【章節 17．3】
（1）Evaluate the double integral．
（a） $\iint_{D} x \cos y d x d y, D$ is bounded by $y=0, y=x^{2}, x=1$ ．
（b） $\iint_{D} \mathrm{y}^{3} \mathrm{dxdy}, \mathrm{D}$ is the triangular region with vertices $(0,2),(1,1),(3,2)$ ．
© $\iint_{\mathrm{D}}(2 \mathrm{x}-\mathrm{y}) \mathrm{dxdy}, \mathrm{D}$ is bounded by the circle with center the origin and radius 2 ．
（2）Find the volume of the given solid．
（a）Under the surface $z=x y$ and above the triangle with vertices $(1,1),(4,1)$ ，and $(1,2)$ ．
（b）Enclosed by the surfaces $\mathrm{z}=\mathrm{x}^{2}, \mathrm{y}=\mathrm{x}^{2}$ and the planes $\mathrm{z}=0$ and $\mathrm{y}=4$ ．
（c）Bounded by the cylinder $x^{2}+y^{2}=1$ and the planes $\mathrm{y}=\mathrm{z}, \mathrm{x}=0, \mathrm{z}=0$ in the first octant．
（3）Sketch the region of integration and change the order of integration．
（a） $\int_{0}^{3} \int_{-\sqrt{9+y^{2}}}^{\sqrt{9+y^{2}}} \mathrm{f}(\mathrm{x}, \mathrm{y}) \mathrm{dxdy}$
（b） $\int_{1}^{2} \int_{0}^{\ln x} f(x, y) d y d x$
（4）Evaluate the integral by reversing the order of integration．
（a） $\int_{0}^{1} \int_{3 y}^{3} e^{x^{2}} d x d y$
（b） $\int_{0}^{1} \int_{\sqrt{y}}^{1} \sqrt{x^{3}+1} d x d y$
（C） $\int_{0}^{1} \int_{\sin ^{-1} \mathrm{y}}^{\frac{\pi}{2}}(\cos \mathrm{x}) \sqrt{1+(\cos \mathrm{x})^{2}} \mathrm{dxdy}$
（5）In evaluating a double integral over a region D ，a sum of iterated integrals was obtained as follows

$$
\iint_{D} f(x, y) d x d y=\int_{0}^{1} \int_{0}^{2 y} f(x, y) d x d y+\int_{0}^{3} \int_{0}^{3-y} f(x, y) d x d y
$$

Sketch the region D and express the double integral as an iterated integral with reversed order of integration．

