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Jointly Distributed Random Variables
• Recall. In Chapters 4 and 5, focus on univariate random variable. 
However, often a single experiment will have more than one 

random variable which is of interest.
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X1

X2

Xn

P

X=(X1, … , Xn): → Rn.

Definition. Given a sample space  and a probability measure 
P defined on the subsets of , random variables

X1, X2, … , Xn: → R
are said to be jointly distributed. 
 We can regard n jointly distributed r.v.’s as a random vector

Ω

•
• •

•• •
X1

X2

P
A

EA

PX1,X2

PX1,X2
(A)

=??

R2

A occurs 
EA occurs

PX1,X2(A) = P (EA)

(X1 , X2)

• Q: For A⊂Rn, how to define the probability of {X∈A} from P?
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For A⊂Rn,

For Ai⊂R, i=1, …, n,
PX1,...,Xn(X1 ∈ A1, · · · , Xn ∈ An)
= P ({ω ∈ Ω|X1(ω) ∈ A1} ∩ · · ·∩ {ω ∈ Ω|Xn(ω) ∈ An})

PX1,...,Xn(A)
= P ({ω ∈ Ω|(X1(ω), . . . , Xn(ω)) ∈ A})

X1

X2

Definition. The probability measure of X (PX, defined on Rn) is 
called the joint distribution of X1, …, Xn. The probability 
measure of Xi (      , defined on R) is called the marginal 
distribution of Xi.

PXi

• Q: Why need joint distribution? Why are marginal distributions 
not enough?
Example (Coin Tossing, LNp.4-2).

X2: # of head 
on 1st toss

X1: total # of heads

0 (1/8) 1 (3/8) 2 (3/8) 3 (1/8)

0 (1/2) 1/8 [1/16] 2/8 [3/16] 1/8 [3/16] 0 [1/16] 

1 (1/2) 0 [1/16] 1/8 [3/16] 2/8 [3/16] 1/8 [1/16]
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 blue numbers: joint distribution of X1 and X2
 (black numbers): marginal distributions 
 [read numbers]: joint distribution of another (X1’, X2’) 
 Some findings:

When joint distribution is given, its corresponding 
marginal distributions are known, e.g.,
P(X1=i)=P(X1=i, X2=0)+P(X1=i, X2=1), i=0, 1, 2, 3.

 (X1, X2) and (X1’, X2’) have identical marginal 
distributions but different joint distributions.
When the marginal distributions are given, the 

corresponding joint distribution is still unknown. There 
could be many possible different joint distributions. 
(A special case: X1, …, Xn are independent.)

 Joint distribution offers more information, e.g.,
When not observing X1, the distribution of X2 is: 
P(X2=0)=1/2, P(X2=1)=1/2  marginal distribution

When X1 was observed, say X1=1, the distribution of 
X2 is: P(X2=0|X1=1)=(2/8)/(3/8)=2/3 and 
P(X2=1|X1=1)=(1/8)/(3/8)=1/3  the calculation 
requires the knowing of joint distribution

p. 6-4• We can characterize the joint distribution of X in terms of its
1.Joint Cumulative Distribution Function (joint cdf)
2.Joint Probability Mass (Density) Function (joint pmf or pdf)
3.Joint Moment Generating Function (joint mgf, Chapter 7)
Joint Cumulative Distribution Function

 Definition. The joint cdf of X=(X1, …, Xn) is defined as

 Theorem. Suppose that FX is a joint cdf. Then,

(i)   0 ≤ FX(x1, …, xn) ≤ 1, for ∞<xi<∞, i=1, …, n.

(ii) 

FX(x1, . . . , xn) = P (X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn).X1

X2

limx1,x2,···,xn→∞ FX(x1, . . . , xn) = 1

X1

X2

X1

X2

X1

X2

X1

X2

lim
xi→−∞

FX(x1, . . . , xn) = 0.

Proof.

(iii) For any i∈{1, …, n}, 

Proof.
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(iv) FX is continuous from the right with 

respect to each of the coordinates, or any 
subset of them jointly, i.e., if x=(x1, …, 
xn) and zm=(z1m, …, znm) such that 
then 

X1

X2

zm ↓ x,

FX(zm) ↓ FX(x).

X1

X2

(v) If                                      then 

X1

X2

(vi) If                                        then x1 ≤ x01 and x2 ≤ x02,

FX(x1, . . . , xn) ≤ FX(t1, . . . , tn) ≤ FX(x
0
1, . . . , x

0
n).

where                                                  When n=2, we haveti ∈ {xi, x0i}, i = 1, 2, . . . , n.

In particular, let                                      we get

P (x1 < X1 ≤ x01, x2 < X1 ≤ x02)
= FX1,X2(x

0
1, x

0
2)− FX1,X2(x1, x

0
2)

−FX1,X2 (x
0
1, x2) + FX1,X2(x1, x2).

x01 ↑ ∞ and x02 ↑ ∞,

xi ≤ x0i, i = 1, . . . , n,

FX1,X2(x1, x2) ≤ FX1,X2(x1, x02)
FX1,X2(x

0
1, x2)

≤ FX1,X2(x
0
1, x02).

X1

X2

X1

X2

P (x1 < X1 < ∞, x2 < X2 < ∞)
= 1− FX1(x1)− FX2(x2) + FX1,X2 (x1, x2).
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(vii) The joint cdf of X1 , …, Xk, k < n, is

FX1,...,Xk(x1, . . . , xk) = P (X1 ≤ x1, . . . , Xk ≤ xk)
= P (X1 ≤ x1, . . . , Xk ≤ xk,

−∞ < Xk+1 < ∞, . . . ,−∞ < Xn < ∞)
= lim

xk+1,xk+2,···,xn→∞
FX(x1, . . . , xk, xk+1, . . . , xn).

FX1(x) = P (X1 ≤ x)
= lim

x2,x3,···,xn→∞
FX(x, x2, x3, . . . , xn).

In particular, the marginal cdf of X1 is

X1

X2

X1

X2

 Theorem. A function FX(x1, …, xn) can be a joint cdf if FX
satisfies (i)-(v) in the previous theorem.

Joint Probability Mass Function

 Definition. Suppose that X1, …, Xn are discrete random 
variables. The joint pmf of X=(X1, …, Xn) is defined as

 Theorem. Suppose that pX is a joint pmf. Then,

(a) 

pX(x1, . . . , xn) = P (X1 = x1, . . . , Xn = xn).

pX(x1, . . . , xn) ≥ 0, for −∞ < xi < ∞, i = 1, . . . , n.
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(b) There exists a finite or countably infinite set Rn such 

that 

(c)

(d) For A⊂Rn, 

X ⊂
pX(x1, . . . , xn) = 0, for (x1, . . . , xn) /∈ X .

x∈X pX(x) = 1, where x = (x1, . . . , xn).

P (X ∈ A) =
x∈A∩X

pX(x).

(e) The joint pmf of X1 , …, Xk, k < n, is
pX1,...,Xk(x1, . . . , xk) = P (X1 = x1, . . . , Xk = xk)
= P (X1 = x1, . . . , Xk = xk,

−∞ < Xk+1 < ∞, . . . ,−∞ < Xn < ∞)
=

(x1 ,...,xn)∈X
−∞<xk+1<∞,...,−∞<xn<∞

pX(x1, . . . , xk, xk+1, . . . , xn).

In particular, the marginal cdf of X1 is
pX1 (x) = P (X1 = x)

=
(x,x2,...,xn)∈X

−∞<x2<∞,...,−∞<xn<∞

pX(x, x2, x3, . . . , xn).

 Theorem. A function pX(x1, …, xn) can be a joint pmf if pX
satisfies (a)-(c) in the previous theorem.

X1

X2
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 Theorem. If FX and pX are the joint cdf and joint pmf of X, 

then FX(x1, . . . , xn) =
(t1,...,tn)∈X

t1≤x1 ,...,tn≤xn

pX(t1, . . . , tn), and

X1

X2

X1

X2

X1

X2

Joint Probability Density Function
 Definition. A function fX(x1, …, xn) can be a joint pdf if 

(1) fX(x1, …, xn)≥0, for ∞<xi<∞, i=1, …, n.
(2) ∞

−∞ · · ·
∞
−∞ fX(x1, . . . , xn) dx1 · · ·dxn = 1.

P (X ∈ A) = · · · A fX(x1, . . . , xn) dx1 · · ·dxn.X1

X2

A

 Definition. Suppose that X1, …, Xn are continuous r.v.’s. 
The joint pdf of X=(X1, …, Xn) is a function fX(x1, …, xn) 
satisfying (1) and (2) above, and for any event A⊂Rn,
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 Theorem. Suppose that fX is the joint pdf of X=(X1, …, Xn). 

Then, the joint pdf of X1 , …, Xk, k < n, is
fX1,...,Xk

(x1, . . . , xk)
=

∞
−∞ · · ·

∞
−∞ fX(x1, . . . , xk, xk+1, . . . , xn) dxk+1 · · ·dxn.

In particular, the marginal pdf of X1 is
X1

X2

fX1(x) =
∞
−∞ · · ·

∞
−∞ fX(x, x2, . . . , xn) dx2 · · ·dxn.

 Theorem. If FX and fX are the joint cdf and joint pdf of X, 
then

fX(x1, . . . , xn) =
∂n

∂x1···∂xnFX(x1, . . . , xn).

FX(x1, . . . , xn)
=

x1
−∞ · · ·

xn
−∞ fX(t1, . . . , tn) dt1 · · ·dtn, and

at the continuity points of fX.
• Examples.
Experiment. Two balls are drawn without replacement from a 

box with 1 ball labeled one, 
2 balls labeled two, 
3 balls labeled three. 

Let X = label on the 1st ball drawn,
Y = label on the 2nd ball drawn.
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 The joint pmf and marginal pmfs of (X, Y) are

Q: When balls drawn without replacement, why do X and Y
have same marginal distributions?

 Q: P(|XY|=1)=??

P(|XY|=1) = P(X=1, Y=2) + P(X=2, Y=1) 
+ P(X=2, Y=3) + P(X=3, Y=2) = 8/15.

p(x, y)
X

pY(y)
1 2 3

Y
1 0 2/30 3/30 1/6
2 2/30 2/30 6/30 2/6
3 3/30 6/30 6/30 3/6

pX(x) 1/6 2/6 3/6

Multinomial Distribution 
 Recall. Partitions

 If n≥1 and n1, …, nm ≥ 0 are integers for which
n1 +  + nm = n,

then a set of n elements may be partitioned into m subsets 
of sizes n1, …, nm in
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n

n1,···,nm = n!
n1!×···×nm! ways.

Example: MISSISSIPPI
11

4,1,2,4 = 11!
4!1!2!4! .

 Example (Die Rolling).

 Q: If a balanced (6-sided) die is rolled 12 times, 
P(each face appears twice)=??

Sample space of rolling the die once (basic experiment): 
0 = {1, 2, 3, 4, 5, 6}.

The sample space for the 12 trials is 
 = 0 × × 0 = 0

12

An outcome  ∈  is  =(i1, i2, …, i12), where 
1≤i1, …, i12≤6.

There are 612 possible outcomes in , i.e., # = 612.

Among all possible outcomes, there are
of which each face appears twice.

P(each face appears twice) = 

12
2,2,2,2,2,2 =

12!
(2!)6

12!
(2!)6

1
6

12
.
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 Generalization. 

Consider a basic experiment which can result in one of m
types of outcomes. Denote its sample space as 

0 = {1, 2, …, m}. 

Let pi = P(outcome i appears),

then, (i) p1, …, pm ≥ 0, and 
(ii) p1 +  + pm = 1.

Repeat the basic experiment n times. Then, the sample 
space for the n trials is 

 = 0 × × 0 = 0
n

Let Xi = # of trials with outcome i, i=1, …, m,

Then, (i) X1, …, Xm: → R, and 
(ii) X1 +  + Xm = n.

The joint pmf of X1, …, Xm is

pX(x1, . . . , xm) = P (X1 = x1, . . . , Xm = xm)
= n

x1,···,xm px11 × · · · × pxmm .

for x1, …, xm ≥ 0 and x1 +  + xm = n.
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Proof. The probability of any sequence with xi i’s is

and there are

such sequences.

The distribution of a random vector X=(X1, … , Xm) with 
the above joint pmf is called the multinomial distribution 
with parameters n, m, and p1, …, pm, denoted by 
Multinomial(n, m, p1, …, pm). 

The multinomial distribution is called after the 
Multinomial Theorem:

px11 × · · · × pxmm ,

n
x1,···,xm

(a1 + · · ·+ am)
n

=
xi∈{0,...,n}; i=1,...,m

x1+···+xm=n

n

x1, · · · , xm
ax11 × · · · × axmm .

 It is a generalization of the binomial distribution from 
2 types of outcomes to m types of outcomes. 
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Some Properties.

Because Xi = n – (X1++Xi1+Xi+1++Xm), and

pi = 1 – (p1++ pi1+pi+1++pm),

wlog, we can write 

(X1,…, Xm1, Xm) → (X1,…, Xm1, n(X1++Xm1)) 

Marginal Distribution. Suppose that

(X1, … , Xm) ~ Multinomial(n, m, p1, …, pm).

For 1≤k<m, the distribution of 

(X1, …, Xk, Xk+1+  +Xm) 

is Multinomial(n, k+1, p1, …, pk, pk+1++pm).

In  particular, Xi ~ Binomial(n, pi)

Mean and Variance.
E(Xi)=npi and Var(Xi)=npi(1pi) 

for i = 1, …, m.
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Q: P(Y ≥2X or X≥2Y)=??
 The event {Y ≥ 2X}∪{X ≥ 2Y} is

 So, P(Y ≥2X or X≥2Y)=P(Y ≥2X)+P(X≥2Y)=2/3 because

X

Y

P (Y ≥ 2X) =
∞

0

∞

2x

λ2e−λ(x+y) dy dx

=
∞

0

−λe−λ(x+y)
∞

y=2x
dx =

∞

0

λe−3λx dx

= (−1/3)e−3λx ∞
x=0

= 1/3.

and similarly, we can get P(X≥2Y)=1/3 (exercise).
Example. Consider two continuous r.v.’s X and Y.

 Uniform Distribution over a region D. If D⊂R2 and 
0 < =Area(D) < ∞, then

is a joint pdf when c=1/, called the uniform pdf over D.

X

Y

Example. 
 Suppose that the joint pdf of 2 continuous r.v.’s (X, Y) is

f(x, y) =
λ2e−λ(x+y), x ≥ 0, y ≥ 0,
0, otherwise.
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 Let D = {(x, y): x2+y2≤1}, then =Area(D)= and

is a joint pdf.
X

Y

 Marginal distribution. The marginal pdf of X is 

f(x, y) = 1
π1D(x, y)

for 1≤x≤ 1, and fX(x)=0, otherwise. 
(exercise: Find the marginal distribution of Y.)

fX(x) =

√
1−x2

−√1−x2
1

π
dy =

2

π
1− x2

X

Y

 Reading: textbook, Sec 6.1

Independent Random Variables
• Recall. 

When the joint distribution is given, the marginal distributions
are known. 

The converse statement does not hold in general. 

However, when random variables are independent, 

marginal distributions + independence ⇒ joint distribution. 
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• Definition. The random variables X1, …, Xn are called 

(mutually) independent if and only if for any (measurable) sets 
Ai⊂R, i=1, …, n, the events 

{X1∈A1}, …, {Xn∈An}

are independent. That is, 
P (Xi1 ∈ Ai1 , Xi2 ∈ Ai2 , · · · , Xik ∈ Aik)
= P (Xi1 ∈ Ai1) × P (Xi2 ∈ Ai2) × · · · × P (Xik ∈ Aik),

for any 1≤i1<i2<<ik≤n; k=2, …, n.

• Theorem (Factorization Theorem). The random variables 
X=(X1, …, Xn) are independent if and only if one of the following 
conditions holds.

(1) where FX is 
the joint cdf of X and FXi

is the marginal cdf of Xi for i=1,…,n.
FX(x1, . . . , xn) = FX1(x1)× · · · × FXn(xn),

 If X1, …, Xn are independent, for 1≤k<n, 
P (Xk+1 ∈ Ak+1, . . . , Xn ∈ An|X1 ∈ A1, . . . , Xk ∈ Ak)
= P (Xk+1 ∈ Ak+1, . . . , Xn ∈ An)

provided that In other words, 
X1, …, Xk do not carry information about Xk+1, …, Xn.

P (X1 ∈ A1, . . . , Xk ∈ Ak) > 0.
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pX(x1, . . . , xn) = pX1(x1) × · · · × pXn(xn),

fX(x1, . . . , xn) = fX1(x1)× · · · × fXn(xn),

(2) Suppose that X1, …, Xn are discrete random variables. 
where pX is the 

joint pmf of X and pXi
is the marginal pmf of Xi for i=1,…,n.

(3) Suppose that X1, …, Xn are continuous random variables. 
where fX is the 

joint pdf of X and fXi
is the marginal pdf of Xi for i=1,…,n.

Proof.
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p. 6-20Remark. It follows from the Multiplication Law (LNp.3-7)

that the independence can be established sequentially.

Example. If A1, …, An are independent events, then 
are independent random variables. For example, 

P (1A1 = 1, 1A2 = 0, 1A3 = 1)
= P (A1 ∩Ac

2 ∩A3) = P (A1)P (A
c
2)P (A3)

= P (1A1 = 1)P (1A2 = 0)P (1A3 = 1).

1A1 , . . . , 1An,

Example. If X=(X1, …, Xn) are 
independent and 

Yi = gi(Xi), i=1, …, n,

then Y1, …, Yn are independent.
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Proof. Let i=1, …, n, thenAi(y) = {x : gi(x) ≤ y},

FY(y1, . . . , yn) = P (Y1 ≤ y1, . . . , Yn ≤ yn)
= P (X1 ∈ A1(y1), . . . , Xn ∈ An(yn))
= P (X1 ∈ A1(y1))× · · · × P (Xn ∈ An(yn))
= P (Y1 ≤ y1) × · · · × P (Yn ≤ yn)
= FY1(y1) × · · · × FYn(yn).

• Theorem. X=(X1, …, Xn) are independent if and only if there 
exist univariate functions gi(x), i=1, …, n, such that

(a) when X1, …, Xn are discrete r.v.’s with joint pmf pX,

pX(x1, …, xn) ∝ g1(x1)××gn(xn), ∞<xi<∞, i=1,…,n.
(b) when X1, …, Xn are continuous r.v.’s with joint pdf fX,

fX(x1, …, xn) ∝ g1(x1)××gn(xn), ∞<xi<∞, i=1,…,n.
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Example.

 If the joint pdf of (X, Y) is

and f(x, y)=0, otherwise, i.e.,

then X and Y are independent. Note that the region in which 
the joint pdf is nonzero can be expressed in the form 
{(x, y): x∈A, y∈B}.

f(x, y) ∝ e−2xe−3y , 0 < x < ∞, 0 < y <∞,

X

Y
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 Reading: textbook, Sec 6.2

 Suppose that the joint pdf of (X, Y) is

and f(x, y)=0, otherwise, i.e., 

X and Y are not independent.

f(x, y) ∝ xy, 0 < x < 1, 0 < y < 1, 0 < x+ y < 1,

X

Y

 Q: For independent X and Y, how should their joint pdf/pmf
look like?

X

Y

X

Y

D

• Q: Given the joint distribution of X=(X1, …, Xn),  how to find 
the distribution Y=(Y1, …, Yk), where 

Y1=g1(X1, …, Xn), 

…, 

Yk=gk(X1, …, Xn),

denoted by Y=g(X), g:RnRk.

Transformation

X1

X3

X2

Y1

Y2

Y=g(X)
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The following methods are useful:

1.Method of Events
2.Method of Cumulative Distribution Function
3.Method of Probability Density Function
4.Method of Moment Generating Function (chapter 7)

Method of Events
 Theorem. The distribution of Y is 

determined by the distribution of 
X as follows: for any event B⊂Rk,

PY(Y ∈ B) = PX(X ∈ A),
where A = g1(B) ⊂ Rn.

X1

X3

X2

Y1

Y2

Y=g(X)

 Example. Let X be a discrete random vector taking values 
xi=(x1i, x2i, …, xni), i=1, 2, …, with joint pmf pX. Then, 
Y=g(X) is also a discrete random vector. Suppose that Y
takes values on yj, j= 1, 2, …. To determine the joint pmf of 
Y, by taking B={yj}, we have

A = {xi : g(xi) = yj}

pY(yj) = PY({yj}) = PX(A) = xi∈A pX(xi).
and hence, the joint pmf of Y is
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 Example. Let X and Y be random variables with the joint 

pmf p(x, y). Find the distribution of Z=X+Y. 

 {Z=z} = {(X, Y) ∈ {(x, y): x+y=z}}

pZ(z) = PZ({z}) = P (X + Y = z) =

∞

x=−∞
p(x, z − x).

X

Y

When X and Y are independent,

p(x, y) = pX(x)pY(y),

So,
pZ(z) =

∞

x=−∞
pX(x)pY (z − x).

which is referred to as the convolution of pX and pY.

 (Exercise) Z=XY

 Theorem. If X and Y are independent, and X ~ Poisson(1), 
Y ~ Poisson(2) , then 

Z = X + Y ~ Poisson(1+2).
Proof. For z=0, 1, 2, …, the pmf pZ(z) of Z is

X

Y

Z
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Corollary. If X1, …, Xn are independent, and 
Xi~Poisson(i), i=1, …, n, then

X1++Xn ~ Poisson(1++n).

         

Proof. By induction (exercise).

Method of cumulative distribution function

1.In the (X1, …, Xn) space, find the region that corresponds to 

{Y1≤y1, …, Yk≤yk}.

2.Find FY(y1, …, yk)=P(Y1≤y1, …, Yk≤yk) by summing the 
joint pmf or integrating the joint pdf of X1, …, Xn over the 
region identified in 1.

3.(for continuous case) Find the joint pdf of Y by differentiating 
FY(y1, …, yk), i.e., 

fY(y1, . . . , yk) =
dk

dy1···dykFY(y1, . . . , yk).
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 Example. X and Y are random variables with joint pdf
f(x, y). Find the distribution of Z=X+Y.
 {Z ≤ z} = {(X, Y) ∈ {(x, y): x+y ≤z}}. So,

X

Y

fZ(z) =
d
dzFZ(z) =

∞
−∞ f(x, z − x)dxand

S

T

When X and Y are independent,
f(x, y) = fX(x)fY(y).

So, FZ(z) =
∞
−∞

z−x
−∞ fX(x)fY (y) dydx

=
∞
−∞

z−x
−∞ fY (y) dy fX (x) dx

=
∞
−∞ FY (z − x)fX(x) dx

which is referred to as the convolution of FX and FY, and
fZ(z) =

∞
−∞ fX (x)fY (z − x) dx

which is referred to as the convolution of fX and fY.
 (exercise) Z=XY.
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Proof. For z≥0, 

X

Y

Z

 Theorem. If X and Y are independent, and 
X ~ Gamma(1, ), Y ~ Gamma(2, ) , then 

Z = X + Y ~ Gamma(1+2).

Corollary. If X1, …, Xn are independent, and 
Xi ~ Gamma(i, ), i=1, …, n, then 

X1 +  + Xn ~ Gamma(1+ +n).

Proof. By induction (exercise).

and                       for z < 0.fZ(z) = 0,

 (exercise) Corollary. If X1, …, Xn are independent, and 
Xi ~ Exponential(), i=1, …, n, then 

X1 +  + Xn ~ Gamma(n).
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 Example. X and Y are random variables with joint pdf
f(x, y). Find the distribution of Z=Y/X.

 (exercise) Theorem. If X1, …, Xn are independent, and 
Xi ~ Normal(i, i

2), i=1, …, n, then 

X1 +  + Xn ~ Normal(1++n 1
2++n

2).

Let

then,

Qz = {(x, y) : y/x ≤ z}
= {(x, y) : x < 0, y ≥ zx}

∪ {(x, y) : x > 0, y ≤ zx}
FZ(z) = Qz

f(x, y) dxdy

X

Y

S

T
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and, fZ(z) =

d
dzFZ(z) =

∞
−∞ |x|f(x, xz) dx

(=
∞
−∞ |x|fX(x)fY (xz) dx
when X and Y are independent)

 If X and Y are independent, X ~ exponential(1), 
Y ~ exponential(2), and Z=Y/X. The pdf of Z is 

fZ(z) =
∞
0

x λ1e
−λ1x λ2e

−λ2(xz) dx

= λ1λ2Γ(2)
(λ1+λ2z)2

∞
0

(λ1+λ2z)
2

Γ(2) x2−1e−(λ1+λ2z)x dx

= λ1λ2
(λ1+λ2z)2

X

Y

Z

for z≥0, and 0 for z < 0.

And, the cdf of Z is

for z≥0, and 0 for z < 0.

FZ(z) =
z

0
fZ(t) dt =

z

0
λ1λ2

(λ1+λ2t)2
dt

= −λ1λ2
λ2
(λ1 + λ2t)

−1 z

0
= 1− λ1

λ1+λ2z

 (exercise) Z=XY
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Y=(Y1, …, Yn)= g(X), 

where g is 1-to-1, so that its inverse exists and is denoted by

x=g1(y) = w(y) = (w1(y), w2(y), …, wn(y)).

Assume w have continuous partial derivatives, and let

Then 
fY(y) = fX(g1(y))  |J|,

for y s.t. y=g(x) for some x, and fY(y)=0, otherwise.

Method of probability density function 

 Theorem. Let X=(X1, …, Xn) be continuous random 
variables with the joint pdf fX. Let

Proof. 

(Q: What is the role of |J|?) 

Y1

Y2

Y=g(X)

X1

X2
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Remark. When the dimensionality of Y (denoted by k) is 
less than n, we can choose another nk transformations Z
such that (Y, Z)=g(X) satisfy the assumptions in above 
theorem. By integrating out the last nk arguments in the 
pdf of (Y, Z), the pdf of Y can be obtained.

It then follows from an exercise in advanced calculus that 

 Example. X1 and X2 are random variables with joint pdf
fX(x1, x2). Find the distribution of Y1=X1/(X1+X2).
Let Y2=X1+X2, then

fY(y1, . . . , yn) =
∂n

∂y1···∂ynFY(y1 , . . . , yn)

= fX(w1(y), . . . , wn(y))× |J |.

Since ∂w1
∂y1

= y2,
∂w1
∂y2

= y1,
∂w2
∂y1

= −y2,
∂w2
∂y2

= 1− y1,

x1 = y1y2 ≡ w1(y1, y2)
x2 = y2 − y1y2 ≡ w2(y1, y2).
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Therefore,

and,

Proof. For x1, x2 ≥ 0, the joint pdf of X is

fX(x1, x2) =
λα1

Γ(α1)
xα1−11 e−λx1 × λα2

Γ(α2)
xα2−12 e−λx2

= λα1+α2

Γ(α1)Γ(α2)
xα1−11 xα2−12 e−λ(x1+x2).

fY(y1, y2) = fX(y1y2, y2 − y1y2)|y2|,
J =

y2 y1
−y2 1− y1

= y2 − y1y2 + y1y2 = y2, and |J | = |y2|.

X1

X2

Y1

Y2

fY1 (y1) =
∞
−∞ fY(y1, y2) dy2

=
∞
−∞ fX(y1y2, y2 − y1y2)|y2| dy2.

(=
∞
−∞ fX1 (y1y2)fX2 (y2 − y1y2)|y2| dy2
when X1 and X2 are independent)

 Theorem. If X1and X2 are independent, and 

X1 ~ Gamma(1, ), X2 ~ Gamma(2, ), then 

Y1=X1/(X1+X2) ~ Beta(1, 2).

So, for 0≤y1≤ 1, 
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 Example. Suppose that X and Y have a uniform distribution 
over the region D={(x, y): x2+y2≤1}, i.e., their joint pdf is

Find the joint distribution of (R, ) and examine whether R
and  are independent, where (R, ) is the polar coordinate 
representation of (X, Y), i.e.,

X

Y

Since

R



X = R cos(Θ) ≡ w1(R,Θ),
Y = R sin(Θ) ≡ w2(R,Θ).

∂w1
∂r = cos(θ),

∂w1
∂θ = −r sin(θ),

∂w2
∂r = sin(θ),

∂w2
∂θ = r cos(θ),

fX,Y (x, y) = 1
π1D(x, y).

and                      otherwise. fY1(y1) = 0,
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For 0≤r≤1 and 0≤≤2, the joint pdf of (R, ) is 

and                          otherwise.fR,Θ(r, θ) = 0,

By the theorem in LNp.6-21, (R, ) are independent.
 Example. Let X1, …, Xn be independent and identically 

distributed exponential(). Let

Yi = X1 +  + Xi, i = 1, …, n.

Find the distribution of Y=(Y1, …, Yn). 

(Note. It has been shown that Yi ~ Gamma(i, ), i=1, …, n.)
The joint pdf of X1, …, Xn isX1

X2

Y1

Y2

fX(x1, . . . , xn) =
n
i=1 fXi (xi)

=
n
i=1 λe−λxi = λne−λ(x1+···+xn).

for 0≤xi<∞, i=1, …, n.
 Since
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we have

 For 0≤y1≤≤yi1≤yi≤yi+1≤≤yn<∞, 

fY(y1, . . . , yn) = fX(y1, y2 − y1, . . . , yn − yn−1)× |J |
= λne−λyn .

and                                   otherwise.fY(y1, . . . , yn) = 0,

∂wi
∂yj

=
1, if j = i,
−1, if j = i − 1,
0, otherwise,

J =

1 0 0 · · · 0
−1 1 0 · · · 0
0 −1 1 · · · 0
...

...
...

...
0 0 0 · · · 1

= 1, and |J | = 1.

for y≥0, and                    otherwise.fYi(y) = 0,

The marginal pdf of Yi is
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Method of moment generating function.

 Based on the uniqueness theorem of moment generating 
function to be explained later in Chapter 7

 Especially useful to identify the distribution of sum of 
independent random variables. 

• Order Statistics

    
X1X3X4 X2 X6 X5

X(1) X(6)X(5)X(4)X(3)X(2)

R

Definition. Let X1, …, Xn be random variables. We sort the 
Xi’s and denote by X(1) ≤ X(2) ≤ ≤ X(n) the order 
statistics. Using the notation,

X(1) = min( X1, …, Xn ) is the minimum,

X(n) = max( X1, …, Xn ) is the maximum,

R  X(n)  X(1) is called range,

Sj  X(j)  X(j1), j=2, …, n, are called spacings.
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 Remark. For order statistics, we only consider the case that 
X1, …, Xn are i.i.d. 

Note. Although X1, …, Xn are independent, their order 
statistics X(1), X(2), , X(n) are not independent in general.

Q: What are the joint distributions of various order statistics 
and their marginal distributions?
Definition. X1, …, Xn are called i.i.d. (independent, identically 

distributed) with cdf F/pdf f/pmf p if random variables 
X1, …, Xn are independent and have a common marginal 
distribution with cdf F/pdf f/pmf p. 

Theorem. Suppose that X1, …, Xn are i.i.d. with cdf F. 

1.The cdf of X(1) is 1[1F(x)]n and the cdf of X(n) is [F(x)]n.

2.If X are continuous and F has a pdf f, then the pdf of X(1) is 
nf(x)[1F(x)]n1 and the pdf of X(n) is nf(x)[F(x)]n1.

Proof. By the method of cumulative distribution function,
1− FX(1)

(x) = P (X(1) > x) = P (X1 > x, . . . , Xn > x)

= P (X1 > x) · · ·P (Xn > x) = [1− F (x)]
n
.
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FX(n)

(x) = P (X(n) ≤ x) = P (X1 ≤ x, . . . , Xn ≤ x)

= P (X1 ≤ x) · · ·P (Xn ≤ x) = [F (x)]
n
.

fX(n)
(x) = d

dxFX(n)
(x) = n[F (x)]n−1 d

dxF (x) .

fX(1)
(x) = d

dxFX(1)
(x) = n[1− F (x)]n−1 d

dxF (x) .

 Graphical interpretation for the pdfs of X(1) and X(n).

 If n=5 and F is exponential with  = 1 per month, then 

 Example. n light bulbs are placed in service at time t=0, 
and allowed to burn continuously. Denote their lifetimes by 
X1, …, Xn, and suppose that they are i.i.d. with cdf F. If 
burned out bulbs are not replaced, then the room goes dark at 
time

Y = max(X1, …, Xn).
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F(x) = 1ex, for x≥ 0, and 0, for x< 0. 

The cdf of Y is
FY(y) = (1ey)5, for y≥ 0, and 0, for y< 0,

and its pdf is 5(1ey)4e–y, for y≥ 0, and 0, for y< 0.
The probability that the room is still lighted after two 

months is P(Y > 2) = 1–FY(2) = 1(1e2)5.

Theorem. Suppose that X1, …, Xn are i.i.d. with pdf f/pmf p. 
Then, the joint pmf/pdf of X(1) , …, X(n) is

pX(1),...,X(n)
(x1, . . . , xn) = n!× p(x1)× · · · × p(xn),

fX(1),...,X(n)
(x1, . . . , xn) = n!× f(x1) × · · · × f(xn),

for x1≤x2≤≤xn, and 0 otherwise.
Proof. For x1≤x2≤≤xn, 

pX(1),...,X(n)
(x1, . . . , xn) = P (X(1) = x1, . . . , X(n) = xn)

= (i1,...,in):

permutations of
(1,...,n)

P (X1 = xi1 , . . . , Xn = xin)

= (i1,...,in):

permutations of

(1,...,n)

p(x1)× · · · × p(xn)

= n!× p(x1) × · · · × p(xn).
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 Q: Examine whether X(1) , …, X(n) are independent using 
the Theorem in LNp.6-21.

fX(1),...,X(n)
(x1, . . . , xn) dx1 · · ·dxn

≈ P x1 − dx1
2 < X(1) < x1 +

dx1
2 , . . . ,

xn − dxn
2

< X(n) < xn +
dxn
2

= (i1,...,in):

permutations of
(1,...,n)

P xi1 − dxi1
2 < X1 < xi1 +

dxi1
2 , . . . ,

xin − dxin
2

< Xn < xin +
dxin
2

= (i1,...,in):

permutations of
(1,...,n)

f(x1)× · · · × f(xn) dx1 · · ·dxn

= n!× f(x1) × · · · × f(xn) dx1 · · ·dxn.

Theorem. If X1, …, Xn are i.i.d. with cdf F and pdf f, then

1.The pdf of the kth order statistic X(k) is 

2.The cdf of X(k) is

fX(k)
(x) = n

1,k−1,n−k f(x)F (x)
k−1

[1− F (x)]n−k.

Proof.
FX(k)

(x) =
n
m=k

n
m [F (x)]m[1− F (x)]n−m.

X(1)

X(2)
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Theorem. If X1, …, Xn are i.i.d. with cdf F and pdf f, then 

1.The joint pdf of X(1) and X(n) is 

for s≤t, and 0 otherwise.
2.The pdf of the range R = X(n)–X(1) is

for r≥0, and 0 otherwise.

fX(1),X(n)
(s, t) = n(n − 1)f(s)f(t)[F (t) − F (s)]

n−2
,

fR(r) =
∞
−∞ fX(1) ,X(n)

(u, u+ r) du,

X(k)
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Theorem. If X1, …, Xn are i.i.d. with cdf F and pdf f, then

1.The joint pdf of X(i) and X(j) , where 1≤i<j≤n, is 
fX(i),X(j)

(s, t)

= n!
(i−1)!(j−i−1)!(n−j)!f(s)f(t)
× [F (s)]i−1[F (t)− F (s)]j−i−1[1− F (t)]n−j,

for s≤t, and 0 otherwise.

 Reading: textbook, Sec 6.3, 6.6, 6.7

fSj (s) =
∞
−∞ fX(j−1) ,X(j)

(u, u+ s) du,

2.The pdf of the jth spacing Sj = X(j)–X(j1) is

for s ≥ 0, and zero otherwise.
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Conditional Distribution
• Definition. Let X and Y be discrete random vectors and (X, Y) have 

a joint pmf pX,Y(x, y), then the conditional joint pmf of Y given X=x
is defined as

if pX(x)>0. The probability is defined to be zero if pX(x)=0.

Some Notes. 

 For each fixed x, pY|X(y|x) is a joint pmf for y, since

y pY|X(y|x) = 1
pX(x) y pX,Y(x, y) = 1

pX(x)
× pX(x) = 1.

 For an event B of Y, the probability that Y∈B given X=x is

 The conditional joint cdf of Y given X=x can be similarly 
defined from the conditional joint pmf pY|X(y|x), i.e., 

FY|X(y|x) = P (Y ≤ y|X = x) = u≤y pY|X(u|x).

P (Y ∈ B|X = x) = u∈B pY|X(u|x).

X

Y
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Theorem. Let X1, …, Xm be independent and Xi~Poisson(i), 
i=1, …, m. Let Y=X1++Xm, then

(X1, …, Xm|Y=n) ~ Multinomial(n, m, p1, …, pm),

where pi = i/(1++m) for i=1, …, m.

         

Proof. The joint pmf of (X1, …, Xm, Y) is

pX,Y (x1, . . . , xm, n) = P ({X1 = x1, . . . , Xm = xm} ∩ {Y = n})
=

P (X1 = x1, . . . , Xm = xm), if x1 + · · ·+ xm = n,
0, if x1 + · · ·+ xm 6= n.

Furthermore, the distribution of Y is Poisson(1++m), i.e.,

pY (n) = P (Y = n) = e−(λ1+···+λm)(λ1+···+λm)n
n!

.

Therefore, for x=(x1, …, xm) wheres xi∈{0,1,2,…}, i=1, …, m, 
and x1++xm=n, the conditional joint pmf of X given Y=n is
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• Definition. Let X and Y be continuous random vectors and (X, Y) 
have a joint pdf fX,Y(x, y), then the conditional joint pdf of Y given 
X=x is defined as

fY|X(y|x) ≡ fX,Y(x,y)

fX(x)
,

if fX(x)>0, and 0 otherwise.
X

Y

pX|Y (x|n) = pX,Y (x1,...,xm,n)
pY (n)

=
m

i=1

e−λiλxi
i

xi!

e−(λ1+···+λm)(λ1+···+λm)n

n!

= n!
x1!×···×xm! × λ1

λ1+···+λm
x1 × · · · × λm

λ1+···+λm
xm

.

Some Notes. 

 P(X=x)=0 for a continuous random vector X.
 The definition of fY|X(y|x) comes from
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 For each fixed x, fY|X(y|x) is a joint pdf for y, since

P (Y ∈ B|X = x) = B fY|X(y|x) dy.

 The conditional joint cdf of Y given X=x can be similarly 
defined from the conditional joint pdf fY|X(y|x), i.e., 

FY|X(y|x) = P (Y ≤ y|X = x) =
y

−∞ fY|X(y|x) dy.

 For an event B of Y, we can write

Example. If X and Y have a joint pdf

for 0≤x, y< ∞, then 

and, P (Y > c|X = x) =
∞
c

2(1+x)2

(1+x+y)3
dy

= − (1+x)2

(1+x+y)2

∞

y=c
=

(1+x)2

(1+x+c)2 .

for 0≤x< ∞. So, 
fY |X(y|x) = f(x,y)

fX(x)
= 2(1+x)2

(1+x+y)3 ,
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• Mixed Distribution: The definition of conditional distribution can 

be similarly generalized to the case in which some random variables 
are discrete and the others continuous (see a later example).

• Theorem (Multiplication Law). Let X and Y be random vectors 
and (X, Y) have a joint pdf fX,Y(x, y)/pmf pX,Y(x, y), then

pX,Y(x, y) = pY|X(y|x)× pX(x),

fX,Y(x,y) = fY|X(y|x)× fX(x).

or

Proof. By the definition of conditional distribution.

• Theorem (Law of Total Probability). Let X and Y be random 
vectors and (X, Y) have a joint pdf fX,Y(x, y)/pmf pX,Y(x, y), then

fY(y) =
∞
−∞ fY|X(y|x)fX(x) dx.

pY(y) =
∞
x=−∞ pY|X(y|x)pX(x), or

Proof. By the definition of marginal distribution and the 
multiplication law.

• Theorem (Bayes Theorem). Let X and Y be random vectors 
and (X, Y) have a joint pdf fX,Y(x, y)/or a joint pmf pX,Y(x, y), then
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Example. 
 Suppose that X ~ Uniform(0, 1), and

(Y1, …, Yn|X=x) are i.i.d. with Bernoulli(x), i.e.,

for y1, …, yn∈{0, 1}. 
 By the multiplication law, for y1, …, yn∈{0, 1} and 0<x<1, 

pY|X(y1, . . . , yn|x) = xy1+···+yn(1− x)n−(y1+···+yn),

pY,X(y1, . . . , yn, x) = xy1+···+yn(1− x)n−(y1+···+yn).

pX|Y(x|y) = pY|X(y|x)pX(x)
∞
x=−∞ pY|X(y|x)pX(x)

,

fX|Y(x|y) = fY|X(y|x)fX(x)
∞
−∞

fY|X(y|x)fX(x) dx
.

or

Proof. By the definition of conditional distribution, 
multiplication law, and the law of total probability.

P (Y1 = 1, . . . , Yn = 1) = pY(1, . . . , 1)

=
1

0
pY|X(1, . . . , 1|x)fX(x) dx

=
1

0
xn dx = 1

n+1
xn+1

1

0
= 1

n+1
.

 Suppose that we observed Y1=1, …, Yn=1. By the law of 
total probability,
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fX|Y(x|Y1 = 1, . . . , Yn = 1)
=

pY|X(1, . . . , 1|x)fX(x)
pY(1, . . . , 1)

= (n+ 1)xn.

P (Yn+1 = 1|Y1 = 1, . . . , Yn = 1)

=
P (Y1 = 1, . . . , Yn+1 = 1)

P (Y1 = 1, . . . , Yn = 1)
=
1/(n+ 2)

1/(n+ 1)
=

n+ 1

n+ 2
.

 And, by Bayes’ Theorem,

for 0<x<1, i.e., (X|Y1=1, …, Yn=1) ~ Gamma(n+1, 1).

 If there were an (n+1)st Bernoulli trial Yn+1,

 (exercise) In general, it can be shown that

(X|Y1=y1, …, Yn=yn) ~ Gamma((y1++yn)+1, n(y1++yn)+1).

• Theorem (Independent). Let X and Y be random vectors and 
(X, Y) have a joint pdf fX,Y(x, y)/pmf pX,Y(x, y). Then, X and Y are 
independent, i.e., 

or

if and only if

pX,Y(x,y) = pX(x) × pY(y),

fX,Y(x,y) = fX(x)× fY(y),
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fY|X(y|x) = fY(y).

or

 Reading: textbook, Sec 6.4, 6.5

Proof. By the definition of conditional distribution.

intuition. 
 the 2 graphs in LNp.6-23



