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Continuous Random Variables
• Recall: For discrete random variables, only a finite or countably

infinite number of possible values with positive probability. 

Often, there is interest in random variables that can take (at least 
theoretically) on an uncountable number of possible values, e.g., 

the weight of a randomly selected person in a population,

the length of time that a randomly selected light bulb works,

the error in experimentally measuring the speed of light.

Example (Uniform Spinner, LNp.2-14):

 = (, ]

 For (a, b]⊂, P((a, b]) = ba/(2)

 Consider the random variables:

X: → R,    and X() =  for ∈
Y: → R,    and Y() = tan() for ∈

Then, X and Y are random variables that takes on an 
uncountable number of possible values.
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• Probability Density Function and Continuous Random Variable

Definition. A function f: R→R is called a probability density 
function (pdf) if

1. f(x) ≥ 0, for all x∈(∞, ∞), and

2.
∞
−∞ f(x)dx = 1.

Definition: A random variable X is called continuous if there 
exists a pdf f such that for any set B of real numbers

PX({X ∈ B}) = ∫B f(x) dx.

 For example, 

 Notice that: 

PX({X = x})=0, for any x ∈ R, 

But, for  ≤a<b≤,

PX({X ∈ (a, b]})=P((a, b]) = ba/(2) > 0.

Q: Can we still define a probability mass function for X? If 
not, what can play a similar role like pmf for X? 

PX(a ≤ X ≤ b) = b

a
f(x)dx.
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Some properties 

 for any x ∈ R
 It does not matter if the intervals are open or close, i.e.,

 It is important to remember that the value a pdf f(x) is NOT 
a probability itself

 It is quite possible for a pdf to have value greater than 1

 Q: How to interpret the value of a pdf f(x)? For small dx, 

 f(x) is a measure of how likely it is that X will be near x

P (X ∈ [a, b]) = P (X ∈ (a, b]) = P (X ∈ [a, b)) = P (X ∈ (a, b)).

P x− dx
2 ≤ X ≤ x+ dx

2 =
x+ dx

2

x− dx
2

f(y)dy ≈ f(x) · dx.

We can characterize the distribution of a continuous random 
variable in terms of its

1.Probability Density Function (pdf)
2.Cumulative Distribution Function (cdf)
3.Moment Generating Function (mgf, Chapter 7)

Theorem. If f is a pdf, then there must exist a continuous 
random variable with pdf f.

PX({X = x}) = x

x f(y)dy = 0

p. 5-4
• Relation between the pdf and the cdf

Theorem. If FX and fX are the cdf and the pdf of a continuous 
random variable X, respectively, then

 for all ∞<x<∞
 at continuity points of fX

P (a < X ≤ b) = FX(b)− FX(a) = b

a
fX(x)dx.

Some Notes

 For ∞≤a<b≤∞

 The cdf for continuous random variables has 
the same interpretation and properties as in 
the discrete case

 The only difference is in plotting FX. In the 
discrete case, there are jumps. In the 
continuous case, FX is a continuous non-
decreasing function.

fX(x) = F
0
X(x) =

d
dxFX(x)

FX(x) = P (X ≤ x) = x

−∞ fX (y)dy
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Example (Uniform Distributions)

 If ∞<<<∞, then

is a pdf since

1. f(x) ≥ 0 for all x ∈ R
2.

 Its corresponding cdf is

f(x) =
1

β−α , if α < x ≤ β,

0, otherwise,

∞
−∞ f(x)dx =

β

α
1

β−αdx =
1

β−α (β − α) = 1.

F (x) =
x

−∞
f(y)dy =

0, if x ≤ α,
x−α
β−α , if α < x ≤ β,

1, if x > β.
 (exercise) Conversely, it can be easily checked that F is a cdf

and f(x)=F’(x) except at x= and x= (Derivative does not 
exist when x= and x=, but it does not matter.)

 An example of Uniform distribution is the r.v. X in the 
Uniform Spinner example where = and =.
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• Transformation 

 Q: Y=g(X), how to find the distribution of Y?

 Suppose that X is a continuous random variable with cdf FX
and pdf fX. 

 Consider Y=g(X), where g is a strictly monotone (increasing 
or decreasing) function. Let RY be the range of g.

 Note. Any strictly monotone function has an inverse function, 
i.e., g1 exists on RY.

The cdf of Y, denoted by FY
1.Suppose that g is a strictly increasing function. For y∈RY,

2.Suppose that g is a strictly decreasing function. For y∈RY,

FY (y) = P (Y ≤ y)
= P (g(X) ≤ y) = P (X ≤ g−1(y))
= FX(g

−1(y)).

FY (y) = P (Y ≤ y)
= P (g(X) ≤ y) = P (X ≥ g−1(y)) = 1− P (X < g−1(y))

= 1− FX(g−1(y)).
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 Theorem. Let X be a continuous random variable whose cdf
FX possesses a unique inverse FX1. Let Z=FX(X), then Z
has a uniform distribution on [0, 1].

Proof. For 0≤z≤1, 

 Theorem. Let U be a uniform random variable on [0, 1] and 
F is a cdf which possesses a unique inverse F1. Let 
X=F1(U), then the cdf of X is F. 

Proof.

 The 2 theorems are useful for pseudo-random number 
generation in computer simulation.

X is r.v.  F(X) is r.v.

X1, …, Xn: r.v.’s with cdf F
 F(X1), …, F(Xn): r.v.’s
with distribution Uniform(0, 1) 

U1, …, Un: r.v.’s with 
distribution Uniform(0, 1) 
 F1(U1), …, F1(Un): r.v.’s
with cdf F

FZ(z) = FX(F
−1
X (z)) = z.

FX(x) = FU (F (x)) = P (U ≤ F (x)) = F (x).
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The pdf of Y, denoted by fY

1.Suppose that g is a differentiable strictly increasing function. 
For y∈RY, 

 Theorem. Let X be a continuous random variable with pdf
fX. Let Y=g(X), where g is differentiable and strictly 
monotone. Then, the pdf of Y, denoted by fY, is

for y such that y=g(x) for some x, and fY(y)=0 otherwise.

fY (y) = fX (g
−1(y)) dg−1(y)

dy
,

2.Suppose that g is a differentiable strictly decreasing function. 
For y∈RY,



p. 5-9

 Q: What is the role of |dg1(y)/dy|? How to interpret it?

Some Examples. Given the pdf fX of random variable X, 

 find the pdf fY of Y=aX+b, where a0.

 find the pdf fY of Y=1/X.
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 find the cdf FY and pdf fY of Y=X2. 





• Expectation, Mean, and Variance

Definition. If X has a pdf fX, then the expectation of X is 
defined by

provided that the integral converges absolutely.

E(X) =
R∞
−∞ x · fX (x) dx,
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 Example (Uniform Distributions). If 

then

fX (x) =

½
1

β−α , if α < x ≤ β,

0, otherwise,

Some properties of expectation

 Expectation of Transformation. If Y=g(X), then 

provided that the integral converges absolutely.

proof. (homework)

E(Y ) =
R∞
−∞ y · fY (y) dy =

R∞
−∞ g(x) · fX(x) dx,

 Expectation of Linear Function. E(aX+b)=a·E(X)+b, since
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Definition. If X has a pdf fX, then the expectation of X is also 

called the mean of X or fX and denoted by X, so that

The variance of X is defined as

and denoted by       .  The X is called the standard deviation.
Some properties of mean and variance

 The mean and variance for continuous random variables 
have the same intuitive interpretation as in the discrete case.

 Var(X) = E(X2) – [E(X)]2

 Variance of Linear Function. Var(aX+b)=a2·Var(X)
 Theorem. For a nonnegative continuous random variable X, 

Proof.

μX = E(X) =
R∞
−∞ x · fX(x) dx.

V ar(X) = E[(X − μx)
2] =

R∞
−∞(x− μX )

2 · fX(x) dx,
σ2X

E(X) =
R∞
0 1− FX(x)dx =

R∞
0 P (X > x)dx.

E(X) =
R∞
0
x · fX (x) dx

=
R∞
0

¡R x
0
1 dt

¢
fX(x) dx

=
R∞
0

R x
0
fX(x) dt dx

=
R∞
0

R∞
t fX(x)dx dt =

R∞
0 1− FX(t)dt.0
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 Reading: textbook, Sec 5.1, 5.2, 5.3, 5.7

Example (Uniform Distributions)

• Uniform Distribution

Some Common Continuous Distributions

Summary for X ~  Uniform()
 Pdf:

 Cdf:

 Parameters: ∞<<<∞
 Mean: E(X)=(+)/2
 Variance: Var(X)= ()2/12

F (x) =

⎧⎨⎩
0, if x ≤ α,
(x − α)/(β − α), if α < x ≤ β,
1, if x > β.

f(x) =

½
1/(β − α), if α < x ≤ β,
0, otherwise,

p. 5-14
• Exponential Distribution

For >0, the function

is a pdf since (1) f(x) ≥ 0 for all x ∈ R, and (2)

 The distribution of a random variable X with this pdf is 
called the exponential distribution with parameter .

f(x) =

½
λe−λx, if x ≥ 0,
0, if x < 0,

R∞
−∞ f(x) dx =

R∞
0 λe−λx dx = −e−λx

¯̄∞
0
= 1.

The cdf of an exponential r.v. is F(x)=0 for x < 0, and for x≥0,

F (x) = P (X ≤ x) = R x0 λe−λy dy = −e−λy
¯̄x
0
= 1− e−λx.

Theorem. The mean and variance of an exponential distribution 
with parameter  are 

μ = 1/λ and σ2 = 1/λ2.

E(X) =
R∞
0
xλe−λxdx =

R∞
0

y
λ
(λe−y) 1

λ
dy

= 1
λ

R∞
0
ye−ydy = 1

λ
Γ(2) = 1

λ
.

E(X2) =
R∞
0
x2λe−λxdx =

R∞
0

¡
y
λ

¢2
(λe−y) 1λdy

= 1
λ2

R∞
0
y2e−ydy = 1

λ2
Γ(3) = 2

λ2
.

Proof.
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     

 The exponential distribution is often used to model the length 
of time until an event occurs

The parameter  is called the rate and is the average 
number of events that occur in unit time. This gives an 
intuitive interpretation of E(X)=1/.

Some properties
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The rate parameter  is the same for both the Poisson and 
exponential random variable.

The exponential distribution can be thought of as the 
continuous analogue of the geometric distribution.

 Theorem (relationship between exponential, gamma, and 
Poisson distributions, Sec. 9.1). Let

1. T1, T2, T3, …, be independent and ~ exponential(), 

2. Sk=T1++Tk, k=1, 2, 3, …,

3. Xi be the number of Sk’s that falls in the time interval 
(ti1, ti], i=1, …, m. 

Then, (i) X1, …, Xm are independent, 

(ii) Xi~Poisson((ti– ti1)),

(iii) Sk ~ Gamma(k, ). 

(iv) The reverse statement is also true.

 Theorem. The exponential distribution (like the geometric 
distribution) is memoryless, i.e., for s, t ≥ 0,
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Summary for X ~  Exponential()
 Pdf:

 Cdf:

 Parameters:  
 Mean: E(X)= 1/
 Variance: Var(X)= 1/2.

F (x) =

½
1− e−λx, if x ≥ 0,
0, if x < 0.

f(x) =

½
λe−λx, if x ≥ 0,
0, if x < 0.

This means that the distribution of the waiting time to the 
next event remains the same regardless of how long we 
have already been waiting.

This only happens when events occur (or not) totally at 
random, i.e., independent of past history.

Notice that it does not mean the two events {X > s+t} 
and {X > t} are independent.

p. 5-18• Gamma Distribution
Gamma Function

 Definition. For  > 0, the gamma function is defined as

 (1) = 1 and (1/2) =          (exercise)
 (+1) = ()

Proof. By integration by parts,
Γ(α + 1) =

R∞
0
xαe−x dx

= −xαe−x|∞0 +
R∞
0

αxα−1e−x dx = αΓ(α).

Γ(α) =
R∞
0 xα−1e−x dx.

Γ(α/2) =
√
π(α−1)!

2α−1(α−12 )!

 ()=(1)! if  is an integer

 if  is an odd integer

 Gamma function is a generalization of the factorial functions
For , >0, the function

f(x) =

½
λα

Γ(α)x
α−1e−λx, if x ≥ 0,

0, if x < 0,
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is a pdf since (1) f(x) ≥ 0 for all x ∈ R, and (2)

The distribution of a random variable X with this pdf is 
called the gamma distribution with parameters  and .

The cdf of gamma distribution can be expressed in terms of the 
incomplete gamma function, i.e., F(x)=0 for x<0, and for x ≥ 0,

Theorem. The mean and variance of a gamma distribution with 
parameter  and  are 

μ = α/λ and σ2 = α/λ2.

F (x) =
R x
0

λα

Γ(α)
yα−1e−λydy = 1

Γ(α)

R λx
0
zα−1e−zdz ≡ γ(α,λx)

Γ(α)
.

R∞
−∞ f(x) dx =

R∞
0

λα

Γ(α)x
α−1e−λx dx

= 1
Γ(α)

R∞
0
yα−1e−y dy = 1.

Proof. E(X) =
R∞
0
x λα

Γ(α)x
α−1e−λx dx

= λα

Γ(α)
Γ(α+1)
λα+1

R∞
0

λα+1

Γ(α+1)
x(α+1)−1e−λx dx = α

λ
.

E(X2) =
R∞
0
x2 λα

Γ(α)x
α−1e−λx dx

= λα

Γ(α)
Γ(α+2)
λα+2

R∞
0

λα+2

Γ(α+2)
x(α+2)−1e−λx dx = α(α+1)

λ2
.
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Some properties
 The gamma distribution can be used to 

model the waiting time until a number of 
random events occurs
When =1, it is exponential()
 T1, …, Tn: independent exponential() 

r.v.’s  T1++ Tn ~ Gamma(n, )
Gamma distribution can be thought of as a continuous 

analogue of the negative binomial distribution
A summary

 (exercise) E(Xk) = Γ(α+k)
λkΓ(α)

, for 0 < k, and

E( 1
Xk ) =

λkΓ(α−k)
Γ(α) , for 0 < k < α.

Discrete Time 
Version

Continuous Time 
Version

number of events binomial Poisson
waiting time until 

1 event occurs geometric exponential

waiting time until 
r events occur negative binomial gamma

  is called shape parameter and  scale parameter (Q: how to 
interpret  and  from the viewpoint of waiting time?)
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 A special case of the gamma distribution occurs when 
=n/2 and =1/2 for some positive integer n. This is known 
as the Chi-squared distribution with n degrees of freedom 
(Chapter 6)

Summary for X ~ Gamma(, )
 Pdf:

 Cdf:
 Parameters: ,  
 Mean: E(X) = /
 Variance: Var(X) = /2.

F (x) = γ(α, λx)/Γ(α).

f(x) =

½
λα

Γ(α)
xα−1e−λx, if x ≥ 0,

0, if x < 0.

• Beta Distribution
Beta Function: 

For ,  > 0, the function

f(x) =

(
Γ(α+β)
Γ(α)Γ(β)x

α−1(1− x)β−1, if 0 ≤ x ≤ 1,
0, otherwise,

B(α, β) =
R 1
0
xα−1(1− x)β−1 dx = Γ(α)Γ(β)

Γ(α+β) .

is a pdf (exercise).
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The distribution of a random variable X with this pdf is 

called the beta distribution with parameters  and .

The cdf of beta distribution can be expressed in terms of the 
incomplete beta function, i.e., F(x)=0 for x<0, F(x)=1 for x>1, 
and for 0 ≤ x ≤ 1,

Theorem. The mean and variance of a beta distribution with 
parameters  and  are 

μ = α
α+β and σ2 = αβ

(α+β)2(α+β+1) .

E(X) =
R∞
0
x Γ(α+β)Γ(α)Γ(β)x

α−1(1− x)β−1 dx
= Γ(α+β)

Γ(α)Γ(β)
Γ(α+1)Γ(β)
Γ(α+β+1)

R∞
0

Γ(α+β+1)
Γ(α+1)Γ(β)

x(α+1)−1(1− x)β−1 dx
= α

α+β .

Proof.
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E(X2) =
R∞
0
x2 Γ(α+β)Γ(α)Γ(β)x

α−1(1 − x)β−1 dx
= Γ(α+β)

Γ(α)Γ(β)
Γ(α+2)Γ(β)
Γ(α+β+2)

R∞
0

Γ(α+β+2)
Γ(α+2)Γ(β)

x(α+2)−1(1− x)β−1 dx
= α(α+1)

(α+β)(α+β+1) .

Some properties
 When ==1, the beta distribution is 

the same as the uniform(0, 1).
 Whenever =, the beta distribution is 

symmetric about x=0.5, i.e., 
f(0.5)=f(0.5+).

As the common value of  and 
increases, the distribution becomes 
more peaked at x=0.5 and there is 
less probability outside of the 
central portion.

 When >, values close to 0 become more likely than those 
close to 1; when <, values close to 1 are more likely than 
those close to 0 (Q: How to connect it with E(X)?)
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 Pdf:

 Cdf:
 Parameters: ,  
 Mean: E(X) = /( + 
 Variance: Var(X) = [ /[   .

F (x) = B(x;α, β)/B(α, β).

f(x) =

(
Γ(α+β)
Γ(α)Γ(β)

xα−1(1− x)β−1, if 0 ≤ x ≤ 1,
0, otherwise,

• Normal Distribution
For ∈R and >0, the function

is a pdf since (1) f(x) ≥ 0 for all x ∈ R, and (2)

f(x) = 1√
2πσ

e−
(x−μ)2
2σ2 , −∞ < x <∞,

and

R∞
−∞

1√
2πσ

e−
(x−μ)2
2σ2 dx = 1√

2π

R∞
−∞ e

− y2

2 dy ≡ I√
2π
,

I2 =
³R∞
−∞ e

− x2

2 dx
´³R∞

−∞ e
− y2

2 dy
´

=
R∞
−∞

R∞
−∞ e

− x2+y2

2 dxdy =
R∞
0

R 2π
0 e−

r2

2 r dθdr

= 2π
R∞
0
re−

r2

2 dr = −2πe− r2

2

¯̄̄∞
0
= 2π.
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 The distribution of a random variable X
with this pdf is called the normal (Gaussian) 
distribution with parameters  and , 
denoted by N(, 2).

 The normal pdf is a bell-shaped curve. 
 It is symmetric about the point , i.e., 
f(+)=f() and falls off in the rate 
determined by . 

The pdf has a maximum at  can be 
shown by differentiation and the 
maximum height is 

Theorem. The mean and variance of a N(, 2) distribution are 
 and 2, respectively.

The cdf of normal distribution does not have a close form. 

E(X) =
R∞
−∞ x

1√
2πσ
e−

(x−μ)2
2σ2 dx =

R∞
−∞(σy + μ) 1√

2π
e−

y2

2 dy

= σ√
2π

R∞
−∞ ye

− y2

2 dy+ μ
R∞
−∞

1√
2π
e−

y2

2 dy

= σ√
2π
· 0 + μ · 1 = μ.

Proof. 

 : location parameter; 2: scale parameter
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E(X2) =
R∞
−∞ x

2 1√
2πσ

e−
(x−μ)2
2σ2 dx =

R∞
−∞(σy + μ)2 1√

2π
e−

y2

2 dy

= σ2
R∞
−∞ y

2 1√
2π
e−

y2

2 dy + 2μσ√
2π

R∞
−∞ ye

− y2

2 dy

+μ2
R∞
−∞

1√
2π
e−

y2

2 dy

= σ2 · 1 + 2μσ√
2π
· 0 + μ2 · 1 = σ2 + μ2.

Some properties

 Normal distribution is one of the most widely used 
distribution. It can be used to model the distribution of many 
natural phenomena. 

 Theorem. Suppose that X~N(, 2). The random variable 
Y=aX+b, where a0, is also normally distributed with 
parameters a+b and a22, i.e., Y~N(a+b, a22).

Proof.
fY (y) = fX

³
y−b
a

´
1
|a| =

1√
2π|a|σe

− [y−(aμ+b)]2
2σ2a2 .
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 The N(0, 1) distribution is very important since properties of 
any other normal distributions can be found from those of the 
standard normal. 

Theorem. Suppose that X~N(, 2). The cdf of X is

Proof. FX(x) = FZ
¡
x−μ
σ

¢
= Φ

¡
x−μ
σ

¢
.

FX(x) = Φ
¡
x−μ
σ

¢
.

Corollary. If X~N(, 2), then 

is a normal random variable with parameters 0 and 1, i.e., 
N(0, 1), which is called standard normal distribution.

Example. Suppose that X~N(, 2). For ∞<a<b<∞, 

P (a < X < b) = P
³
a−μ
σ < X−μ

σ < b−μ
σ

´
= P

³
a−μ
σ < Z < b−μ

σ

´
= P

³
Z < b−μ

σ

´
− P ¡Z < a−μ

σ

¢
= Φ

³
b−μ
σ

´
− Φ ¡a−μσ ¢

.

The cdf of N(0, 1) is usually denoted by .
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  

Table 5.1 (textbook, p.201) gives values of . To read the 
table:

1.Find the first value of z up to the first place of decimal 
in the left hand column.

2.Find the second place of decimal across the top row.
3.The value of (z) is where the row from the first step 

and the column from the second step intersect.

 For the values greater than z=3.49, (z) ≈ 1.

 For negative values of z, use (z)=1(z)
 Normal distribution plays a central role in the limit theorems 

of probability (e.g., CLT, chapter 8)
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Normal approximation to the Binomial

 Recall. Poisson approximation to Binomial
 Theorem. Suppose that Xn~binomial(n, p). Define

Then, as n→∞, the distribution of Zn converge to the N(0, 1) 
distribution, i.e.,
Proof. It is a special case of the CLT in Chapter 8.

FZn(z) = P (Zn ≤ z)→ Φ(z).

Plot the pmf of Xn~binomial(n, p)
Superimpose the pdf of Yn~N(n, n2) 

with n=np and n2= np(1p).
When n is sufficiently large, the 

normal pdf approximates the 
binomial pmf. 

 Zn (Ynn)/n

Zn = (Xn − np)/ np(1− p).

The size of n to achieve a good approximation depends on 
the value of p.
 For p near 0.5  moderate n is enough
 For p close to zero or one  require much larger n
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 Continuity Correction

 Q: Why need continuity correction? Ans. The 
binomial(n, p) is a discrete random variable and we are 
approximating it with a continuous random variable.
 For example, suppose X~binomial(50, 0.4) and we 

want to find P(X=18), which is larger than 0. 
 With the normal pdf, however, P(Y=18)=0 since we 

are using a continuous distribution
 Instead, we make a continuity correction,

and can obtain the approximate value from Table 5.1.

Similary, 

and 
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Summary for X ~ Normal(, )
 Pdf:

 Cdf: no close form, but usually denoted by ((x)/).
 Parameters: ∈R and >0
 Mean: E(X) = 
 Variance: Var(X) = 2.

f(x) = 1√
2πσ
e−

(x−μ)2
2σ2 , −∞ < x <∞,

• Weibull Distribution
For , >0 and ∈R, the function

f(x) =
β
α

x−ν
α

β−1
e−(

x−ν
α )

β

, if x ≥ ν,
0, if x < ν,

is a pdf since (1) f(x) ≥ 0 for all x ∈ R, and (2)
∞
−∞ f(x) dx =

∞
ν

β
α

x−ν
α

β−1
e−(

x−ν
α )

β

dx

=
∞
0
e−y dy = −e−y|∞0 = 1.
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The distribution of a random variable X with this pdf is 

called the Weibull distribution with parameters , and  .
(exercise) The cdf of Weibull distribution is

F (x) = 1− e−( x−να )
β

, if x ≥ ν,
0, if x < ν.

Theorem. The mean and variance of a Weibull distribution with 
parameter , and  are 

μ = αΓ 1 + 1
β + ν and

σ2 = α2 Γ 1 + 2
β − Γ 1 + 1

β

2

.

E(X) =
∞
v
x · β

α
x−ν
α

β−1
e−(

x−ν
α )

β

dx

=
∞
0
(αy1/β + μ)e−y dy

= α
∞
0 y1/βe−y dy + μ

∞
0 e−y dy = αΓ 1

β + 1 + μ

Proof.

E(X2) =
∞
v
x2 · β

α
x−ν
α

β−1
e−(

x−ν
α )

β

dx

=
∞
0
(αy1/β + μ)2e−y dy

= α2
∞
0
y2/βe−y dy + 2αμ ∞

0
y1/βe−y dy + μ2

∞
0
e−y dy

= α2Γ 2
β
+ 1 + 2αμΓ 1

β
+ 1 + μ2
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Some properties

 Weibull distribution is widely used to 
model lifetime.

 : scale parameter; : shape parameter; 
: location parameter

 Theorem. If X~exponential(), then 

is distributed as Weibull with parameter , , and  (exercise).
Y = α (λX)

1/β
+ μ

• Cauchy Distribution
For ∈R and >0, the function

f(x) = σ
π

1
σ2+(x−μ)2 , −∞ < x <∞,

is a pdf since (1) f(x) ≥ 0 for all x ∈ R, and (2)

The distribution of a random variable X with this pdf is 
called the Cauchy distribution with parameters  and , 
denoted by Cauchy(, ).

∞
−∞ f(x) dx =

∞
−∞

σ
π

1
σ2+(x−μ)2 dx

=
∞
−∞

1
π

1
1+y2 dy =

1
π tan

−1(y)
∞
−∞ = 1.
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The mean and variance of Cauchy distribution do not exist 
because the integral does not converge absolutely
Some properties

Cauchy is a heavy tail distribution
 : location parameter; : scale parameter
Theorem. If X~Cauchy(, ), then 
aX+b~Cauchy(a+b, |a|). (exercise)

The cdf of Cauchy distribution is

for ∞<x<∞. (exercise)

 Reading: textbook, Sec 5.4, 5.5, 5.6

F (x) =
x

−∞
σ
π

1
σ2+(y−μ)2 dy =

1
2 +

1
π tan

−1 x−μ
σ


