

【章節 11 Sequences; Indeterminate forms】

[part 1]

1. Find the limit.

$$(I) \lim_{\theta \to \frac{\pi}{2}} \frac{1 - \sin \theta}{\csc \theta} \quad (Z) \lim_{x \to 0} \frac{x}{\tan^{-1}(4x)} \quad (I) \lim_{x \to \infty} (x^3 e^{-x^2})$$

$$(I) \lim_{x \to 0^+} (\sin x \ln x) \quad (I) \lim_{x \to \infty} (x \tan \frac{1}{x}) \quad (I) \lim_{x \to \infty} (x e^x - x)$$

- 2. If f' is cont., f(2)=0 and f'(2)=7, evaluate $\lim_{x\to 0} \frac{f(2+3x)+f(2+5x)}{x}$.
- 3. If f' is cont., use I'Hospital Rule to show that $\lim_{h\to 0} \frac{f(x+h)-f(x-h)}{2h} = f'(x)$.

[part 2]

1. Determine whether the sequence converges or diverges. If it converges, find the limit.

- 2. (a) If $\{a_n\}$ is convergent, show that $\lim_{n\to\infty} a_{n+1} = \lim_{n\to\infty} a_n$
 - (b) A sequence $\{a_n\}$ is defined by $a_1 = 1$ and $a_{n+1} = \frac{1}{1+a_n} \forall n \ge 1$.

Assuming that $\{a_n\}$ is convergent, find its limit.

- 3. A sequence {a_n} is given by a₁ = √2, a_{n+1} = √2 + a_n.
 (a) By induction, show that {a_n} is increasing and bounded above by 3.
 (b) Show that lim_{n→∞} a_n exists and find its limit.
- 4. ⓐ Show that the sequence defined by $a_1 = 2$, $a_{n+1} = \frac{1}{3-a_n}$
 - satisfies $0 \leq a_n \leq 2$ and is decreasing.
 - Show that it converges and find its limit.