

(iv)
$$F_{\mathbf{X}}$$
 is continuous from the right with
respect to each of the coordinates, or any
subset of them jointly, i.e., if $\mathbf{x} = (x_1, ..., x_n)$ and $\mathbf{z}_m = (z_{1m}, ..., z_{nm})$ such that $\mathbf{z}_m \downarrow \mathbf{x}$,
then $F_{\mathbf{X}}(\mathbf{z}_m) \downarrow F_{\mathbf{X}}(\mathbf{x})$.
(v) If $x_i \le x'_i, i = 1, ..., n$, then
 $F_{\mathbf{X}}(\mathbf{x}_1, ..., \mathbf{x}_n) \le F_{\mathbf{X}}(t_1, ..., t_n) \le F_{\mathbf{X}}(x'_1, ..., x'_n)$.
 \mathbf{x}_i where $t_i \in \{x_i, x'_i\}, i = 1, 2, ..., n$. When $n=2$, we have
 $F_{\mathbf{X}_1, \mathbf{X}_2}(x_1, x_2) \le \left\{ \begin{array}{c} F_{\mathbf{X}_1, \mathbf{X}_2}(x_1, x'_2) \\ F_{\mathbf{X}_1, \mathbf{X}_2}(x_1, x_2) \le \left\{ \begin{array}{c} F_{\mathbf{X}_1, \mathbf{X}_2}(x_1, x'_2) \\ F_{\mathbf{X}_1, \mathbf{X}_2}(x_1, x_2) \le \left\{ \begin{array}{c} F_{\mathbf{X}_1, \mathbf{X}_2}(x_1, x'_2) \\ F_{\mathbf{X}_1, \mathbf{X}_2}(x_1, x_2) \le \left\{ \begin{array}{c} F_{\mathbf{X}_1, \mathbf{X}_2}(x_1, x'_2) \\ F_{\mathbf{X}_1, \mathbf{X}_2}(x_1, x'_2) - F_{\mathbf{X}_1, \mathbf{X}_2}(x_1, x'_2) \\ F_{\mathbf{X}_1, \mathbf{X}_2}(x_1', x'_2) + F_{\mathbf{X}_1, \mathbf{X}_2}(x_1, x'_2) \\ F_{\mathbf{X}_1, \mathbf{X}_2}(x_1', x'_2) + F_{\mathbf{X}_1, \mathbf{X}_2}(x_1, x_2) \\ F_{\mathbf{X}_1, \mathbf{X}_2}(x_1', x'_2) + F_{\mathbf{X}_1, \mathbf{X}_2}(x_1, x_2) \\ F_{\mathbf{X}_1, \mathbf{X}_2}(x_1, \dots, x_k) = P(\mathbf{X}_1 \le x_1, \dots, \mathbf{X}_k \le x_k) \\ = P(\mathbf{X}_1 \le x_1, \dots, \mathbf{X}_k \le x_k, \\ = P(\mathbf{X}_1 \le x_1, \dots, \mathbf{X}_k \le x_k, \\ = P(\mathbf{X}_1 \le x_1, \dots, \mathbf{X}_k \le x_k, \\ = -\infty < \mathbf{X}_{k+1} < \infty, \dots, -\infty < \mathbf{X}_n < \infty \\ = \lim_{x_{k+1,1}, \mathbf{X}_k} (x_1, \dots, x_k) = P(\mathbf{X}_1 \le x_1, \dots, \mathbf{X}_k \le x_k) \\ = \lim_{x_{k+1,1}, \mathbf{X}_k} (x_1, \dots, x_k) = F_{\mathbf{X}}(x_1, x_2, x_3, \dots, x_n) \\ \text{In particular, the marginal cdf of \mathbf{X}_1 is
 $F_{\mathbf{X}_1}(x) = P(\mathbf{X}_1 \le x) \\ = \lim_{x_{k+1,2}, \mathbf{X}_{k+1}, \dots, \mathbf{X}_n = x_k = x_k, \dots, x_n \\ = \lim_{x_{k+1,2}, \mathbf{X}_{k+1}, \dots, \mathbf{X}_n = x_k = x_k, \dots, x_n \\ \text{satisfies (i)-(v) in the previous theorem. \\ \text{Joint Probability Mass Function} \\ \text{Definition. Suppose that $\mathbf{X}_1, \dots, \mathbf{X}_n$ are discrete$$

• Theorem. Supp	pose that	$f_{\mathbf{X}}$ is th	e join	t pdf	of X =	$(X_1,, X_n)$	$(X_n)^{p. 6-9}$
Then, the joint $f_{X_1,\ldots,X_k}(x_1,\ldots,x_k)$	$parol \Lambda$	1,,.	Λ_k, κ	< n, 1	S		
$ \begin{array}{c} X_2 \\ \uparrow \\ \downarrow \\ \downarrow$	$\int_{\infty}^{\infty} f_{\mathbf{x}}($	$(x_1,\ldots,$	$. x_{k}. x$	$k \perp 1$.	$\dots x_n$	$dx_{k\perp}$	$1 \cdots dx_n$.
In particular, the $x_{1}^{J-\infty}$)	1
$f_{X_1}(x) = f_{X_1}(x)$	$\int_{-\infty}^{\infty}\cdots\int$	$\int_{-\infty}^{\infty} f_{\Sigma}$	$\mathbf{x}(x, x)$	$2, \ldots$	$,x_{n})$	$dx_2\cdots$	dx_n .
Theorem. If F_X	$_{\mathbf{X}}$ and $f_{\mathbf{X}}$ a	are the	joint c	df an	d joint	t pdf of	EX,
pdf then $F_{\mathbf{X}}(x_1, \ldots)$							
$=\int_{-}^{2}$	$\frac{x_1}{-\infty}\cdots\int_{-\infty}^{\infty}$						and
$f_{\mathbf{X}}(x_1,\ldots$	$(x, x_n) =$	$rac{\partial^n}{\partial x_1 \cdots \partial}$	$\overline{F_{\mathbf{X}_n}}F_{\mathbf{X}_n}$	$x_{1}, .$	\ldots, x_r	$_{n}).$	
at the continuit	y points o	of $f_{\mathbf{X}}$.					
• Examples.	• 1	0 21					
Experiment. Two	balls are	e drawn	with	out rep	placen	nent fro	om a
box with 1 ball la	abeled or	ne,			-		
	labeled t	ŕ					
	labeled the		1 .1				
	bel on the			,			
I - 1a0	el on the	2 nd Dal	I uran	B -Note	es (
	v Shao-We	ei Chena	C C	1 37 32	an)		p. 6-10
The joint pmf a	and marg	inal pr		(X, Y) are	1	p. 6-10
Γ	and marg $p(x, y)$	inal pr	X) are $p_{Y}(y)$		p. 6-10
Γ		inal pm		(X, Y) 3 $3/30$, 		p. 6-10
	p(x, y)	1	X 2	3	$p_{Y}(y)$		p. 6-10
	p(x, y) = 1 $Y = 2$ 3	1 0 2/30 3/30	X 2/30 2/30 6/30	3 3/30 6/30 6/30	$p_Y(y)$ 1/6		p. 6-10
	$p(x, y) = 1$ $Y = \frac{1}{3}$ $p_X(x) = \frac{1}{3}$	1 0 2/30 3/30 1/6	X 2/30 2/30 6/30 2/6	3 3/30 6/30 6/30 3/6	$p_Y(y)$ 1/6 2/6 3/6	1	
Q: When balls	$p(x, y)$ $Y = \frac{1}{2}$ $p_X(x)$ $drawn w$	1 0 2/30 3/30 1/6	X 2/30 2/30 6/30 2/6 replac	3 3/30 6/30 6/30 3/6 ement	$p_Y(y)$ 1/6 2/6 3/6	do X	
Q: When balls have same 1	$p(x, y)$ 1 Y 2 3 $p_X(x)$ drawn w marginal	1 0 2/30 3/30 1/6	X 2/30 2/30 6/30 2/6 replac	3 3/30 6/30 6/30 3/6 ement	$p_Y(y)$ 1/6 2/6 3/6	do X	
$\mathbf{Q}: \text{ When balls} \\ \text{have same r} \\ \mathbf{Q}: P(X-Y =1) \\ \mathbf{Q}: P($	$p(x, y)$ $\frac{1}{Y 2}$ $\frac{2}{3}$ $p_X(x)$ drawn w marginal $p_X(x) = 2$	1 0 2/30 3/30 1/6 vithout r distribu	X 2/30 2/30 6/30 2/6 replac	3 3/30 6/30 6/30 3/6 ement ?	$p_{Y}(y)$ 1/6 2/6 3/6 t, why	do X	
\mathbf{Q} : When balls have same to \mathbf{Q} : $P(X-Y =1)$ P(X-Y =1) =	$p(x, y) = \frac{1}{2}$ $Y = \frac{1}{3}$ $p_X(x)$ drawn w marginal $p_X(x) = P(X=1, x)$	$\frac{1}{0}$ 2/30 3/30 1/6 7 ithout 1 distribut $(Y=2) -$	X 2 2/30 2/30 6/30 2/6 replac utions + $P(X)$	$\frac{3}{3/30}$ $\frac{6/30}{6/30}$ $\frac{3/6}{3/6}$ ement ?	$p_{Y}(y)$ 1/6 2/6 3/6 t, why =1)		
Q: When balls have same to $\mathbf{Q}: P(X-Y =1)$ P(X-Y =1) =	$p(x, y)$ $\frac{1}{Y 2}$ $\frac{1}{3}$ $p_X(x)$ drawn w marginal $p_X(x) = P(X=1, + P(X=2))$	$\frac{1}{0}$ 2/30 3/30 1/6 7 ithout 1 distribut $(Y=2) -$	X 2 2/30 2/30 6/30 2/6 replac utions + $P(X)$	$\frac{3}{3/30}$ $\frac{6/30}{6/30}$ $\frac{3/6}{3/6}$ ement ?	$p_{Y}(y)$ 1/6 2/6 3/6 t, why =1)		
Q: When balls have same to $\mathbf{Q}: P(X-Y =1)$ P(X-Y =1) = > Multinomial Dist	$p(x, y)$ $\frac{1}{Y 2}$ $\frac{1}{3}$ $p_X(x)$ drawn w marginal $p_X(x) = P(X=1, + P(X=2))$ tribution	$\frac{1}{0}$ 2/30 3/30 1/6 7 ithout 1 distribut $(Y=2) -$	X 2 2/30 2/30 6/30 2/6 replac utions + $P(X)$	$\frac{3}{3/30}$ $\frac{6/30}{6/30}$ $\frac{3/6}{3/6}$ ement ?	$p_{Y}(y)$ 1/6 2/6 3/6 t, why =1)		
Q: When balls have same to $\mathbf{Q}: P(X-Y =1)$ P(X-Y =1) =	$p(x, y)$ $\frac{1}{Y 2}$ $\frac{1}{3}$ $p_X(x)$ drawn w marginal $p_X(x) = P(X=1, + P(X=2))$ tribution	$\frac{1}{0}$ 2/30 3/30 1/6 7 ithout 1 distribut $(Y=2) -$	X 2 2/30 2/30 6/30 2/6 replac utions + $P(X)$	$\frac{3}{3/30}$ $\frac{6/30}{6/30}$ $\frac{3/6}{3/6}$ ement ?	$p_{Y}(y)$ 1/6 2/6 3/6 t, why =1)		
Q: When balls have same to $\mathbf{Q}: P(X-Y =1)$ P(X-Y =1) = > Multinomial Dist	$p(x, y)$ $\frac{1}{Y}$ $\frac{2}{3}$ $p_X(x)$ drawn w marginal $p_X(x)$ $P(X=1, + P(X=2))$ tribution ons	$\frac{1}{0}$ $\frac{2}{30}$ $\frac{3}{30}$ $\frac{1}{6}$ without r distribut $\frac{Y=2}{2, Y=3}$	X 2 2/30 2/30 6/30 2/6 replac tions $+ P(X + P(X))$	$\frac{3}{3/30}$ $\frac{6/30}{6/30}$ $\frac{3}{6}$ ement ? =2, Y $X=3, Y$	$p_{Y}(y)$ 1/6 2/6 3/6 t, why (=1) Y=2) =	= 8/15.	
Q: When balls have same to $\mathbf{Q}: P(X-Y =1)$ P(X-Y =1) = > Multinomial Dist • <u>Recall</u> . Partitio • If $n \ge 1$ and	$p(x, y)$ $\frac{1}{Y}$ $\frac{2}{3}$ $p_X(x)$ drawn w marginal $p_X(x)$ $P(X=1, + P(X=2))$ n_1, \dots, n_n	$\frac{1}{0} \\ \frac{2}{30} \\ \frac{3}{30} \\ \frac{1}{6} \\ $	X $2/30$ $2/30$ $6/30$ $2/6$ replac utions $+ P(X)$ $+ P(X)$ are int $+ n_m = 1$	$\frac{3}{3/30} \\ \frac{6}{30} \\ \frac{6}{30} \\ \frac{3}{6} \\ ement \\ ? \\ = 2, Y \\ X = 3, Y $	$p_{Y}(y)$ 1/6 2/6 3/6 t, why (=1) Y=2) = for with	= 8/15. hich	and Y
Q: When balls have same f $\mathbf{Q}: P(X-Y =1)$ P(X-Y =1) = > Multinomial Dist <u>Recall</u> . Partitio	$p(x, y)$ $\frac{1}{Y}$ $\frac{2}{3}$ $p_X(x)$ drawn w marginal $p_X(x)$ $P(X=1, + P(X=2))$ n_1, \dots, n_n $n_1 + p(x=2)$ $n_2 + p(x=2)$ $n_2 + p(x=2)$ $n_1 + p(x=2)$ $n_2 + p(x=2)$ $n_2 + p(x=2)$ $n_3 + p(x=2)$ $n_4 + p(x=2$	$\frac{1}{0}$ $\frac{2}{30}$ $\frac{3}{30}$ $\frac{1}{6}$ $y = 2 - 4$ $y = 2 - 4$ $y = 2 - 4$ $y = 3 - 4$ $y = 0 = 4$	X $2/30$ $2/30$ $6/30$ $2/6$ replac utions $+ P(X)$ $+ P(X)$ are int $+ n_m = 1$	$\frac{3}{3/30} \\ \frac{6}{30} \\ \frac{6}{30} \\ \frac{3}{6} \\ ement \\ ? \\ = 2, Y \\ X = 3, Y $	$p_{Y}(y)$ 1/6 2/6 3/6 t, why (=1) Y=2) = for with	= 8/15. hich	and Y

When the joint distribution is given, the marginal distributions are known.

The converse statement does not hold in general.

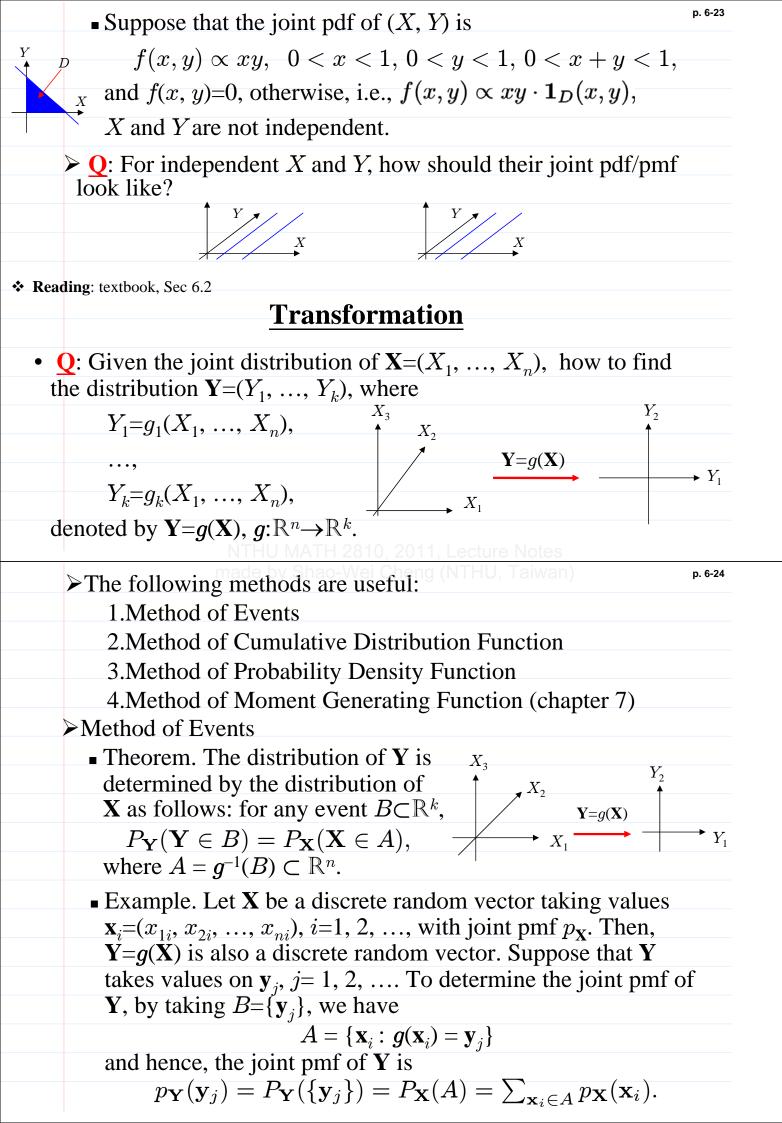
However, when random variables are independent,

marginal distributions + independence \Rightarrow joint distribution.

• Definition. The random variables X_1, \ldots, X_n are called
(<i>mutually</i>) <i>independent</i> if and only if for <i>any</i> (measurable) sets
$A_i \subset \mathbb{R}, i=1,, n$, the events
$\{X_1 \in A_1\}, \dots, \{X_n \in A_n\} \xrightarrow{P} \xrightarrow{X_2} \dots \xrightarrow{R} \mathbb{R}$
are independent. That is,
$P(X_{i_1} \in A_{i_1}, X_{i_2} \in A_{i_2}, \cdots, X_{i_k} \in A_{i_k}) = P(X_{i_1} \in A_{i_1}) \times P(X_{i_2} \in A_{i_2}) \times \cdots \times P(X_{i_k} \in A_{i_k}),$
for any $1 \le i_1 < i_2 < \dots < i_k \le n$; $k=2, \dots, n$.
▶ If $X_1,, X_n$ are independent, for $1 \le k < n$,
$P(X_{k+1} \in A_{k+1}, \dots, X_n \in A_n X_1 \in A_1, \dots, X_k \in A_k) \\= P(X_{k+1} \in A_{k+1}, \dots, X_n \in A_n)$
provided that $P(X_1 \in A_1, \ldots, X_k \in A_k) > 0$. In other words,
$X_1,, X_k$ do not carry information about $X_{k+1},, X_n$.
• Theorem (Factorization Theorem). The random variables
$X = (X_1,, X_n)$ are independent if and only if one of the following conditions holds.
(1) $F_{\mathbf{X}}(x_1, \dots, x_n) = F_{X_1}(x_1) \times \dots \times F_{X_n}(x_n)$, where $F_{\mathbf{X}}$ is the joint cdf of \mathbf{X} and F_{X_i} is the marginal cdf of X_i for $i=1,\dots,n$.
(2) Suppose that $X_1,, X_n$ are discrete random variables.
$p_{\mathbf{X}}(x_1, \ldots, x_n) = p_{X_1}(x_1) \times \cdots \times p_{X_n}(x_n)$, where $p_{\mathbf{X}}$ is the joint pmf of \mathbf{X} and p_{X_i} is the marginal pmf of X_i for $i=1,\ldots,n$.
(3) Suppose that X_1, \ldots, X_n are continuous random variables.
$f_{\mathbf{X}}(x_1, \dots, x_n) = f_{X_1}(x_1) \times \dots \times f_{X_n}(x_n)$, where $f_{\mathbf{X}}$ is the
joint pdf of X and f_{X_i} is the marginal pdf of X_i for $i=1,,n$.
Proof.
independent \Rightarrow (1). $F_{\mathbf{X}}(x_1, \dots, x_n) = P(X_1 \le x_1, \dots, X_n \le x_n)$
$= P(X_1 \in (-\infty, x_1], \dots, X_n \in (-\infty, x_n])$
$= P(X_1 \in (-\infty, x_1]) \times \dots \times P(X_n \in (-\infty, x_n])$
$= F_{X_1}(x_1) \times \cdots \times F_{X_n}(x_n)$
independent \leftarrow (1). Out of the scope of this couse so skip.
independent \Rightarrow (2). $p_{\mathbf{X}}(x_1, \dots, x_n) = P(X_1 = x_1, \dots, X_n = x_n)$ - $P(X_1 \in \{x_1\}, \dots, X_n \in \{x_n\})$

$$= P(X_1 \in \{x_1\}, \dots, X_n \in \{x_n\})$$

= $P(X_1 \in \{x_1\}, \dots, X_n \in \{x_n\})$
= $P(X_1 \in \{x_1\}) \times \dots \times P(X_n \in \{x_n\})$
= $p_{X_1}(x_1) \times \dots \times p_{X_n}(x_n)$


 $\times P(X_n \le x_n | X_1 \le x_1, \dots, X_{n-1} \le x_{n-1}) \left(\stackrel{?}{=} P(X_n \le x_n) = F_{X_n}(x_n) \right)$ that the independence can be established *sequentially*.

Example. If $A_1, ..., A_n$ are independent events, then $\mathbf{1}_{A_1}, ..., \mathbf{1}_{A_n}$, are independent random variables. For example,

$$P(\mathbf{1}_{A_1} = 1, \mathbf{1}_{A_2} = 0, \mathbf{1}_{A_3} = 1)$$

= $P(A_1 \cap A_2^c \cap A_3) = P(A_1)P(A_2^c)P(A_3)$
= $P(\mathbf{1}_{A_1} = 1)P(\mathbf{1}_{A_2} = 0)P(\mathbf{1}_{A_3} = 1).$

Example. If $\mathbf{X} = (X_1,, X_n)$ are	generalization
independent and	$egin{array}{rcl} 1 = i_0 < i_1 < \cdots < i_k = n \ Y_1 &= g_1(X_1, \dots, X_{i_1}), \end{array}$
$Y_i = g_i(X_i), i=1,, n,$	$Y_1 = g_1(X_1, \dots, X_{i_1}),$ $Y_2 = g_2(X_{i_1+1}, \dots, X_{i_2}),$
then Y_1, \ldots, Y_n are independent.	
then T_1, \ldots, T_n are independent.	$Y_k = g_k(X_{i_{k-1}+1},\ldots,X_{i_k}).$

Proof. Let
$$A_i(y) = \{x : g_i(x) \le y\}$$
, $i=1, ..., n$, then
 $F_{\mathbf{Y}}(y_1, ..., y_n) = P(Y_1 \le y_1, ..., Y_n \le y_n)$
 $= P(X_1 \in A_1(y_1)) \cdot ... \times P(X_n \in A_n(y_n))$
 $= P(Y_1 \le y_1) \times \cdots \times P(Y_n \le y_n)$
 $= F_{Y_1}(y_1) \times \cdots \times F(Y_n \le y_n)$
 $= F_{Y_1}(y_1) \times \cdots \times F(Y_n \le y_n)$.
• Theorem. $\mathbf{X}=(X_1, ..., X_n)$ are independent if and only if there
exist univariate functions $g_i(x)$, $i=1, ..., n$, such that
(a) when $X_1, ..., X_n$ are discrete r.v.'s with joint pmf $p_{\mathbf{X}}$,
 $p_{\mathbf{X}}(x_1, ..., x_n) \propto g_1(x_1) \times \cdots \times g_n(x_n), -\infty < x_i < \infty$, $i=1,...,n$.
(b) when $X_1, ..., X_n$ are continuous r.v.'s with joint pdf $f_{\mathbf{X}}$,
 $f_{\mathbf{X}}(x_1, ..., x_n) \propto g_1(x_1) \times \cdots \times g_n(x_n), -\infty < x_i < \infty$, $i=1,...,n$.
Sketch of proof for (b).
 $f_{X_1}(x_1) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\mathbf{X}}(x_1, x_2, ..., x_n) dx_2 \cdots dx_n$
 $\propto \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} g_1(x_1)g_2(x_3) \cdots g_n(x_n) dx_3 \cdots dx_n \propto g_1(x_1)$.
NULLIMATH 2010 2011 Lecture Notes
Similarly, $f_{X_2}(x_2) \propto g_2(x_2), \dots, f_{X_n}(x_n) \propto g_n(x_n)$
 $\Rightarrow f_{X}(x_1, ..., x_n) \propto f_{X_1}(x_1) \cdots f_{X_n}(x_n)$
 $\Rightarrow f_{X}(x_1, ..., x_n) = c \cdot f_{X_1}(x_1) \cdots f_{X_n}(x_n)$
 $\Rightarrow f_{X}(x_1, ..., x_n) = c \cdot f_{X_1}(x_1) \cdots f_{X_n}(x_n)$
 $\Rightarrow f_{X}(x_1, ..., x_n) = c \cdot f_{X_1}(x_1) \cdots f_{X_n}(x_n)$
 $f(x, y) \propto e^{-2x}e^{-3y}, 0 < x < \infty, 0 < y < \infty,$
and $f(x, y)=0$, otherwise, i.e.,
 $f(x, y) \propto e^{-2x}e^{-2y}\mathbf{1}_{(0,\infty)}(x)\mathbf{1}_{(0,\infty)}(y),$
then X and Y are independent. Note that the region in which
the joint pdf is nonzero can be expressed in the form
 $\{(x, y): x \in A, y \in B\}$.

• Example. X and Y are random variables with joint pdf

$$f(x, y)$$
. Find the distribution of $Z=X+Y$.
• $\{Z \leq z\} = \{(X, Y) \in \{(x, y): x+y \leq z\}\}$. So,
 $F_Z(z) = P(Z \leq z) = P(X + Y \leq z)$
• $F_Z(z) = P(Z \leq z) = P(X + Y \leq z)$
• $F_Z(z) = P(Z \leq z) = P(X + Y \leq z)$
• $F_Z(z) = P(Z \leq z) = P(X + Y \leq z)$
• $F_Z(z) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, z - x) dx$
• When X and Y are independent,
 $f(x, y) = f_X(x)f_Y(y)$.
So, $F_Z(z) = \int_{-\infty}^{\infty} \int_{-\infty}^{2-x} f_X(x)f_Y(y) dydx$
 $= \int_{-\infty}^{\infty} [\int_{-\infty}^{2-x} f_X(x)f_Y(y) dy]$
So, $F_Z(z) = \int_{-\infty}^{\infty} f_Z(x)f_Y(z - x) f_X(x) dx$
 $= \int_{-\infty}^{\infty} F_Y(z - x)f_X(x) dx$
which is referred to as the convolution of F_X and F_Y , and
 $f_Z(z) = \int_{-\infty}^{\infty} f_X(x)f_Y(z - x) dx$
which is referred to as the convolution of f_X and f_Y .
• Theorem. If X and Y are independent, and
 $X \sim \text{Gamma}(\alpha_1, \lambda), Y \sim \text{Gamma}(\alpha_2, \lambda)$, then
 $Z = X + Y \sim \text{Gamma}(\alpha_1 + \alpha_2, \lambda)$.
 $\frac{2}{F(\alpha_1)\Gamma(\alpha_2)} \int_0^z x^{\alpha_1 - 1}(z - x)^{\alpha_2 - 1} e^{-\lambda z} dx$
 $= \frac{\lambda^{\alpha_1 + \alpha_2} - \lambda x}{\Gamma(\alpha_1)\Gamma(\alpha_2)} \int_0^z x^{\alpha_1 - 1}(z - x)^{\alpha_2 - 1} e^{-\lambda z} dx$
 $= \frac{\lambda^{\alpha_1 + \alpha_2} - \lambda x}{\Gamma(\alpha_1)\Gamma(\alpha_2)} \int_0^z x^{\alpha_1 - 1}(x - y)^{\alpha_2 - 1} dy$
 $= \frac{\lambda^{\alpha_1 + \alpha_2} - \lambda x}{\Gamma(\alpha_1)\Gamma(\alpha_2)} \times \frac{\Gamma(\alpha_1)\Gamma(\alpha_2)}{\Gamma(\alpha_1 + \alpha_2)}$.
and $f_Z(z) = 0$, for $z < 0$.
• Corollary. If X_1, \dots, X_n are independent, and
 $X_i \sim \text{Gamma}(\alpha_i, \lambda), i=1, \dots, n$, then
 $X_1 + \dots + X_n \sim \text{Gamma}(\alpha_n, \lambda)$.

• (exercise) Theorem. If
$$X_1, ..., X_n$$
 are independent, and
 $X_i \sim \operatorname{Normal}(\mu_i, \sigma_i^2), i=1, ..., n$, then
 $X_1 + \dots + X_n \sim \operatorname{Normal}(\mu_1 + \dots + \mu_n, \sigma_1^2 + \dots + \sigma_n^2)$.
• Example. X and Y are random variables with joint pdf
 $f(x, y)$. Find the distribution of $Z=Y/X$.
• Let $Q_z = \{(x, y) : y/x \leq z\}$
 $x = \{(x, y) : x < 0, y \geq zx\}$
 $\cup \{(x, y) : x > 0, y \leq zx\}$
then, $F_Z(z) = \int \int_{Q_z} f(x, y) \, dxdy$
 $= \int_{-\infty}^0 \int_{z}^{\infty} f_z^{\infty} f(x, y) \, dydx$
 $= \int_{-\infty}^0 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \, dydx$
 $= \int_{-\infty}^0 \int_{-\infty}^{\infty} f(x, y) \, dxdy$
 $= \int_{-\infty}^0 \int_{-\infty}^{\infty} f(x, y) \, dxdy$
 $= \int_{-\infty}^0 \int_{-\infty}^{\infty} f(x, y) \, dydx$
 $= \int_{-\infty}^0 \int_{-\infty}^{\infty} f(x, y) \, dydx$
 $= \int_{-\infty}^0 \int_{-\infty}^{\infty} f(x, y) \, dydx$
 $= \int_{-\infty}^0 \int_{-\infty}^\infty f(x, y) \, dydx$
 $= \int_{-\infty}^{\infty} \int_{-\infty}^\infty |s| f(x, st) \, dtds$
 $= \int_{-\infty}^{z} \int_{-\infty}^{\infty} |s| f(x, s) f_Y(st) \, dtds$
when X and Y are independent)
 $= \int_{-\infty}^{0} |x| f_X(x) f_Y(xz) \, dx$
 $= \int_{-\infty}^{1} |x| f_X(x) f_Y(xz) \, dx$
 $= \int_{-\infty}^{1} |x| f_X(x) f(x) \, dx$
 $f_Z(z) = \int_{0}^{\infty} x (\lambda_1 e^{-\lambda_1 x}) [\lambda_2 e^{-\lambda_2 (xz)}] \, dx$
 $= \frac{\lambda_1 \lambda_2 (\lambda_1 + \lambda_2 z)^2}{(\lambda_1 + \lambda_2 z)^2}$
for $z \ge 0$, and 0 for $z < 0$.
And, the cdf of Z is
 $F_Z(z) = \int_0^z f_Z(t) \, dt = \int_0^z \frac{(\lambda_1 + \lambda_2 z)^2}{(\lambda_1 + \lambda_2 t)^{-1}} \Big|_0^z = 1 - \frac{\lambda_1}{\lambda_1 + \lambda_2 z}$
for $z \ge 0$, and 0 for $z < 0$.

Method of probability density function

• Theorem. Let $\mathbf{X} = (X_1, \dots, X_n)$ be continuous random variables with the joint pdf $f_{\mathbf{X}}$. Let

$$\mathbf{Y}=(Y_1,\ldots,Y_n)=g(\mathbf{X}),$$

where g is 1-to-1, so that its inverse exists and is denoted by

$$\mathbf{x} = g^{-1}(\mathbf{y}) = w(\mathbf{y}) = (w_1(\mathbf{y}), w_2(\mathbf{y}), \dots, w_n(\mathbf{y})).$$

Assume w have continuous partial derivatives, and let

$$J = \begin{vmatrix} \frac{\partial w_1(\mathbf{y})}{\partial y_1} & \frac{\partial w_1(\mathbf{y})}{\partial y_2} & \cdots & \frac{\partial w_1(\mathbf{y})}{\partial y_n} \\ \frac{\partial w_2(\mathbf{y})}{\partial y_1} & \frac{\partial w_2(\mathbf{y})}{\partial y_2} & \cdots & \frac{\partial w_2(\mathbf{y})}{\partial y_n} \\ \vdots & \vdots & \vdots \\ \frac{\partial w_n(\mathbf{y})}{\partial y_1} & \frac{\partial w_n(\mathbf{y})}{\partial y_2} & \cdots & \frac{\partial w_n(\mathbf{y})}{\partial y_n} \end{vmatrix} \right|_{n \times n}$$

Then
$$f_{\mathbf{Y}}(\mathbf{y}) = f_{\mathbf{X}}(g^{-1}(\mathbf{y})) \times |J|,$$
for \mathbf{y} s.t. $\mathbf{y} = g(\mathbf{x})$ for some \mathbf{x} , and $f_{\mathbf{Y}}(\mathbf{y}) = 0$, otherwise.
(Q: What is the role of $|J|$?)
$$F_{\mathbf{Y}}(y_1, \dots, y_n) = \int_{-\infty}^{y_1} \cdots \int_{-\infty}^{y_n} f_{\mathbf{Y}}(t_1, \dots, t_n) dt_n \cdots dt_1 \overset{\mathbf{p}.632}{\longrightarrow} \\ = \int \cdots \int_{\substack{(x_1, \dots, x_n):\\ g_1(x_1, \dots, x_n) \leq y_1}} f_{\mathbf{X}}(x_1, \dots, x_n) dx_n \cdots dx_1. \end{aligned}$$

It then follows from an exercise in advanced calculus that

 $g_n(x_1,\ldots,x_n) \leq y_n$

$$f_{\mathbf{Y}}(y_1,\ldots,y_n) = \frac{\partial^n}{\partial y_1 \cdots \partial y_n} F_{\mathbf{Y}}(y_1,\ldots,y_n)$$

= $f_{\mathbf{X}}(w_1(\mathbf{y}),\ldots,w_n(\mathbf{y})) \times |J|.$

- <u>Remark</u>. When the dimensionality of Y (denoted by k) is less than n, we can choose another n−k transformations Z such that (Y, Z)=g(X) satisfy the assumptions in above theorem. By integrating out the last n−k arguments in the pdf of (Y, Z), the pdf of Y can be obtained.
- Example. X₁ and X₂ are random variables with joint pdf f_X(x₁, x₂). Find the distribution of Y₁=X₁/(X₁+X₂).
 Let Y₂=X₁+X₂, then

$$\begin{array}{rcl} x_{1} = & y_{1}y_{2} & \equiv w_{1}(y_{1}, y_{2}) \\ x_{2} = & y_{2} - y_{1}y_{2} & \equiv w_{2}(y_{1}, y_{2}). \end{array}$$

Since $\frac{\partial w_{1}}{\partial y_{1}} = y_{2}, \ \frac{\partial w_{1}}{\partial y_{2}} = y_{1}, \ \frac{\partial w_{2}}{\partial y_{1}} = -y_{2}, \ \frac{\partial w_{2}}{\partial y_{2}} = 1 - y_{1}, \end{array}$

$$J = \begin{vmatrix} y_2 & y_1 \\ -y_2 & 1 - y_1 \end{vmatrix} = y_2 - y_1y_2 + y_1y_2 = y_2, \text{ and } |J| = |y_2|.$$
Therefore, $f_{\mathbf{Y}}(y_1, y_2) = f_{\mathbf{X}}(y_1y_2, y_2 - y_1y_2)|y_2|$,
and, $f_{Y_1}(y_1) = \int_{-\infty}^{\infty} f_{\mathbf{Y}}(y_1, y_2) dy_2$

$$= \int_{-\infty}^{\infty} f_{\mathbf{X}}(y_1y_2, y_2 - y_1y_2)|y_2| dy_2.$$

$$(= \int_{-\infty}^{\infty} f_{\mathbf{X}}(y_1y_2) f_{X_2}(y_2 - y_1y_2)|y_2| dy_2$$
when X_1 and X_2 are independent)
• Theorem. If X_1 and X_2 are independent, and
 $X_1 \sim \text{Gamma}(\alpha_1, \lambda), X_2 \sim \text{Gamma}(\alpha_2, \lambda), \text{ then}$
 $X_1 \sim \text{Gamma}(\alpha_1, \lambda), X_2 \sim \text{Gamma}(\alpha_2, \lambda), \text{ then}$
 $X_1 \sim \text{Gamma}(\alpha_1, \lambda), X_2 \sim \text{Gamma}(\alpha_2, \lambda), \text{ then}$
 $X_1 \sim \text{Gamma}(\alpha_1, \lambda), X_2 \sim \text{Gamma}(\alpha_2, \lambda), \text{ then}$
 $X_1 \sim \text{Gamma}(\alpha_1, \lambda), X_2 \sim \text{Gamma}(\alpha_2, \lambda), \text{ then}$
 $X_1 \sim \text{Gamma}(\alpha_1, \lambda), X_2 \sim \text{Gamma}(\alpha_2, \lambda), \text{ then}$
 $X_1 \sim \text{Gamma}(\alpha_1, \lambda), X_2 \sim \text{Gamma}(\alpha_2, \lambda), \text{ then}$
 $X_1 \sim \text{Gamma}(\alpha_1, \lambda), X_2 \sim \text{Gamma}(\alpha_2, \lambda), \text{ then}$
 $X_1 \sim \text{Gamma}(\alpha_1, \lambda), X_2 \sim \text{Gamma}(\alpha_2, \lambda), \text{ then}$
 $X_1 \sim \text{Gamma}(\alpha_1, \lambda), X_2 \sim \text{Gamma}(\alpha_2, \lambda), \text{ then}$
 $X_1 \sim \text{Gamma}(\alpha_1, \lambda), X_2 \sim \text{Gamma}(\alpha_2, \lambda), \text{ then}$
 $X_1 \sim \text{Gamma}(\alpha_1, \lambda), X_2 \sim \text{Gamma}(\alpha_2, \lambda), \text{ then}$
 $X_1 \sim \text{Gamma}(\alpha_1, \lambda), X_2 \sim \text{Gamma}(\alpha_2, \lambda), \text{ then}$
 $X_1 \sim \text{Gamma}(\alpha_1, \lambda), X_2 \sim \text{Gamma}(\alpha_2, \lambda), \text{ then}$
 $Y_1 = \frac{f_{\mathbf{X}}(x_1, x_2) = \frac{\lambda^{\alpha_1}}{\Gamma(\alpha_1)\Gamma(\alpha_2)}x_1^{\alpha_1-1}e^{-\lambda x_1} \times \frac{\lambda^{\alpha_2}}{\Gamma(\alpha_2)}x_2^{\alpha_2-1}e^{-\lambda x_2}}$
 $= \frac{\lambda^{\alpha_1+\alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)}x_1^{\alpha_1-1}x_2^{\alpha_2-1}e^{-\lambda(x_1+x_2)}.$
So, for $0 \leq y_1 \leq 1,$
 $f_1(x_1+x_2) = f_1(x_1-x_2)$
 $= \frac{\int_0^{\infty} \frac{\lambda^{\alpha_1+\alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)}y_1^{\alpha_1-1}(y_2-y_1y_2)|y_2|dy_2$
 $= \frac{\int_0^{\infty} \frac{\lambda^{\alpha_1+\alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)}y_1^{\alpha_1-1}(y_2-y_1y_2)|y_2|dy_2$
 $= \frac{\int_0^{\infty} \frac{\lambda^{\alpha_1+\alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)}y_1^{\alpha_1-1}(y_2-y_1y_2)|y_2|dy_2$.
and $f_1(y_1) = 0, \text{otherwise}.$
• Example. Suppose that X and Y have a uniform distribution over the region $D=\{(x, y): x^2+y^2\leq 1\}, \text{ i.e., their joint pdf is}$
 $X_1 = R \cos(\Theta) = w_1(R, \Theta),$
 $X_2 = R x \cos(\Theta) = w_1(R, \Theta),$
 $Y = R x \sin(\Theta) = w_2(R, \Theta).$
 $= \text{Since} \frac{\partial w_1}{\partial r} = \cos(\Theta), \quad \frac{\partial$

$$\begin{array}{c} {}_{\mathfrak{p} \in \mathsf{For}} 0 \leq r \leq 1 \text{ and } 0 \leq \theta \leq 2\pi, \text{ the joint pdf of } (R, \Theta) \text{ is } \\ f_{R,\Theta}(r, \theta) = f_{X,Y}(r\cos(\theta), r\sin(\theta)) \times |J| = \frac{1}{\pi}r \\ \text{ and } f_{R,\Theta}(r, \theta) = 0, \text{ otherwise.} \\ {}_{\mathfrak{p} \text{ By the theorem in LNp.6-21, } (R, \Theta) \text{ are independent.} \\ {}_{\mathfrak{p} \text{ Example. Let } X_1, \dots, X_n \text{ be independent and identically distributed exponential}(\lambda). Let \\ Y_i = X_1 + \dots + X_i, i = 1, \dots, n. \\ \text{ Find the distribution of } \mathbf{Y} = (Y_1, \dots, Y_n). \\ (\underline{\text{Note. It has been shown that } Y_i \sim \text{Gamma}(i, \lambda), i=1, \dots, n.) \\ x_i \quad \text{a The joint pdf of } X_1, \dots, X_n \text{ is } \\ f_{\mathbf{X}}(x_1, \dots, x_n) = \prod_{i=1}^n f_{X_i}(x_i) \\ &= \prod_{i=1}^n (\lambda e^{-\lambda x_i}) = \lambda^n e^{-\lambda (x_1 + \dots + x_n)}. \\ for 0 \leq x_i < \infty, i=1, \dots, n. \\ & & & & \\ \hline \text{ for } 0 \leq x_i < \infty, i=1, \dots, n. \\ & & & & \\ \hline \text{ for } 0 \leq x_i < \infty, i=1, \dots, n. \\ & & & & \\ \hline \text{ scince } x_1 = y_1 = y_1 = w_1(y_1, \dots, y_n), \\ & & & & \\ x_2 = y_2 - y_1 \equiv w_2(y_1, \dots, y_n), \\ & & & & \\ \hline x_n = \sum_{i=1}^n y_n - |y_{n-1} \equiv w_n(y_1, \dots, y_n), \\ & & & \\ \hline x_n = \sum_{i=1}^n y_n - |y_{n-1} \equiv w_n(y_1, \dots, y_n), \\ & & & \\ \hline \text{ we have } \\ & & & \\ \hline \frac{\partial w_i}{\partial y_i} = \begin{cases} 1, & \text{ if } j = i, \\ -1, & \text{ if } j = i, \\ -1, & \text{ if } j = i-1, \\ 0, & \text{ otherwise,} \end{cases} \\ & & & \\ \hline y_i = \sum_{i=1}^n 0 \quad 0 \quad 0 \quad \cdots \quad 0 \\ 0 & -1 \quad 1 \quad 0 \quad \cdots \quad 0 \\ 0 & -1 \quad 1 \quad 0 \quad \cdots \quad 0 \\ 0 & -1 \quad 1 \quad 0 \quad \cdots \quad 0 \\ 0 & & & & 1 \end{cases} \\ & & & & \\ \hline \text{ or For } 0 \leq y_1 \leq \cdots \leq y_{i-1} \leq y_i \leq y_{i+1} \leq \cdots \leq y_n < \infty, \\ f_Y(y_1, \dots, y_n) = f_X(y_1, y_2 - y_1, \dots, y_n - y_{n-1}) \times |J| \\ & & & & & \\ & & & & \\ \hline x_1 = \sum_{i=1}^n \lambda^i e^{-\lambda y_n}, \\ \text{ and } f_Y(y_1, \dots, y_n) = 0, \text{ otherwise.} \\ & & & \\ \hline \text{ The marginal pdf of Y_i is } \\ f_{Y_i}(y) \\ & & & \\ = \int_0^y \cdots \int_{y_{i-1}}^y \int_{y_i}^y \sum_{y_{i+1}}^\infty \cdots \int_{y_{n-1}}^\infty \lambda^n e^{-\lambda y_n} dy_n \cdots dy_{i+2} dy_{i+1} dy_{i-1} \cdots dy_2 dy_1 \\ & & & \\ = \int_0^y \cdots \int_{y_{i-2}}^y \int_{y_i}^\infty \int_{y_{i-1}}^\infty \dots \int_{y_{n-1}}^\infty \lambda^n e^{-\lambda y_n} dy_n \cdots dy_{i+2} dy_{i+1} dy_{i-1} \cdots dy_2 dy_1 \\ & & \quad \\ = \int_0^y \cdots \int_{y_{i-1}}^y \int_{y_{i-1}}^\infty \sum_{y_i}^\infty \int_{y_i}^\infty \int_{y_i}^\infty \int_{y_i}^\infty \int_{y_i}^\infty \int_{y_i}^\infty \int_{y_i}^\infty \int_$$

p. 6-37 > Method of moment generating function. Based on the *uniqueness theorem* of moment generating function to be explained later in Chapter 7 • Especially useful to identify the distribution of sum of independent random variables. • Order Statistics Definition. Let X_1, \ldots, X_n be random variables. We sort the X_i 's and denote by $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$ the order statistics. Using the notation, $X_{(1)} = \min(X_1, \dots, X_n)$ is the *minimum*, $X_{(n)} = \max(X_1, \dots, X_n)$ is the maximum, $R \equiv X_{(n)} - X_{(1)}$ is called *range*, $S_j \equiv X_{(j)} - X_{(j-1)}, j=2, ..., n$, are called *spacings*. Q: What are the joint distributions of various order statistics p. 6-38 and their marginal distributions? Definition. X_1, \ldots, X_n are called *i.i.d.* (independent, identically <u>d</u>istributed) with cdf F/pdf f/pmf p if random variables X_1, \ldots, X_n are independent and have a common marginal distribution with cdf *F*/pdf *f*/pmf *p*. • Remark. For order statistics, we only consider the case that $X_1, ..., X_n$ are i.i.d. \square <u>Note</u>. Although X_1, \ldots, X_n are independent, their order statistics $X_{(1)}, X_{(2)}, \dots, X_{(n)}$ are not independent in general. Theorem. Suppose that X_1, \ldots, X_n are i.i.d. with cdf F. 1. The cdf of $X_{(1)}$ is $1-[1-F(x)]^n$ and the cdf of $X_{(n)}$ is $[F(x)]^n$. 2. If **X** are continuous and F has a pdf f, then the pdf of $X_{(1)}$ is $nf(x)[1-F(x)]^{n-1}$ and the pdf of $X_{(n)}$ is $nf(x)[F(x)]^{n-1}$. Proof. By the method of cumulative distribution function, $1 - F_{X_{(1)}}(x) = P(X_{(1)} > x) = P(X_1 > x, \dots, X_n > x)$ $= P(X_1 > x) \cdots P(X_n > x) = [1 - F(x)]^n.$

$$f_{X_{(1)},\dots,X_{(n)}}(x_{1},\dots,x_{n}) dx_{1}\cdots dx_{n}$$

$$\approx P\left(x_{1} - \frac{dx_{1}}{2} < X_{(1)} < x_{1} + \frac{dx_{1}}{2},\dots,x_{n}\right)$$

$$= \sum \frac{dx_{n}}{dx_{n}} < X_{(n)} < x_{n} + \frac{dx_{n}}{2} < X_{1} < x_{i_{1}} + \frac{dx_{i_{1}}}{2},\dots,x_{n}\right)$$

$$= \sum \frac{dx_{i_{n}}}{dx_{n}} < P\left(x_{i_{1}} - \frac{dx_{i_{1}}}{2} < X_{1} < x_{i_{1}} + \frac{dx_{i_{1}}}{2},\dots,x_{n}\right)$$

$$x_{i_{n}} - \frac{dx_{i_{n}}}{2} < X_{n} < x_{i_{n}} + \frac{dx_{i_{n}}}{2},\dots,x_{n}\right)$$

$$x_{i_{n}} = \sum \frac{dx_{i_{n}}}{dx_{n}} < f(x_{1}) \times \dots \times f(x_{n}) dx_{1} \cdots dx_{n}$$

$$x_{i_{n}} = n! \times f(x_{1}) \times \dots \times f(x_{n}) dx_{1} \cdots dx_{n}$$

$$\cdot \mathbf{Q}: \text{ Examine whether } X_{(1)},\dots,X_{(n)} \text{ are independent using the Theorem in LNp.6-21.$$

$$\Rightarrow \text{ Theorem. If } X_{1},\dots,X_{n} \text{ are i.i.d. with cdf } F \text{ and pdf } f, \text{ then }$$

$$1. \text{ The pdf of the } k^{\text{th}} \text{ order statistic } X_{(k)} \text{ is }$$

$$f_{X_{(k)}}(x) = \binom{n}{(1,k-1,n-k)} f(x)F(x)^{k-1}[1-F(x)]^{n-k}.$$

$$2. \text{ The cdf of } X_{(k)} \text{ is }$$

$$F_{X_{(k)}}(x) = \sum_{m=k}^{n} \binom{n}{(m)} [F(x)]^{m}[1-F(x)]^{n-m}.$$

$$Proof.$$

$$F_{X_{(k)}}(x) = P(X_{(k)} \leq x)$$

$$= P(\text{at least } k \text{ of the } X_{i}^{*} \text{s are } \leq x)$$

$$= \sum_{m=k}^{m} \binom{m}{(m)} [F(x)]^{m}[1-F(x)]^{n-m}$$

$$\Rightarrow Theorem. If X_{1}, \dots, X_{n} \text{ are i.i.d. with cdf } F \text{ and pdf } f, \text{ then }$$

$$1. \text{ The pdf of the } x_{i}^{*} \text{ order } m(x-2x, x-2x)$$

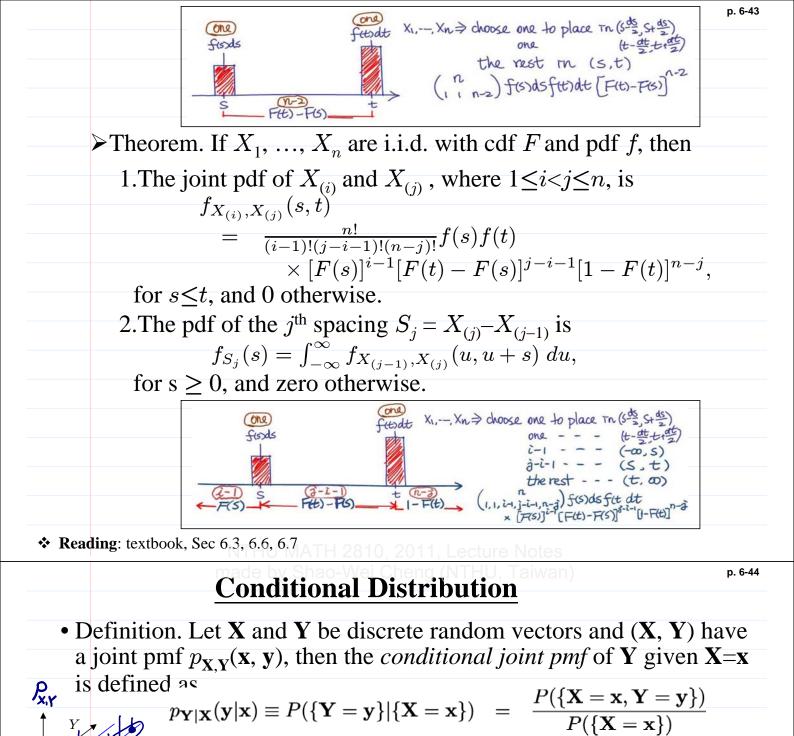
$$= \sum_{m=k}^{n} \binom{m}{(m)} [F(x)]^{m}[1-F(x)]^{n-m}.$$

$$Proof.$$

$$F_{X_{(k)}}(x) = P(X_{(k)} \leq x)$$

$$= P(\text{at least } k \text{ of the } X_{i}^{*} \text{ s are } \leq x)$$

$$= \sum_{m=k}^{m} \binom{m}{(m)} [F(x)]^{m}[1-F(x)]^{n-m}$$


$$\Rightarrow \text{ Theorem. If } X_{1}, \dots, X_{n} \text{ are i.i.d. with cdf } F \text{ and pdf } f, \text{ then }$$

$$1. \text{ The joint pdf of } X_{(1)} \text{ and } X_{(n)} \text{ is }$$

$$f_{X_{(1)},X_{(n)}}(s, t) = n(n-1)f(s)f(t)[F(t) - F(s)]^{n-2}, \text{ for } s \leq t, \text{ and } 0 \text{ otherwise.}$$

$$2. \text{ The pdf of the range } R = X_{(n)} - X_{(1)} \text{ is }$$

$$f_{R}(r) = \int_{-\infty}^{\infty} f_{X_{(1)},X_{(n)}}(u, u+r) du, \text{ for } r \geq 0, \text{ and } 0 \text{ otherwise.}$$

$$= \frac{p_{\mathbf{X},\mathbf{Y}}(\mathbf{x},\mathbf{y})}{p_{\mathbf{X}}(\mathbf{x})}$$
$$= \frac{p_{\mathbf{X},\mathbf{Y}}(\mathbf{x},\mathbf{y})}{p_{\mathbf{X}}(\mathbf{x})}$$

if $p_{\mathbf{X}}(\mathbf{x}) > 0$. The probability is defined to be zero if $p_{\mathbf{X}}(\mathbf{x}) = 0$.

Some Notes.

• For each fixed **x**, $p_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})$ is a joint pmf for **y**, since

$$\sum_{\mathbf{y}} p_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) = \frac{1}{p_{\mathbf{X}}(\mathbf{x})} \sum_{\mathbf{y}} p_{\mathbf{X},\mathbf{Y}}(\mathbf{x},\mathbf{y}) = \frac{1}{p_{\mathbf{X}}(\mathbf{x})} \times p_{\mathbf{X}}(\mathbf{x}) = 1.$$

• For an event B of Y, the probability that $Y \in B$ given X = x is

$$P(\mathbf{Y} \in B | \mathbf{X} = \mathbf{x}) = \sum_{\mathbf{u} \in B} p_{\mathbf{Y} | \mathbf{X}}(\mathbf{u} | \mathbf{x})$$

• The *conditional joint cdf* of **Y** given **X**=**x** can be similarly defined from the conditional joint pmf $p_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})$, i.e.,

 $F_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) = P(\mathbf{Y} \le \mathbf{y}|\mathbf{X} = \mathbf{x}) = \sum_{\mathbf{u} \le \mathbf{v}} p_{\mathbf{Y}|\mathbf{X}}(\mathbf{u}|\mathbf{x}).$

> Theorem. Let
$$X_1, ..., X_m$$
 be independent and X_i -Poisson (λ_i) , ^{i,43}
 $i=1, ..., m$. Let $Y=X_1+\dots+X_m$, then
 $(X_1, ..., X_m|Y=n) \sim Multinomial(n, m, p_1, ..., p_m)$,
where $p_i = \lambda_i/(\lambda_1+\dots+\lambda_m)$ for $i=1, ..., m$.

 $| \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} | \mathbf{x} \infty | | \mathbf{x} | \mathbf{v} \mathbf{v} | \mathbf{v} \mathbf{v} | \mathbf{x} | \mathbf{x} | \mathbf{x} |$
Proof. The joint pmf of $(X_1, ..., X_m, Y)$ is
 $\mathbf{p}_{\mathbf{X}, Y}(x_1, ..., x_m, n) = P(\{X_1 = x_1, ..., X_m = x_m\} \cap \{Y = n\})$
 $= \begin{cases} P(X_1 = x_1, ..., X_m = x_m), & \text{if } x_1 + \dots + x_m = n, \\ 0, & \text{if } x_1 + \dots + x_m \neq n. \end{cases}$
Furthermore, the distribution of Y is Poisson $(\lambda_1 + \dots + \lambda_m)$, i.e.,
 $p_Y(n) = P(Y = n) = \frac{e^{-(\lambda_1 + \dots + \lambda_m)(\lambda_1 + \dots + \lambda_m)n}}{n!}$.
Therefore, for $\mathbf{x} = (x_1, ..., x_m)$ wheres $x_i \in \{0, 1, 2, \dots\}$, $i=1, ..., m$,
and $x_1 + \dots + x_m = n$, the conditional joint pmf of X given $Y=n$ is
 $(1 + \dots + x_m) = n$, the conditional joint pmf of X given $Y=n$ is
 $(1 + \dots + x_m) = \frac{p_{\mathbf{X}, Y}(x_1, \dots, x_m, n)}{p_Y(n)} = \frac{e^{-\lambda_1 + \dots + x_m + \lambda_m + \lambda_m}}{n!}$.
• Definition. Let \mathbf{X} and \mathbf{Y} be continuous random vectors and (\mathbf{X}, \mathbf{Y})
have a joint pdf $f_{\mathbf{X}, \mathbf{Y}}(\mathbf{x}, \mathbf{y})$, then the conditional joint pdf of \mathbf{Y} given
 $\mathbf{X} = \mathbf{x}$ is defined as
 $f_{\mathbf{Y} \mid \mathbf{X}}(\mathbf{y} \mid \mathbf{x}) \equiv \frac{f_{\mathbf{X}, \mathbf{Y}}(\mathbf{x}, \mathbf{y})}{f_{\mathbf{X}}(\mathbf{x})}$, $\mathbf{y} \mid \mathbf{x} = \frac{f_{\mathbf{X}, \mathbf{Y}}(\mathbf{x}, \mathbf{y})}{f_{\mathbf{X}}(\mathbf{x})} < \frac{e^{-\lambda_1 + \dots + \lambda_m}}{n!} + \frac{e^{-\lambda_2 + \lambda_m^2}}{n!} = \frac{f_{\mathbf{X}, \mathbf{Y}}(\mathbf{x}) \mathbf{x}}{f_{\mathbf{X} \mid \mathbf{X} \mid$

• For each fixed
$$\mathbf{x}$$
, $f_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})$ is a joint pdf for \mathbf{y} , since

$$\int_{-\infty}^{\infty} f_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) d\mathbf{y} = \frac{1}{f_{\mathbf{X}}(\mathbf{x})} \int_{-\infty}^{\infty} f_{\mathbf{X},\mathbf{Y}}(\mathbf{x},\mathbf{y}) d\mathbf{y} = \frac{1}{f_{\mathbf{X}}(\mathbf{x})} \times f_{\mathbf{X}}(\mathbf{x}) = 1.$$
• For an event B of \mathbf{Y} , we can write

$$P(\mathbf{Y} \in B | \mathbf{X} = \mathbf{x}) = \int_{B} f_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) d\mathbf{y}.$$
• The conditional joint cdf of \mathbf{Y} given \mathbf{X} = \mathbf{x} can be similarly
defined from the conditional joint pdf $f_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})$, i.e.,
 $F_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) = P(\mathbf{Y} \leq \mathbf{y} | \mathbf{X} = \mathbf{x}) = \int_{-\infty}^{\mathbf{y}} f_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) d\mathbf{y}.$
> Example. If X and Y have a joint pdf
 $f(x, y) = \frac{2}{(1+x+y)^3},$
for $0 \leq x, y < \infty$, then
 $f_X(x) = \int_0^{\infty} f(x, y) dy = -\frac{1}{(1+x+y)^2} \Big|_0^{\infty} = \frac{1}{(1+x)^2},$
for $0 \leq x < \infty$. So,
 $f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \frac{2(1+x)^2}{(1+x+y)^3},$
and, $P(Y > c | X = x) = \int_c^{\infty} \frac{2(1+x)^2}{(1+x+y)^2} dy$
 $= -\frac{(1+x)^2}{(1+x+y)^2} \Big|_{y=c}^{\infty} = \frac{(1+x)^2}{(1+x+c)^2}.$

- Mixed Distribution: The definition of conditional distribution can^{p. 6-48} be similarly generalized to the case in which some random variables are discrete and the others continuous (see a later example).
- Theorem (Multiplication Law). Let **X** and **Y** be random vectors and (**X**, **Y**) have a joint pdf $f_{\mathbf{X},\mathbf{Y}}(\mathbf{x}, \mathbf{y})/\text{pmf } p_{\mathbf{X},\mathbf{Y}}(\mathbf{x}, \mathbf{y})$, then

$$p_{\mathbf{X},\mathbf{Y}}(\mathbf{x},\mathbf{y}) = p_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) \times p_{\mathbf{X}}(\mathbf{x}), \text{ or }$$

 $f_{\mathbf{X},\mathbf{Y}}(\mathbf{x},\mathbf{y}) = f_{\mathbf{Y},\mathbf{Y}}(\mathbf{x}|\mathbf{y}) \times f_{\mathbf{Y}}(\mathbf{x}),$

$$f_{\mathbf{X},\mathbf{Y}}(\mathbf{x},\mathbf{y}) = f_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) \times f_{\mathbf{X}}(\mathbf{x}).$$

Proof. By the definition of conditional distribution.

• Theorem (Law of Total Probability). Let **X** and **Y** be random vectors and (**X**, **Y**) have a joint pdf $f_{\mathbf{X},\mathbf{Y}}(\mathbf{x}, \mathbf{y})/\text{pmf } p_{\mathbf{X},\mathbf{Y}}(\mathbf{x}, \mathbf{y})$, then

$$p_{\mathbf{Y}}(\mathbf{y}) = \sum_{\mathbf{x}=-\infty}^{\infty} p_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) p_{\mathbf{X}}(\mathbf{x}), \text{ or }$$

$$f_{\mathbf{Y}}(\mathbf{y}) = \int_{-\infty}^{\infty} f_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) f_{\mathbf{X}}(\mathbf{x}) d\mathbf{x}.$$

<u>Proof</u>. By the definition of marginal distribution and the multiplication law.

• Theorem (Bayes Theorem). Let **X** and **Y** be random vectors and (**X**, **Y**) have a joint pdf $f_{\mathbf{X},\mathbf{Y}}(\mathbf{x}, \mathbf{y})$ /or a joint pmf $p_{\mathbf{X},\mathbf{Y}}(\mathbf{x}, \mathbf{y})$, then

р. 6-49

$$p_{\mathbf{X}|\mathbf{Y}}(\mathbf{x}|\mathbf{y}) = \frac{p_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})p_{\mathbf{X}}(\mathbf{x})}{\sum_{\mathbf{x}=-\infty}^{\infty} p_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})p_{\mathbf{X}}(\mathbf{x})}, \text{ or}$$
$$f_{\mathbf{X}|\mathbf{Y}}(\mathbf{x}|\mathbf{y}) = \frac{f_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})f_{\mathbf{X}}(\mathbf{x})}{\int_{-\infty}^{\infty} f_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})f_{\mathbf{X}}(\mathbf{x}) \ d\mathbf{x}}.$$

Proof. By the definition of conditional distribution, multiplication law, and the law of total probability. Example. • Suppose that $X \sim \text{Uniform}(0, 1)$, and $(Y_1, \ldots, Y_n | X = x)$ are i.i.d. with Bernoulli(x), i.e., $p_{\mathbf{Y}|X}(y_1, \dots, y_n|x) = x^{y_1 + \dots + y_n} (1-x)^{n-(y_1 + \dots + y_n)},$ for $y_1, ..., y_n \in \{0, 1\}$. • By the multiplication law, for $y_1, ..., y_n \in \{0, 1\}$ and 0 < x < 1, $p_{\mathbf{Y},X}(y_1,\ldots,y_n,x) = x^{y_1+\cdots+y_n}(1-x)^{n-(y_1+\cdots+y_n)}.$ • Suppose that we observed $Y_1=1, \ldots, Y_n=1$. By the law of total probability, $P(Y_1 = 1, ..., Y_n = 1) = p_{\mathbf{Y}}(1, ..., 1)$ $= \int_0^1 p_{\mathbf{Y}|X}(1,\ldots,1|x) f_X(x) dx$ $= \int_0^1 x^n \, dx = \left. \frac{1}{n+1} x^{n+1} \right|_0^1 = \frac{1}{n+1}.$ p. 6-50 • And, by Bayes' Theorem, $f_{X|\mathbf{Y}}(x|Y_1 = 1, \dots, Y_n = 1)$ $= \frac{p_{\mathbf{Y}|X}(1,\ldots,1|x)f_X(x)}{p_{\mathbf{Y}}(1,\ldots,1)} = (n+1)x^n.$ for 0 < x < 1, i.e., $(X|Y_1=1, ..., Y_n=1) \sim \text{Gamma}(n+1, 1)$. • If there were an $(n+1)^{\text{st}}$ Bernoulli trial Y_{n+1} , $P(Y_{n+1} = 1 | Y_1 = 1, \dots, Y_n = 1)$ $= \frac{P(Y_1 = 1, \dots, Y_{n+1} = 1)}{P(Y_1 = 1, \dots, Y_n = 1)} = \frac{1/(n+2)}{1/(n+1)} = \frac{n+1}{n+2}.$ • (exercise) In general, it can be shown that $(X|Y_1=y_1, ..., Y_n=y_n) \sim \text{Gamma}((y_1+\dots+y_n)+1, n-(y_1+\dots+y_n)+1).$ • Theorem (Independent). Let X and Y be random vectors and (\mathbf{X}, \mathbf{Y}) have a joint pdf $f_{\mathbf{X}, \mathbf{Y}}(\mathbf{x}, \mathbf{y})$ /pmf $p_{\mathbf{X}, \mathbf{Y}}(\mathbf{x}, \mathbf{y})$. Then, \mathbf{X} and \mathbf{Y} are independent, i.e., $p_{\mathbf{X},\mathbf{Y}}(\mathbf{x},\mathbf{y}) = p_{\mathbf{X}}(\mathbf{x}) \times p_{\mathbf{Y}}(\mathbf{y}), \text{ or }$

$$f_{\mathbf{X},\mathbf{Y}}(\mathbf{x},\mathbf{y}) = f_{\mathbf{X}}(\mathbf{x}) \times f_{\mathbf{Y}}(\mathbf{y}),$$

if and only if

$f_{\mathbf{Y} \mathbf{X}}(\mathbf{y} \mathbf{x}) = f_{\mathbf{Y}}(\mathbf{y}).$ Proof. By the definition of conditional distribution. intuition. the 2 graphs in LNp.6-23 $p_{\mathbf{Y} \mathbf{X}}(\mathbf{y} \mathbf{x})$ (or $f_{\mathbf{Y} \mathbf{X}}(\mathbf{y} \mathbf{x})$) offers information of \mathbf{Y} when $\mathbf{X} = \mathbf{x}$; $p_{\mathbf{Y}}(\mathbf{y})$ (or $f_{\mathbf{Y}}(\mathbf{y})$) offers information of \mathbf{Y} when \mathbf{X} not observed.		$p_{\mathbf{Y} \mathbf{X}}(\mathbf{y} \mathbf{x}) = p_{\mathbf{Y}}(\mathbf{y}), \text{ or }$
 ▶ intuition. the 2 graphs in LNp.6-23 p_{Y X}(y x) (or f_{Y X}(y x)) offers information of Y when X = x; 		$f_{\mathbf{Y} \mathbf{X}}(\mathbf{y} \mathbf{x}) = f_{\mathbf{Y}}(\mathbf{y}).$
 the 2 graphs in LNp.6-23 p_{Y X}(y x) (or f_{Y X}(y x)) offers information of Y when X = x; 		Proof. By the definition of conditional distribution.
• $p_{\mathbf{Y} \mathbf{X}}(\mathbf{y} \mathbf{x})$ (or $f_{\mathbf{Y} \mathbf{X}}(\mathbf{y} \mathbf{x})$) offers information of \mathbf{Y} when $\mathbf{X} = \mathbf{x}$;		≻intuition.
		■ the 2 graphs in LNp.6-23
$p_{\mathbf{Y}}(\mathbf{y}) \text{ (or } f_{\mathbf{Y}}(\mathbf{y})) \text{ offers information of } \mathbf{Y} \text{ when } \mathbf{X} \text{ not observed.}$		• $p_{\mathbf{Y} \mathbf{X}}(\mathbf{y} \mathbf{x})$ (or $f_{\mathbf{Y} \mathbf{X}}(\mathbf{y} \mathbf{x})$) offers information of \mathbf{Y} when $\mathbf{X} = \mathbf{x}$;
		$p_{\mathbf{Y}}(\mathbf{y})$ (or $f_{\mathbf{Y}}(\mathbf{y})$) offers information of \mathbf{Y} when \mathbf{X} not observed.
Reading: textbook, Sec 6.4, 6.5	✤ Real	ading: textbook, Sec 6.4, 6.5