDMVBF [P_to_load] //load pixel

R_to_load = MIN (R_UpperBound , R_ref_pel) || NOP || R_coef = [I2 ++]

ACC += R_tmpresult.L * R_coef.L (IS) //calculate result

R_result = ACC.W

...

/* calculating the address of block[i][j] and stores the result into it*/

...

LOOP: (three times) {

ACC += R_tmpresult.L * R_coef.L (IS) || R_coef = [I2 ++]|| R_tmpresult = BFLOAD

ACC += R_tmpresult.L * R_coef.L (IS) || R_coef = [I2 ++]|| R_tmpresult = BFLOAD

ACC += R_tmpresult.L * R_coef.L (IS) || R_coef = [I2 ++]|| R_tmpresult = BFLOAD

ACC += R_tmpresult.L * R_coef.L (IS) || R_coef = [I2 ++]|| R_tmpresult = BFLOAD

ACC += R_tmpresult.L * R_coef.L (IS) || R_coef = [I2 ++]|| R_tmpresult = BFLOAD

ACC += R_tmpresult.L * R_coef.L (IS) || R_coef = [I2 ++]|| R_tmpresult = LDMVBF [P_to_load]

…

/*stores the result into block[i][j]*/

…

}

}

Figure 2.11: The code sequence applying BFLOAD and LDMVBF instructions

17

slot.

Finally, we list all the new instructions proposed in Table. 2.1.

Table 2.1: Descriptions of new instructions

Instruction Syntax Descriptions

dest.Preg = CHKB(src1.P reg, src0.P reg) dest = max(0,min(src1, src2))
used to check boundaries
dest = buffer[0](Z)
buffer[0] <= buffer[1]
buffer[1] <= buffer[2]

dest.Dreg = BFLOAD buffer[2] <= buffer[3]
buffer[3] <= buffer[4]
buffer[4] <= buffer[0]
used to get the value stored previously in buffer
and rotate the buffer by 8-bits
dest = B[src](Z)
buffer[0] <= buffer[1]
buffer[1] <= buffer[2]

dest.Dreg = LDMV BF [src.Preg] buffer[2] <= buffer[3]
buffer[3] <= buffer[4]
buffer[4] <= B[src]
used to store the loaded value and shift the
buffer by 8-bits

18

