Jointly Distributed Random Variables

 Recall. In Chapters 4 and 5, focus on univariate random variable.

»However, often a single experiment will have more than one
random variable which is of interest.

P

» Definition. Given a sample space Q2 and a probability measure
P defined on the subsets of Q2, random variables

X, X5 o0, X, Q> R
are said to bejointly distributed.
» We can regard n jointly distributed r.v.’s as arandom vector
X=Xy, ..., X,):Q— R~
e Q: For ACR™, how to define the probability of { Xe A} from P?
Q) X5 R2
A occurs < @ p
X1,X2
E , occurs
> PXl,X2 (A)

PXl,Xz (A) — P(EA) X, =77
»For ACR™, X,

= PH{w e Q|(X1(w),..., X (w)) € A})
»For A,.CR, =1, ..., n,
PX1 ..... Xn(XleAla"'aXnEAn)
= PHweQlXi(w)eA1}n---N{we X, (w) € A,})

» Definition. The probability measure of X (P, defined on R”) is
called the joint distribution of X, ..., X, . The probability
measure of X, (Px,, defined on R) is called the marginal
distribution of X..

o Q: Why need joint distribution? Why are marginal distributions
not enough?
» Example (Coin Tossing, LNp.4-2).
X,: # of head X,: total # of heads
on1%toss| o(8) | 1(3/18) | 2(318) | 3(U8)
0(1/2) 1/8 [1/16] | 2/8[3/16] | 1/8[3/16] | 0[1/16]
1(1/2) 0[1/16] |1/8[3/16] | 2/8[3/16] | 1/8 [1/16]




= blue numbers: joint distribution of X; and X,
= (black numbers): marginal distributions
= [read numbers]: joint distribution of another (X;’ , X, )
» Some findings:
o When joint distribution is given, its corresponding
marginal distributions are known, e.g.,
o P(X =1)=P(X,=1, X,=0)+P(X =, X,=1),:=0, 1, 2, 3.
on(X,, X,) and (X, , X, ) haveidentical marginal
distributions but different joint distributions.
+When the marginal distributions are given, the
corresponding joint distribution is still unknown. There
could be many possible different joint distributions.
(A special case: X4, ..., X, areindependent.)
o Joint distribution offers more information, e.g.,
+ When not observing X, the distribution of X, is:
P X,=0)=1/2, (X,=1)=1/2 = marginal distribution
+When X, was observed, say X,=1, the distribution of
X, is: A(X,=0|X,=1)=(2/8)/(3/8)=2/3 and
A X,=1|X,=1)=(1/8)/(3/8)=1/3 = the calculation
requires the knowing of joint distribution

» We can characterize the joint distribution of X interms of its
1.Joint Cumulative Distribution Function (joint cdf)
2.Joint Probability Mass (Density) Function (joint pmf or pdf)
3.Joint Moment Generating Function (joint mgf, Chapter 7)

. » Joint Cumulative Distribution Function

(z:%[z))eflnltlon Thejoint cdf of X=(X4, ..., X,) isdefined as
?Xl Fx(x1,...,2n) = P(X1 <z1,Xo < x9,..., X, < zp).
= Theorem. Suppose that F isajoint cdf. Then,
(i) 0L Ky(xy, ..., z,) <1, for —oo<z,<o0, i=1, .
(i1) limxl T, , &y —>00 Fx(ml, . P @

Proof. LetzmToo 1<i<n. mra)X
Let A,, = (—00, 21m) X + -+ X (—00, Zpm)-

Then, A, T R™ = lim P(An, P(R’“ =1.

Z«,%JX
(iii) For any i€{1, ..., n}, X_w .
lim FX(xl,...,a:n) = 0. d

Ti—r—0O0
Proof. Let z;,, | —oo, for some 1.
Let A, = (—00,21) X +++ X (—00, Zjp) X +++ X (—00, T,).
Then, A,, | 0 = lim P(4,,) = P(0) = 0.




(iv) Fy iscontinuous from the right with
respect to each of the coordinates, or any

subset of them jointly, i.e., if x=(x,, ...,
. Z,,) such that z, | x,
e Px(am) | Fx(x),
WIf z; <zl,i=1,...,n,then
%) Fx(x1,...,7,) < Fx(t1,...,tn) < Fx(xy,...,2)).
s where t; € {z;,x;},i=1,2,...,n. When n=2, we have

FX X (CEl CE’2)
< R < 1, x5).
FX1,X2(x1>x2) = { ],;1X1,X2 (x/1’x2) = FXl,X2 (x1,332)

(vi) If 1 < 2} and z2 < 5, then
KI\(%t/,%z/) P(r; < X; < :13’},:13% < X1 < i) :
— FXl,Xz (3717 $2) — FXl,Xz (3717 372)
_FX1,X2<x/17m2) +FX1,X2<x17x2)°
In particular, let 2§ 1T oo and z} 1 0o, we get
P(r; < X7 < 00,29 < Xg < 00)
= 11— Fx,(z1) — Fx,(22) + Fix,,x, (1, T2).
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(vii) Thejoint cdf of X, , ..., X,, k<n, is
FX1,._.,X,€<$1,. . .,iljk) = P(Xl S L1y.- .,Xk S xk)

X, <%l,%2> — P(X]_ S x]_, — .,Xk; S xk,
X, — 00 < Xgy1 <00,...,—0 < X, < 00)
= lim Fx(x1, . Tk, Tkt1s-yTn)-

Lh+41:Tk+2," "3 Ln—>00

1 Vesnd In particular, the marginal cdf of X, is

Z%ZZ% Fx,(z) = P(X; < z)

= lim Fx(z,xo,x3,...,2y).
L2,L3,° 3L —>00

= Theorem. A function Fy(zx,, ..., x,) can beajoint cdf if Fy
satisfies (i)-(v) in the previous theorem.

» Joint Probability Mass Function

= Definition. Supposethat X, ..., X,, are discrete random
variables. The joint pmf of X=(X4, ..., X,) isdefined as

px(x1,.. . Tn) = P(X1 =21,..., X0 = Tn).
= Theorem. Suppose that p, isajoint pmf. Then,
@ px(x1,...,2,) >0, for —co < z; <o00,i=1,...,n.




(b) There exists afinite or countably infinite set ¥ ¢ R suchi”’
that px(x1,...,2,) =0, for (z1,...,2,) & X.

(©) > cxpx(x) =1, where x = (z1,...,zn).
(d) For AcR”, P(X € A) = Z P (%).

xcANX
v @ o(e) Thejoint pmf of X, , ..., X,, k<n, is
i\l o Ty) = P(Xy =21, ., Xi = 13)
oy X = Tk,
— 00 < Xpi1 <00,...,—00 < X, < 0)
margina' PV’\§: Z pX(wly---awkaxk-l-l?""w”)'

(ml ,,wn)EX
—oo<wk+1 <0, ...,—o00o< T <O

In particular, the marginal cdf of X, is
bx, (l’) — P(Xl — .CU)
= Z px (T, T2, T3, ..., Tp).

(x,x9,...,xn)EX
—oo <Y <00,...,—o0 <Ly <O

= Theorem. A function py(z,, ..., z,) can beajoint pmf if py
satisfies (a)-(c) in the previous theorem.
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Theg)rem If Fy, and py are the joint cdf and joint pmf of X,
N Fx(@y.oza)= Y px(ti,...ita), and

(tl ,...,tn)GX
tl Swl ,...,tngmn

px(x) = Fx(x) — Fx(x—), where x = (z19,--.,Zn0), and

Fx(z10,22,-..,2Zn) — Fx(z10—,Z2,...,2Zn)

F)({l)($20;$3, R F)({l)(a:%_,m& )

F Y (@n0) = FE™V (@n0—)

>J0| nt Probability Density Function
= Definition. A function fy (x4, ..., ,) can be ajoint pdf if
(1) fu(zq ..., x,)>0, for —oo<xi<oo, =1, ..., n.
(2)f f fx(x1,...,xn) dxy---dx, = 1.

4°(§°&Def|n|t|on Suppose that X, ..., X, arecontinuousr.v.’s.
Thejoint pdf of X=(X3, ..., X,) isafunction fy(z4, ..., z,)
satisfying (1) and (2) above, and for any event ACR",

P(XEA):f---fA fx(x1,...,z,) dry - - dx,.
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= Theorem. Suppose that fy isthejoint pdf of X=(X, ..., X,).
Then, thejoint pdf of X, , ..., X;, k<n,Is
?d? X‘fxl ,a:k)
s ffooo fx(wl, e s Ly Lfe41y -y .CCn) da:;.H_l c da:n
. Inparticular, the marginal pdf of X, is

1 fxl( ):ffoooffooo fX(x7m27°°'7mn)de"'dmn-
]« Theorem. If Fy and fy arethejoint cdf and joint pdf of X,

then Fx(x1,...,25)
= [0 [T fx(ti, ...y ty) dtr - -dt,, and
fx(x1,.. . Tn) = axl‘?gwnFX(ml, ey Tn).
at the continuity points of f.
» Examples.
» Experiment. Two balls are drawn without replacement from a
box with 1 ball labeled one,
2 balls labeled two,
3 balls labeled three.
Let X = label on the 1% ball drawn,
Y = label on the 2" ball drawn.

X,

T. 7
Toint
g\w@

= Thejoint pmf and marginal pmfsof (X, Y) are

pey) T T )

1 0 2/30 | 3/30 | 1/6
Y | 2 2/30 | 2/30 | 6/30 | 2/6
3 3/30 | 6/30 | 6/30| 3/6
px(x) 1/6 2/6 | 3/6

Q: When balls drawn without replacement, why do X and Y
have same marginal distributions?

» O A|X-Y]=1)=??
A|X-Y]=1) = P(X=1, Y=2) + P(X=2, Y=1)
+ P(X=2,Y=3) + A(X=3, Y=2) = §/15.
»Multinomial Distribution
= Recall. Partitions
olf n>1andn,, ..., n,, > Oareintegersfor which
n1+ oo + n,, =n,
then a set of n elements may be partitioned into m subsets
of sizesn,, ..., n, IN




n L n!
(nl,w-,nm) T on! X X! ways.

o Example: MISSI SSIPPI

( 11 ) _ 11
4,1,2,4 41112141 "
« Example (Die Ralling).
o Q: If abalanced (6-sided) dieisrolled 12 times,
Peach face appears twice)=7?

o Sample space of rolling the die once (basic experiment):
Q,={1,2,3,4,5, 6}.

o The sample space for the 12 triasis
Anoutcomew € QIiS® =(iq, iy, ..., t15), Where
1§II:1, naay i12S6-

o There are 612 possible outcomesin Q, i.e., #Q = 612,

o Among &l possible outcomes, thereare (, , 55 5 ,) = s
of which each face appears twice.

n P(each face appearstwice) = 7 ()",
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= Generalization.

o Consider a basic experiment which can result in one of m
types of outcomes. Denote its sample space as
Q,={1,2, ..., m}.

Let p, = A(outcome i appears),

then, () py, ---»p,,, > 0, and

() py+-+p, =1

o Repeat the basic experiment »n times. Then, the sample
gpace for the n trialsis
Q=05 X -+ X Qy=Q"

Let X, =# of trialswith outcome, =1, ...
Then, (i) X, ..., X, Q— R, and

(i) X;+---+ X, =n.

o Thejoint pmf of X, ..., X IS
px (1, Tm) = P(Xi=x1,....,Xm =12p)

(o)

forz,, ...,x, >0andx, +--- +z, =




Proof. The probability of any sequence with z, ¢’ Sis

pilUl R
and there are

( n
L1y Tm

such sequences.

o The distribution of arandom vector X=(X4, ... , X, ) with
the above joint pmf is called the multinomial distribution
with parameters n, m, and p,, ..., p,,,, denoted by
Multinomial (n, m, py, ..., p,,)-

+ The multinomial distribution is called after the
Multinomia Theorem:;
(a1_|_..._|_am)n

n
- > Jatt e xaz
L1,y Tm

z;€4{0,...,n}; i=1,...,m
1+ txTm=n

+ It isageneralization of the binomial distribution from
2 types of outcomes to m types of outcomes.

o Some Properties.
e Because X, =n — (X +--+X, +X  +--+X ), and
p; = 1= (pi+- -+ pig¥PpgttD,),
wlog, we can write
(X4 X, X)) = (X0 X, 4,
+ Marginal Distribution. Suppose that
(X4, ..., X)) ~Multinomial(n, m, py, ..., p,,)-
For 1<k<m, the distribution of
(X1 ooy Xy Xpug ¥ X))
IsMultinomial(n, k+1, py, ..., Pes Ppart - 1D,,)-
In particular, X, ~ Binomial(n, p,)
+ Mean and Variance.
E(X,)=np, and Var(X,)=np,(1-p,)
fore=1, ..., m.

n—(Xy+---+ X, 1))




»Example.
= Suppose that the joint pdf of 2 continuousr.v.’s (X, Y) is
NemArty) g >0,y >0,

fl@,y) = { 0, otherwise.

Q: P(Y >2X or X>2Y)=7? '
« Theevent {Y > 2X} U{ X > 2Y} is x

« S0, A(Y >2X or X>2Y)=P(Y >2X)+P(X>2Y)=2/3 because
P(Y >2X) :/ [/ AZeA@+y) dy} dx
0 2

0 L YT 0
= (=1/3)e” |~ =1/3.

and similarly, we can get P(X>2Y)=1/3 (exercise).
» Example. Consider two continuousr.v.’s X and Y.
= Uniform Distribution over aregion D. If DCR? and

0 < a=Area(D) < oo, then
f(xa y) = C- ].D(.’L',y)
Isajoint pdf when c=1/a, called the uniform pdf over D.

aLet D = {(x, y): 2%+y?<1}, then a=Area(D)=r and Y,

—— f@,y) = 21p(z,y) s
Isajoint pdf.
=« Marginal distribution. The marginal pdf of X is

N

for -1<x< 1, and f(x)=0, otherwise.
(exercise: Find the marginal distribution of Y.)

+ Reading: textbook, Sec 6.1

| ndependent Random Variables

» Recall.

»When the joint distribution is given, the marginal distributions
are known.

» The converse statement does not hold in general.
»However, when random variables are independent,
marginal distributions + independence =- joint distribution.




* Definition. The random variables X, ..., X, arecalled
(mutually) independent if and only if for any (measurable) sets
A.CR, =1, ..., n, the events

(XA, (X, €A} Y x
are independent. That is,
P(le < Ai17X’i2 < Ai2, .- -,X,L'k € Azk)

— P<X’Ll S A’Ll) X P<X7,2 S Aw) X X P(X’Lk € Azk)a
for any 1<4,<¢,<---<i,<n; k=2, ..., n.
> If X,, ..., X, areindependent, for 1<k<n,
P(Xk_|_1 c Ak_|_1,. ., X, € An‘Xl c Al,. .., XE € Ak)
= P(Xkt1 € Akg1,..., Xn €A,)

provided that P(X; € Ay,..., X € Ag) > 0.1n other words,
Xy, ..., X, donot carry information about X ., ..., X,.

» Theorem (Factorization Theorem). The random variablesn
X=(X4, ..., X,) areindependent if and only if one of the following

conditions holds.

(1) Fx(z1,...,2pn) = Fx, (1) X -+ X Fx, (), where Fy is
the joint cdf of X and Fy isthe marginal cdf of X, for :=1,...,n.
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(2) Suppose that X, ..., X, are discrete random variables.
px(x1,...,2n) =px, (1) X -+ X px, (), Wherepy isthe
joint pmf of X and p isthe marginal pmf of X; for i=1,...,n.

(3) Suppose that X, ..., X, are continuous random variables.

fx(x1,...,2n) = fx, (1) X --- X fx, (z,), Where f, isthe
joint pdf of X and f isthe marginal pdf of X, fori=1,...,n.
Proof.
independent = (1). Fx(z1,...,2,) = P(X; < 21,..., X, < z,)
= P(X; € (—0,z1)],...,Xn € (—00,xy])
= P(X; € (—00,z1]) X -+ X P(X,, € (—00,z,])

= Fx,(#1) X -+ x Fx, (zn)

independent <= (1). Out of the scope of this couse so skip.

independent = (2). px(z1,...,z,) = P(X1 =21,..., X, = )
P(Xy € {z1},...,Xn € {zn})
P(Xy €{z1}) x -+ x P(Xp € {zn})

= px, (1) X - X px,, (zn)




»Remark. It follows from the Multiplication Law (LNp.3-7)  »°*®
FX(xla---:xn) ZP(Xl lea---aXn an)
= P(Xi<m) i (= Fx, (1))
X P(Xy < 22| Xy < 1) (£ P(X2 < 22) = Fx,(22))
XP(Xg < $3|X1 < xl,XQ < $2) (; P(XB < 333) = FXs(mi’)))
X PR
XP(Xn S wnIXI S L1ye-- aXn—l S wn—l)(; P(Xn S mn) = FX,,, (mn))
that the independence can be established sequentially.
»Example. If A,, ..., A, areindependent events, then
14,,...,14,, areindependent random variables. For example,
P(ly, =1,14,=0,14, =1)
= P(A1NASNA3) = P(A,)P(AS)P(As)
= P14, =1)P(14,=0)P(14, =1).
»Example. If X=(X,, ..., X)) are generalization

ndependen =
Y;' = gz(Xz)v 7;:11 sy 1, Y # (X +1,---, Xi,),

thenY,, ..., Y, areindependent.

Y = gk(Xik-ﬁl: seey Xih)'




Proof. Let A;(y) = {z : g:(z) < y}, ©=1, ..., n, then
Fy<y1,,yn):P(Y1 Syl,,YnSyn>
= P(X1€A1(y1),..., Xn € An(Yn))
= P(Xl < Al(yl)) X +-e X P(Xn < An(yn>)
= Fyi(y1) X - X Fy, (yn)-

e Theorem. X=(X}, ..., X,) areindependent if and only if there
exist univariate functions g,(x), =1, ..., n, such that

(8 when X, ..., X, arediscreter.v.’swith joint pmf p,,
px(xy -vy ) X gi(xy) X - Xg,(x,), —00<z,<00, =1,...,n.
(b) when X, ..., X are continuousr.v.’swith joint pdf f,,
fx(xy, ..., x,) < gi(x) %+ %X g,(x,), —00<x,<00, i=1,...,n.
Sketch of proof for (b).

fe) [OO
le(:Bl)Z/ / fx(z1,x2,...,2p) dxg - - - dzy,
—00 —00

« [ Z - Z 61(21)92(23) -+ gn(@n) ds - dop ox g1 (21).

Similarly, fx,(z2) x g2(z2),..., fx, (Tn) X gn(xn)
= [fx,(@1) - fx,(2n) X g1(21) - - - gn(zn)
= fx(@1,...,%n) < fx, (1) -+ fx,(2n)

= fx(®1,...,2n) = c- fx,(x1) -+ fx,. (2n)
for some constant c.
Because

/ .../ fX($1;$2)"')$n)dwl"'d$n=]",! aﬂd

/Oo [oo fx, (1) fx, (xn) dxy - dxp, =1, =>c=1.

Y

» Example.
« If thejoint pdf of (X,Y) is >

flz,y) xe e, 0<z<o00,0<y< o0,
and f(x, y)=0, otherwisg, i.e,,
f(z,y) < €721 g 60) (%) 1(0,00) (%),

then X and Y are independent. Note that the region in which
the joint pdf is nonzero can be expressed in the form
{(z, y): z€A, yeB}.




» Suppose that the joint pdf of (X, Y) is

V) flr,y) oy, 0<z<1,0<y<1l,0<z+y<I,
F + and f(z, y)=0, otherwisg, i.e.,, f(z,y) x zy - 1p(z,y),
X and Y are not independent.
» Q: For independent X and Y, how should their joint pdf/pmf

look like?
Y Y

1 e 1

% Reading: textbook, Sec 6.2
Transformation

 Q: Given thejoint distribution of X=(X4, ..., X, ), how to find
the distribution Y=(Y7, ..., Y,), where
X3 Y,

Yi=g:(Xy, ...y X)), X,

Y.=g9.(X,, ..., X,),
denoted by Y=¢(X), g:R"—>RF,

» The following methods are usefuli:
1.Method of Events
2.Method of Cumulative Distribution Function
3.Method of Probability Density Function

4.Method of Moment Generating Function (chapter 7)
»Method of Events

« Theorem. Thedistributionof Y is  x,

determined by the distribution of

X asfollows:. for any event BCR¥, —g(X)
Py(Y c B) PX X € A 7l4‘

where A = g {(B) C R”

» Example. Let X be a discrete random vector taking values
X;=(x;, Top ..., T,,), 1=1, 2, ..., With joint pmf p,. Then,

Y =g(X) is aso adiscrete random vector. Suppose that Y
takesvaluesony, j=1, 2, .... To determine the joint pmf of
Y, by taking B= {7y} we have

A={x;:g9(x;) =Yy}
and hence, the joint pmf of Y is

py(y;) = Py({y;}) = Px(A) = >« ca Px(Xi)-
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» Example. Let X and Y be random variables with the joint
pmf p(z, y). Find the distribution of Z=X+Y.

o{Z=2} ={(X,Y) € {(z, y): v+y=2}} 5

pz(z2)=Pz({z})=P(X+Y =2) = prz—:c.
o When X and Y are independent, T=—00

p(z,y) = px(x)py(y)

> ZPX (z)py (2 — z).

which is referred to as the convolution of px and py.
o (Exercise) Z=X-Y

« Theorem. If X and Y are independent, and X ~ Poisson(,),
. Y ~Poisson(\,) , then
x Z =X + Y~ Poisson(A,+1,).
Proof. For 2=0, 1, 2, ..., thepmf p,(z) of Z is

VA

z G—Al Af]l_? e—)\z A;_m

0 123 pz(z):ZpX(a:)py(Z—m):Z
x=0 o

z! (z—x)!

e~ (AM1+A2)

. (A1 + A2)?.

oCorollary. If X, ..., X,, are independent, and
X,~Poisson(%,), =1, ..., n, then
X+--+X ~Poisson(A +---+A, ).
Proof. By induction (exercise).

o ———] o o o |x—x1>

»Method of cumulative distribution function
1.Inthe (X, ..., X)) space, find the region that corresponds to
{Yi<yy, ..., i<upd

2.Find F\(yy, ..., y.)=AY:<yq, ..., Y,.<y,) by summing the
joint pmf or integrating the joint pdf of X, ..., X, over the
region identified in 1.
3.(for continuous case) Find the joint pdf of Y by differentiating
E(yq, --s Yp) 1€, )
fY(y17 SRI yk) — dyld—dkuY(y17 I yk)




« Example. X and Y are random variables with joint pdf
f(x, y). Find the distribution of Z=X+Y.

o{Z < 2} ={(X,Y) € {(=, y): z+y <z}}. 30,
Fz(2)=P(Z<2z)=P(X+Y <2)
= J_OOJ_ " f(z,y) dydz
= f_oof_ f(s,t —s) dsdt

and fz(z) = = [
o When X and Yare mdependent

f(z, y) = fX(x)fy(y)
S0, Fyz(z f fz  fx(x)fy (y) dydx
= ffio = dy] fxc(x) d
=[O Fy(z—a)fx(z) dx

whi ch IS referred to as the convolution of F'y and F}, and

= [T fx@)fy(z —z) dz

whi ch IS referred to as the convolution of f, and f,.
o (exercise) Z=X-Y.

= Theorem. If X and Y are independent, and v \ o
X ~ Gamma(a,y, A), Y ~ Gamma(a.,, A) , then 3
Z =X +Y~Gamma(a,+a,, A). 7

Proof. For z>0,

1tog z o — az—1,—Az
fz(z) = r(ﬁl)r(ag) Jo z 7z —x)2 e da

Aal-l-age—Az 1 _ _ _ _
= Tant(az)y Jo 27 DH T ym =1 — gyt dy
A@1tez (ayt+ag)—1 =2z I'(a)T'(a2)

I'(a1)I'(a2) I'ai4az) °

and fz(z) =0, forz<O.
oCorollary. If X, ..., X,, are independent, and
X, ~ Gamma(a,;, A), i=1, ..., n, then
X+ + X ~Gamma(o,+:-- +a,, A).
Proof. By induction (exercise).

o (exercise) Corollary. If X3, ..., X, are independent, and
X, ~ Exponential (1), =1, ..., n, then

X+ -+ X, ~Gamma(n, A).




= (exercise) Theorem. If X, ..., X, areindependent, and
X, ~Normal(u;, .2, i=1, ..., n, then
X, + -+ X, ~Normal(p+- -+, 0,2+ --+0,2).
« Example. X and Y are random variables with joint pdf
f(x, y). Find the distribution of Z=Y/X.

olet Q. = (z,y):y/z <z}
= {(z,y) rx <0,y > 2z}
U{(z,y) : x>0,y < zz}

then, Fiz(z foz crzyddy

ds
|S|fX( )fY(St) dtds
and Y are independent)

ji—zFZ(Z) — ffooo x| f(x, z2) dx

= [7, lelfx(@) fy (22) da
when X and Y are independent)

o(exercise) Z=XY

olf X and Y are independent, X ~ exponential (A,),
Y ~ exponential (,), and Z=Y/X. The pdf of Z is
= foooa: ()\16_>‘1”’) [)\ e‘AQ(m)] dx
A1 A2T7(2) (A1 +A22)? 22— 1g—(A1+A22)z
()\1—|—>\2z)2f0 T(2) AitA22)% g
Ao
()\1—|—)\22$)2
for z>0, and O for z <O.

And, thecdf of Zis
2 g Ao
— fO fZ( fO ()\1—|—>\2t)2

——Aigq ()\1 + )\Qt) - =1—

for z>0, and O for z < O.




»Method of probability density function

» Theorem. Let X=(X, ..., X,) be continuous random
variables with the joint pdf f,. Let

Y=(Yy, ..., Y )= g(X),
where g is 1-to-1, so that its inverse exists and is denoted by
x=g~Hy) = w(y) = (wa(y), wyy), .., w,(y)).

Assume w have continuous partial derlvatlves and let
dwl (y) dwl (y)

~Y) = fx(g™(y) x ],

fory s.t. y=g(x) for somex, and £, (y)=0, otherwise

(Q: What istherole of |J]?) e _g(x)
Proof. X1

fx(zq,... ,mn) d:r:n . --dml.

It then follows from an exercise in advanced calculus that

fei, - yn) = 3y1 ay Fy (Y1, yn)
= fx(wi(y), ..., wa(y)) x [J].

o Remark. When the dimensi onality of Y (denoted by k) is
less than n, we can choose another n—k transformations Z
such that (Y, Z)=¢(X) satisfy the assumptions in above
theorem. By integrating out the last n—k argumentsin the
pdf of (Y, Z), the pdf of Y can be obtained.

« Example. X; and X, are random variables with joint pdf
fx(x, z,). Find the distribution of Y;=X,/(X;+X,).

olLet Y,=X,+X,, then

T = Y12 = w1 (Y1, Y2
Y2 — Y1Y2
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| = Y2 — Y1Y2 + Y1Y2 = Y2, and |J| = |y2|

Y2 Y1
—y2 11—
Therefore, fy (y1,y2) = fx(W1y2, y2 — y1y2)|y=|,

and, fv, (y1) f fy (y1,y2) dya
= f_oo fX Y1Y2, Y2 — Y1Y2)|y2| dys.

— ffooo fx: W1y2) fxo (Y2 — y1y2)|y2| dy2
when X; and X, are independent)

= Theorem. If X,and X, are independent, and
X, ~ Gamma(a.4, A), X, ~ Gamma(a.,, A), then
e Y =X /(X+X,) ~ Beta(a,, o).
Proof. For x,, z, > 0, the joint pdf of X is

AT ai—1 Az, A2 ao—1_—Axo
fx(x1,x2) = NCDEE X Tag T2 €

_ )\(x1+a2 a1—1,_ azx—1 —>\(JJ1—|—£B2)
= Tlel(an¥1 *2

So, for 0<y,< 1,

i) =[5 Fx (y1y2) Fxo (Y2 — y192)y2| dy2

ajtag Orr — ool — n A4
fo F(/:tl)l_‘(ag) (1192)*  (y2 — 11y2)** e A2y dys
I'aitasz) 1 as—1
r(a13r?§2)y?l+ (1( +) ) .
X 0 F(al—l—ag)y e vz dyQ-

and fy, (y1) = 0,0therwise,

. = Example. Suppose that X and Y have a uniform distribution
\ over theregion D={(z, y): 332+y2<1} i.e., their joint pdf is

/‘ fxy(z,y) = z1p(z,y).
Find the joint distribution of (R, ®) and examine whether R
and ® are independent, where (R, ©) isthe polar coordinate
representation of (X, Y), i.e,,
R X = Rcos(0)=w(R,0)
Y = Rsin(0) =wsy(R,0).
nSince 241 = cos(6), i
85‘7’? = sin(0),
cos(f) —rsin(6)
sin(f)  rcos(0)
and |J| = |r| =T

= rcos?(#) + rsin®(h) = r,




o For 0<r<1 and 0< 8<2x, thejoint pdf of (R, ®) is
fre(r,0) = fxy(rcos(0),rsin(f)) x |J| = %r
and fr o(r,d) = 0,0therwise.
o By the theorem in LNp.6-21, (R, ®) are independent.

« Example. Let X, ..., X,, beindependent and identically
distributed exponential (1). Let

Y=X+--+X,i=1 .., n.
Find the distribution of Y=(Y,, ..., Y)).
(Note. It has been shown that Y, ~ Gamma(z, 1), :=1, ..., n.)
o Thejoint pdf of X, ..., X IS
fx(@1,. . 2n) = H?:l fx; (@)
= [, (Ae™?®i) = Ane - A@rtFan),
for 0<z,<o0, i=1, ..., n.

o Since z1 y1 =wi(Y1,---,Yn),
Y2 — Y1 Ew2(y17"'7yn)a

Un — Yn—1 = wn(yla SR ayﬂ)a

if j =1,
if j=1-—1,
otherwise,

0 --- 0
0 --- 0
1 0 =1, and |J| = 1.

0 ... 1

o For 0<y;<---<y; 1 <Y<Y <+ <Y, <00,
Wi, oyn) = fx@Wuny2 — Y155 Un — Yno1) X |J]
= A\le Mn,
and fy(y1,...,yn) = 0, 0therwise.
o The marginal pdf of Y, is
fr:(y)

foy fyyl T 'f;_z fyco fyil "'fyf_l A"e™ M dyy, - - - dy;yodyi1dyi—1 - - - dyadiy
foy ... f;_2 Aee— Y dy;_1 -+ - dyy

i~y y!
A'e G—1)1"

for y>0, and fy, (y) = 0,0therwise.



»Method of moment generating function.

» Based on the unigqueness theorem of moment generating
function to be explained later in Chapter 7

» Especially useful to identify the distribution of sum of
independent random variables.
 Order Statistics
@ @

- R

@
Xy X Xpg Xy X X(e)

»Definition. Let X, ..., X, berandom variables. We sort the
statistics. Using the notation,

Xy = min( X, ..., X,,) isthe minimum,

Xy = max( X4, ..., X,, ) isthe maximum,
R=X, - X iscaledrange,

S;= Xy — X1y J=2, ..., n, are caled spacings.

Q: What arethejoint distributions of various order statistics **”
and their marginal distributions?

»Definition. X, ..., X, arecalledi.i.d. (independent, identically
distributed) with cdf F/pdf f/pmf p if random variables
Xy, ..., X, areindependent and have a common marginal
distribution with cdf F/pdf f/pmf p.

» Remark. For order statistics, we only consider the case that
Xy .., X, arel.i.d.

o Note. Although X, ..., X, areindependent, their order
statistics Xy, X5, ---» X, are not independent in general.
» Theorem. Suppose that X, ..., X, arei.i.d. with cdf F.
1.Thecdf of X ;) is1-[1-F(x)]" and the cdf of X, IS[F(z)]".
2.1f X are continuous and F'has apdf f, then the pdf of X, is
n f(z)[1-F(z)]"* and the pdf of X, isn f(z)[ F(z)]"*.
Proof. By the method of cumulative distribution function,
1-Fx,(z) = PXg>z)=PX1>2x,...,X,>2)
= PXy>x)--PX,>z)=[1-F(x)]".




Fx, (x) = PXm<z)=PX1<z,...,X,<z)"

P(X; <z)---P(X, <) = [ ()]
fxo (@) = $oFx,, (2) =n[l = F(2)]" 7 (£ F(2)).

[x (@) = - Fx,, (@) = n[F(@)]" 7 (£F(2)).
= Graphical interpretation for the pdfs of X and X

) - Serd V- Sovdo

/f one. one

é
[ L] e o 129 > K
/- <___F —_
X1, % = hoose. | 4o put (e 2E)| | X, Xa > choose | 4o putks (B )
the vest . (%, ) the st (~00, %]

(1) Fdx[1- o)™ (F) Soodx [Feo)™ -~

» Example. n light bulbs are placed in service at time ¢=0,
and allowed to burn continuously. Denote their lifetimes by
Xy, ..., X,,, and suppose that they arei.i.d. with cdf F. If
burned out bulbs are not replaced, then the room goes dark at

time Y=max(Xy, ..., X.).
oIf n=5and F'isexponential with A = 1 per month, then

Fx) =1-e=, for x> 0, and O, for z< 0.
o The cdf of Yis
F(y) = (1-ev)>, for y> 0, and O, for y< 0,
and its pdf is 5(1-e¥)*e, for y> 0, and 0, for y< 0.
o The probability that the room is still lighted after two
monthsis A(Y > 2) = 1-F(2) = 1-(1-e?)>.
» Theorem. Suppose that X, ..., X, arei.i.d. with pdf f/pmf p.
Then, thejoint pmf/pdf of X 4y, ..., X, Is
S Tn) =nl X p(xy) X -
S Tn) =nl X fxy) X -
for z,<x,<---<z,, and O otherwise.
Proof. For z,<z,<---<z,,

L xn) = P(Xay =21,..., X(n) = Tp)
i)t P(Xl :a:il,...,Xn:xin)

permutations of

(1,...,m)

Z (i1 -+ rim): p(a:l) X e+ X p(:l?n)

permutations of

(1,...,m)
n X (1) X -+ X plan)




dzx,,
P — % < Xy <o +92, ...
Ty — dmn <X(n) < xn + dxy

da:
Z (i1 yin): P (331,1 —

permutations of

(1,...,m)

Z (i1, rim): f(a:l) X« X f(mn) dry---

permutations of
(1,...,m)
7‘4)((1) = n!'x f(zr1) x - x f(x,) dry---dx,.

= Q! Examine whether X,y , ..., X|,, are independent using
the Theorem in LNp.6-21.

»Theorem. If X, ..., X, arei.i.d. with cdf F"and pdf f, then
1.The pdf of the k™ order statistic X, is

Fxo @) = (14t w ) F@F @)L= F@)" "
2.Thecdf of X, is

Fx g, () = 2 mei () [F(2)]™[1 = F(z)]" ™.

Proof.

Soodx
%X )<1J ,Xn, = choose. | ‘o p\o.cm v (x-~ :z—rdx>
>X@) 2 Ky 2 2 (-, X)
)[:;ij 2 n-K = : = (x a))

&éwl_léf?)_) (! K-\ rvk) FoOdo [HX)]K l[\ FLXD]

FX(k)(x) - P(X(k) < SU)
= P(at least k of the X;’s are < )
Yo _ P(exact m of the X;’s are < z)

= Yok (WIF@)]™[1 = F(2)]*™
»Theorem. If X, ..., X, arei.i.d. with cdf F"and pdf £, then
1.Thejoint pdf of X,y and X, Is
Xy X (8:8) = n(n = 1) f(s) F(O)[F(t) — F(s)]" 7,
for s<t, and O otherwise.
2.The pdf of therange R = X ,,—X 4, IS

fr(r) = ", X0y X (W, u+1) du,
for r>0, and O otherwise.




X,-— Xn=> choose. one o place T ™ (6% Rt

ona (- -——b =

oW
s
% the vest i (s.t)
. (7 an) TN (For- rﬁ]
A F{t) 2 ) F—

»Theorem. If X, ..., X, arei.i.d. with cdf £'and pdf f, then
1.Thejoint pdf of X,y and X, , where 1<i<j<n, Is
Fx x5 (55 8
—  G-D(G—i— 1)|(n j)vf( )f(t) o ‘
< [F(s)'"HF@) = F(s)P 1= FO)" 7,
for s<t, and O otherwise.

2.The pdf of the j" spacing S; = X ;=X 1 is
f_ fX(J 1),X )(’LL U + S) du

fors> O and zero otherwise.

d;b Xi,-= YXn> dhooge. ong Jo place T (5% %)

Sexds o - - - (- dt‘f?[‘r‘é)
L = e (—-r.n s)
gl == = (£, €5
. eRe A . therest - - - (£, @
- < =L=1) + (-2 a
= C_ ) j(s)dsfctdt &
Db Fo— L it (L s E)F{t) ReY0-Rel

+ Reading: textbook, Sec 6.3, 6.6, 6.7

Conditional Distribution

 Definition. Let X and Y be discrete random vectors and (X, Y) have
ajoint pmf py (X, y), then the conditional joint pmf of Y given X=x

£, IS defined A< P{X=x,Y=y})

v pyix(y[x) = PY = y}|{X =x}) = P({X =x})
M _ pxy(xy)

X px(x)

iIf p (x)>0. The probability is defined to be zero if p, (x)=0.
» Some Notes.
= For each fixed X, pyx(y[x) isajoint pmf for y, since

>y Py x(¥[x) = pxl(x) >y Px,y(X,y) = pxl(x) X px(x) = 1.
= For an event B of Y, the probability that Y € B given X=x is
P(Y € BX =x) = 3,5 pyix (u[x).

» The conditional joint cdf of Y given X=x can be similarly
defined from the conditiona joint pmf py, (y[x), I.€.,

FY|X(Y|X) =P(Y <yl X=x) = Zugpr|X(u|X>'
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»Theorem. Let X, ..., X, beindependent and X,~Poisson(2,),
=1, ..., m. Let Y=X +---+ X then

(X, ..., X, [Y=n) ~ Multinomial(n, m, py, ..., D),
wherep, = A/(A,+---+A, ) fori=1, ..., m

o ——f——0d—f——] o o o | —x1>

Proof. Thejoint pmf of (X, ..., X,,, Y) IS
pxy(T1,. . Zm,n) =PHX1=21,..., X =20} N{Y =n})
B PXi=x1,...,.X;m=2om), ifx1+---+x,=n,
B 0, ifxy +---4+x,, #n.
Furthermore, the distribution of Y'is Poisson(i,+:--+A ), i.e.,
—(XN 44+ 2Am) n
py(n)=P(Y =n) = - Qo+ Am)

n!

Therefore, for x=(z4, ..., z,,) wheresz,€{0,1,2,...}, =1, ..., m
and xz,+---+z,_=n, the conditional joint pmf of X given Y=n is

_>‘z' Ami p. 6-46

m € .
1172, —

e—(>‘1 +"‘+>\m)(>\1+...+>\m)n

n!

xTq A Tm
e ()™

e Definition. Let X and Y be continuous random vectors and (X, Y)
have ajoint pdf fy (X, y), then the conditional joint pdf of Y given
X=x isdefined as

frix(ylx) =

Ix Y(X Y)
_ fx(x)
If f(x)>0, and O otherwise.

» Some Notes.

» P(X=x)=0 for a continuous random vector X.
= The definition of fy(y[x) comes from
P(Y<yl|x— (Ax/2) <X <x+ (Ax/2))

I f"‘+ T fx.y(u,v) dudv

fx fx_ (t) dt

7 Ix, Y(x v)Ax dv Yy  fxyxy)
Tx (%) Ax f o fx(x) dy




= For each fixed x, leX(y|x) iIsajoint pdf for y, since

Ide o} ~ .ﬁ(\’) ,!
i I

J—0o Y] |)& yiX } - fx(x) J—oo
= For an event B of Y, we can write
P(Y € BIX =x) = [ fyjx(y[x) dy.

= The conditional joint cdf of Y given X=x can be similarly
defined from the conditional joint pdf fyx(ylx), 1.e.,

Fyix(ylx) =P(Y <y|X=x) = [7__ fyix(ylx)d
»Example. If X and Y haveajoint pdf

f(z,y) =
J I T) fl-l-'r-l-'u)3’

for 0<z, y< oo, then

fx(z) = fo

for 0<z< 00. S0,
flzy) _ 2(1+w)?

fY|X(y|5I3> fx(x) — (14z+y)3?

o0 x2
and, P(Y >¢[X =xz) = [ %J%y%dy

o +x)? |7 (1+4a)?
(1+z+y)2 y=c - (I+z+c)?

« Mixed Distribution: The definition of conditional distribution can”"™
be similarly generalized to the case in which some random variables
are discrete and the others continuous (see a later example).

» Theorem (Multiplication Law). Let X and Y be random vectors
and (X, Y) haveajoint pdf fy (X, y)/pmf py (X, y), then
pxY(X,y) = pY|X(Y|X> X px(x), or
fxy(x,y)= fY|X(Y|X> X fx(x).
Proof. By the definition of conditional distribution.
» Theorem (Law of Total Probability). Let X and Y be random
vectors and (X, Y) have ajoint pdf fy (X, y)/pmf py (X, y), then

Y (¥) = >m oo Py ix(¥[X)px(x), OF

= ffooo fYIX(Y|X>fX(X> dx

Proof. By the definition of marginal distribution and the
multiplication law.

» Theorem (Bayes Theorem). Let X and Y be random vectors
and (X, Y) haveajoint pdf fy (X, y)/or ajoint pmf py (X, y), then




Py x (¥|x)px(x)
Z;O__OOPY|X(Y|X)PX(X)
fyx (¥]x) fx (%)
foo fY|x(Y|X)fX(X) dx
Proof. By the definition of conditional distribution,
multiplication law, and the law of total probability.
»Example.
» Suppose that X ~ Uniform(0, 1), and
(Y, ..., Y | X=z) arei.i.d. with Bernoulli(z), i.e.,
PY|x (Y1, s Ynlz) = @V TFYR (1 — gy Wittty
fory,, ..., y,€{0, 1}.
» By the multiplication law, for y, ..., y,,€{0, 1} and O<z<1,
Dy x (YL, yn, ) = ¥t tun (1 — g)n—(wattyn),

= Suppose that we observed V=1, ..., Y =1. By the law of
total probability, (Y1 =1,...,.Y,=1)=py(1,...,1)

= Jy pY|X( S ) fx (@ )

1
_ 1 _ n+1 _
= fox dx—on =

px |y (xX]y) = or

fX|Y(X|Y)

« And, by Bayes Theorem,
pY|X( 1\x>fx( ) n
py(l,...,l) (n+1)
for O<z<1,i.e, (X|Y;=1, ..., Y =1) ~ Gamma(n+1, 1).

= If there were an (n+1)% Bernoulli trial Y, ,,
PY,;11=1¥"=1,...,Y,=1)
PY,=1,....,Y,=1) 1/(n+1) n+2
= (exercise) In general, it can be shown that
XIY=yy, -0 Y, =y,) ~ Gamma((y, +- - +y,)+1, n=(y +---+y, ) +1).

* Theorem (Independent). Let X and Y be random vectors and
(X, Y) haveajoint pdf fy (X, y)/pmf py (X, y). Then, X and Y are
Independent, i.e.,
Px,Y(X,¥) = px(x) X py(y), or

fxy(xy) = fx(x) x fx(y),

If and only if



pyx(y|x) =py(y), or
fY|X<Y|X> = fy(y).
Proof. By the definition of conditional distribution.

> intuition.
= the 2 graphsin LNp.6-23
" pyx (¥[x) (or fY|x(y|x) ffers information of Y when
i X

when
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% Reading: textbook, Sec 6.4, 6.5

not observed.



