【章節 11 Sequences；Indeterminate forms】

【part 1】

1．Find the limit．

$$
\begin{aligned}
& \text { (1) } \lim _{\theta \rightarrow \frac{\pi}{2}} \frac{1-\sin \theta}{\csc \theta} \quad \text { (2) } \lim _{x \rightarrow 0} \frac{x}{\tan ^{-1}(4 x)} \quad \text { (3) } \lim _{x \rightarrow \infty}\left(x^{3} e^{-x^{2}}\right) \\
& \text { (4) } \lim _{x \rightarrow 0^{+}}(\sin x \ln x)
\end{aligned} \text { (5) } \lim _{x \rightarrow \infty}\left(x \tan \frac{1}{x}\right)\left(6 \lim _{x \rightarrow \infty}\left(x^{x}-x\right) .\right.
$$

2．If f^{\prime} is cont．，$f(2)=0$ and $f^{\prime}(2)=7$ ，evaluate $\lim _{x \rightarrow 0} \frac{f(2+3 x)+f(2+5 x)}{x}$ ．
3．If f^{\prime} is cont．，use I^{\prime} Hospital Rule to show that $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x-h)}{2 h}=f^{\prime}(x)$ ．

【part 2】

1．Determine whether the sequence converges or diverges．If it converges，find the limit．
（1）$a_{n}=\frac{3+5 n^{2}}{n+n^{2}} \quad$（2）$a_{n}=\frac{2^{n}}{3^{n+1}} \quad$（3）$a_{n}=\frac{(n+2)!}{n!} \quad$（4）$a_{n}=\frac{(-1)^{n} n^{3}}{n^{3}+2 n^{2}+1}$
（5） $\mathrm{a}_{\mathrm{n}}=\cos \left(\frac{2}{\mathrm{n}}\right) \quad$（6） $\mathrm{a}_{\mathrm{n}}=\frac{\operatorname{cosn}}{2^{\mathrm{n}}} \quad$（7）$\{\mathrm{n} \cos (\mathrm{n} \pi)\}(8)\{0,1,0,0,1,0,0,0,1 \cdots\}$
（9） $\mathrm{a}_{\mathrm{n}}=\frac{(\ln \mathrm{n})^{2}}{\mathrm{n}}$
2．（a）If $\left\{a_{n}\right\}$ is convergent，show that $\lim _{n \rightarrow \infty} a_{n+1}=\lim _{n \rightarrow \infty} a_{n}$
（b）A sequence $\left\{a_{n}\right\}$ is defined by $a_{1}=1$ and $a_{n+1}=\frac{1}{1+a_{n}} \forall n \geqq 1$ ．
Assuming that $\left\{a_{n}\right\}$ is convergent，find its limit．
3．A sequence $\left\{a_{n}\right\}$ is given by $a_{1}=\sqrt{2}, a_{n+1}=\sqrt{2+a_{n}}$ ．
（a）By induction，show that $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ is increasing and bounded above by 3 ．
（b）Show that $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{a}_{\mathrm{n}}$ exists and find its limit．
4．（a）Show that the sequence defined by $a_{1}=2, a_{n+1}=\frac{1}{3-a_{n}}$ satisfies $0 \leqq \mathrm{a}_{\mathrm{n}} \leqq 2$ and is decreasing．
（b）Show that it converges and find its limit．

