Chapter 3

Algorithm for Cell Clustering

Based on our motivation in Chapter 2, we propose a design flow to
determine how to cluster cells to share sleep transistors. First, we perform
the cell characterization to compute the parameters of each cell and the
allowed maximum current to flow throeugh a sleep transistor under a specified
performance degradation. Then, we model:the relations of gate transition-
time as a relation graph taking topology and functionality into consideration.
Finally, clustering of gates is formulated as a clique partitioning problem.
Figure 3.1 shows the design flow. The detailed description of each step is

described in the following sections.

3.1 Cell Characterization

The objective of the cell characterization is to determine the size of sleep

transistors (the maximum current flowing through sleep transistors under a

13

Circuit Graph
» #

Cell
Characterization

Compute Delays of all
Gate-Outputs

Construct |
Relation Graph

Determine Mutual Exclusive Cells
by Topology and Functionality

v

Clique Partitioning

Max Current of
> ¢

Sleep Transistor

Merge of Cliques

Clustered Circuit Graph

Figure 3.1: Design flow of the cell clustering algorithm

14

specified timing constraint) and to compute the parameters of cells such as
cell delay, discharge current value, and discharge time.

The size of sleep transistors are calculated by analyzing the equations
presented in [10]. The delay of a single gate at the absence of a sleep transistor
can be formulated as Equation (3.1), where V=18V, « is the velocity
saturation index and V;z is the low threshold voltage set to 350mV using

TSMC 0.18um CMOS technology.

Cload‘/t-id

= Vaa— Vi) o

Td

On the other hand, sleep transistors in MTCMOS circuits will degrade the
performance. Let the delay of a single gate be expressed as Equation (3.2),

where V. is the potential of the virtual ground.

sleep = Cload‘/dd
I (Vad =V = Var)™

(3.2)

Assuming the circuit in MTCMOS tolerate a 5% performance degradation
formulated as Equation (3.3). Then, after setting o to 1 and substituting
Equation (3.3) by Equation (3.1) and Equation (3.2), V, can be formulated

as in Equation (3.4) and its value is computed as 0.0725V.

Td
m - 95% (33)
Tq
Ve = 0.05(Vygg — Vi) (3.4)

15

Then we do a SPICE simulation under TSMC spice model of 0.18 um tech-
nology. By setting Vig to be 500mV, the maximum current of one sleep
transistor is then computed as 432uA under (%)Sleep ~ 10. This is the value
that the maximum current of the circuit flows through sleep transistors in
MTCMOS in order to maintain the performance of the circuit.

At this same time, to characterize cells, for each gate in the library, we
construct its SPICE model using TSMC spice model of 0.18 um technology
for simulation. For each gate, all input combinations are applied and the
worst case delay is taken as the propagation delay. Note that the fan-out
of a gate is also considered and a load of 6fF' is applied as one fan-out of
each gate. Then the delay of a 1-output.inverter is defined as one time unit
and the delay of all gates are computed accordingly. In the meantime, the
peak current value and time!at ‘which. the ‘discharge occurs are monitored.
We also take the worst case discharge current value as the peak current value
and record the time unit at which discharge occurs. The discharge current
of each gate takes a triangular shape. However, to simplify the computation,
we assume the maximum discharge current occurs for one time unit of the

propagation delay.

16

3.2 Construct Relation Graph

To reduce the number of sleep transistors, we want to cluster as many
gates as possible for one sleep transistor and the current flowing from each
cluster does not exceed the maximum allowed current of the sleep transistor.
Previous work proposed to cluster gates that make transition at different
time (topology information). We found that more gates can be clustered if
the functionality of the circuit is also taken into consideration as presented
in our motivation. In this section, we will first present how to compute
the transition time of each gate. Then, based on this timing information,
we will construct the relations of all gates taking both timing (topology)
and functionality into consideration. Before we present our algorithm, we
first define a relation graph G,.(V,£). which represent the discharge relation
among gates taking into comsideration both topology and functionality. A
vertex v; € V stands for one gate and an edge (v;,v;) € £ means that v; and

v; do not make transition at the same time.
3.2.1 Compute Delays of all Gate-Outputs

We adopt a skill similar to IMAX [11], which is input-pattern indepen-
dent and estimates an upper bound envelope of all possible current wave-

forms. The algorithm proceeds with a Breath-First Search from primary

17

Global time slot bar

3

/r

@ @

2%

Ly,

v

ﬁ

1Y

Figure 3.2: Global time slot bar

inputs to primary outputs. At each node, we compute the possible time slots
that a gate may switch. Thereis a global time slot bar. After the possi-
ble switching times are obtained, the gate is linked to the time slot of the
global time slot bar if the gate switches at that particular time slot. After
the search, we get a global time slot bar which has the information about
the upper bound of possible switching gates at each time slot in one cycle.
During the computation, we also record the path information. Take the cir-
cuit in Figure 2.3 as an example. Assuming unit delay is used for all gates
when the discharge of gates occurs. For example, to compute the possible

switching times of ¢g5. Let the transition times of g4 be computed as time

18

slots one and two. Then, the transition times of g5 are computed through
primary input b, which is time slot one, and through g4, which are time slots
two and three. Therefore, there are three possible discharge time slots (one,
two and three) for the output of gate g5. As shown in Figure 3.2, ¢5 is linked
to the time slots one, two, and three of the global time slot bar. Similarly,
we compute the transition times of the all gates and find that there are three
time slots in one cycle for this circuit. All gates are linked to the global time

slot bar as shown in Figure 3.2.

3.2.2 Determine Mutual Exclusive Cells by Topology
and Functionality

Recall that in our relation. graph, each edge € E stands for a mutually
exclusive relation in terms -of gate output: transition time. To build this
graph, initially, we assume the relation graph is a complete graph. That is,
all gates are mutually exclusive.- Then, we use the topology and functionality
information to decide if an edge is deleted one by one.

The checking procedure starts with the first time slot of the global time
slot bar. For each time slot, there are a set of gates linked to this slot. In
terms of circuit topology, it means that these gates will switch simultaneously
and the edges connecting these gates in the relation graph should be deleted.

However, due to the dependency relations of signals (multiple fan-out of a

19

CLK 1, CLK

;
a a

1— 0_>

1 0 1 10 | 0
Cc Cc

1 —— X ——

Figure 3.3: AND gate discharge scenario

CLK ., CLK

Figure 3.4: ORgate discharge scenario

gate, reconverged paths..), two possible simultaneous switching gates in the
global time slot bar are not sure to discharge at the same time in terms of
functionality.

To check if two gates in the same time slot are indeed switch simulta-
neously, we take advantage of the ATPG-like skill to check the input cones

of two gates. During the functionality checking, two successive clock cycles

20

rather than one clock cycle was considered in order to reflect the transition
of signals. If we find any signal conflict during the functionality checking,
it means there is no input vector to make the checked two gates discharge
simultaneously at this particular time slot. In other words, these two gates
are mutually exclusive at this time slot and we will not delete their relation
edge in the relation graph.

The details of the functionality check are described as follows. We know
that once one input signal which is a controlling input of the gate is deter-
mined, the output signal of the gate is determined regardless of other inputs.
On the other hand, no non-controlling inputs of the gate can determine the
output signal until the last non-controlling input of the gate arrives. Based
on these implications, we will develop our functionality check algorithm to
check pairs of gates which linked to the same time slot.

Before we describe our implicationirule, we first define some terms. We
say that the input signal which makes the output transition is an on-input.
Inputs that arrive before the on-input are called early-side-inputs. Inputs
that arrive later than on-input are called late-side-inputs.

We will first demonstrate our implication by a discharged AND gate and
a discharged OR gate. In Figure 3.3, assume the input a is the on-input, b is

the early-side-input and c is the late-side-input of the AND gate. The signal

21

transition of 1 — 0 on a from the (T"— 1), clock cycle to the Ty, clock cycle
will make a output signal transition of 1 — 0. In this case, we will get an
implication that the input b must be 1 in the (7" — 1)y, clock cycle because
the output signal in the (7" — 1)y, clock cycle is 1, and b must stay 1 in
the T}, clock cycle because b can not yet make the output signal transition.
Similarly, it also implies that the input ¢ must be 1 in the (7" — 1), clock
cycle but is don’t-care in the T3, clock cycle.

In Figure 3.4, we also assume the input a is the on-input , b is the early-
side-input and c is the late-side-input of the OR gate. The on-input a makes
a 1 — 0 transition of output signal in the T}, clock cycle. We have an
implication that the early input b-in the (7" — 1)y, clock cycle is don’t-care
because the signal a (1) is_the.controlling input of OR gate in the (T —
1), clock cycle. However, b must be non-controlling value (0) in the Ty,
clock cycle because b can not: decide the output signal of OR gate. It also
implies that the late-side-input ¢ is not arrived in the T}, clock cycle where
a makes a transition. Hence, ¢ must be 0 in the (7" — 1)y, clock cycle and ¢
is don’t-care in the T}, clock cycle. Using the same techniques, we develop
implication rules for four output transition scenario of AND gate and OR
gate in Table 3.1 and Table 3.2, repectively. The implication rules of gates

of different functionalities can be easily developed in the same fashion.

22

Table 3.1: Implication rule of AND gate

AND gate
Output On lTutput Early Side Input | Late Side Input
CLKy_4| CLKy || CLKy_4| CLKy | CLKy_4| CLKy | CLK7_¢| CLK¢
0 0 b be X X X X
1 1 1 1 1 1 1 1
1 0 1 0 1 1 1 X
0 1 0 1 b 1 1 X

Table 3.2: Tmplication rule of OR gate

OR ‘gate
Output On Tutput Early Side Input | Late Side Input
CLKy_4| CLKy || CLKy_4| CLKy | CLKy_;| CLKy | CLK7_4| CLKp
0 0 0 0 0 0 0 0
1 1 X X X X X X
1 0 1 0 b 0 0 b
0 1 0 1 0 0 0 X

23

Now, we use one example to illustrate how to use this implication rules to
check if two gates are indeed discharged simultaneously. Take the circuit in
Figure 3.5 as an example. We are to check if the gate g1 and g2 are discharged
at the seventh time slot in the 73, clock cycle. The on-input paths of them
are (d—gd—j—¢g3—n—gl)and (a — g8 — f — g7 —p — ¢2). According
to our implication rule, for g1 to discharge, signal transitions 1 — 0, 0 — 1,
and 1 — 0 from the (7" — 1)y, to the T3, clock cycle are assigned, repectively,
to edges n, j, and d on the on-input path of g1. Since edge k is an early-side-
input for g3, it is implied that edge k has the signal transition of + — 1 from
the (T — 1)y, to the Ty, clock cycle. Similarly, since the arrival time of m is
3 unit which is earlier than that of the on-input of g1, 4, it is implied that m
sustains value 1 from the (7" = L)j;, to the Ty, clock cycle. Consequently, the
input h and 7 to the g5 must sustain 0 from the (7" — 1)y, to the Ty, clock
cycle and the primary input ¢ mustibel from the (7' — 1), to the T}y, clock
cycle due to the inverse functionality of g6. Similarly, for ¢2 to discharge,
1 -0,1—0,and 0 — 1 from the (7" — 1)y to the T}, clock cycle are
assigned, respectively, to edges p, f, and a on the on-input path of g2. Since
the edge o is an early-side-input for g2, it is implied that edge o must sustain
value 1 from the (7" — 1)y, to the Ty, clock cycle. Since the arrival time of [

is 3 unit which is later than that of the on-input of g7, 1, it is implied that [

24

f
a @Q
o
b——g10 | g7 '
g9
h
c— g6 delay of gates:
NOT: 1
E— NOR: 2
O NAND : 2
i OR:3
m AND : 3
d— j
g4 ' n gl
e— g3]
ki

Figure 3.5: Implication example

has the signal transition of 0 — = from the (7" — 1)y, to the Ty, clock cycle.
Consequently, the input g and A to the ¢9 must have the signal transition of
1 — z from the (T — 1)y, to the Ty, clock cycle: Obviously, there is a conflict
on edge h that one path requires.h sustain signal 0 — 0 and the other path
the signal transition of 1 — z.-That is,'no input vectors can make g1 and g2
discharge simultaneously at this time slot. So, we can ensure that g1 and g2
are mutually exclusive at this time slot.

Note that during functionality checking, the conflicts not only occur in
the intersection of input cones of two gates but also in the input cone of one

gate alone.

3.3 Clique Partitioning

Note that all gates in a clique of our relation graph are mutually exclu-
sive and only the maximum current among them is computed as the discharge
current of the clique. Therefore, after the new relation graph is constructed,
we want to partition our relation graph to as fewer cliques as possible. The
heuristic algorithm in [12] is utilized to achieve our objective. The heuristic
algorithm proceeds by combining vertices in the relation graph step by step.
At each step, a pair of vertices with the largest number of common neighbors
is selected. Then these two vertices are combined to from a new vertex and
the relation graph is updated. This algorithm stops when there is no pair
of vertices to combine and each vertex stands for one clique finally. The

algorithm is shown in Figure 3.6.
3.4 Merge of Cliques

After clique partitioning, we have many cliques and each clique has one
discharge current. To use as fewer sleep transistors as possible, we can merge
some cliques to share one sleep transistor as long as the sum of their currents
is not over the maximum discharge current of a sleep transistor. To that end,
we develop algorithm to merge cliques. The problem can be formulated as the

Bin Packing problem where the capacity of the bin is the maximum allowed

26

1 Algorithm Clique Partitioning Algorithm()
2 Input : Relation Graph G = (V, E)

3 Output : Clustered Relation Graph

4

5 While(E # 0)

6 find (v;,v;) € E with largest set of common neighbors;
7 5 «— v; Uwy;

8 V —V Us;

9 delete edges linked v; or vy;

10 add edges connecting between s and neighbors of s;

Figure 3.6: Clique partitioning

current of a sleep transistor and that of an object (a clique) is the maximum
current of the clique. We will merge cliques by the best-fit decreasing greedy
Bin Packing algorithm. First; we sort the ¢liques according to their currents.
Cliques in the ordered list-are then merged to the bin to share one sleep
transistor until the merge of the next candidate clique results in the overflow
of the maximum current of one sleep transistor. We continue to merge cliques
from the next candidate clique in the same way until all cliques are processed.

The algorithm is shown in Figure 3.7.

27

1 Algorithm Merge of Cliques Algorithm()
2 Input : Cliques List
3 Output : Merges of Cliques

4

o N O Ot

Ne

11
12
13
14
15
16

sort, cliques list in decreasing order;
add new bin, B, and set B = ();
set capacity Cg of B to 0;
for each clique in cliques list
if(C'p + capacity of clique < maximum allowed current)
B «— B U clique;
Cp = Cp + capacity of clique;
else
add new bin, B, and set.B = {);
set capacity Cpg of B to0;
B — B U clique;
Cp = Cp + capacity of, clique;

Figure 3.7: Merge of cliques

28

