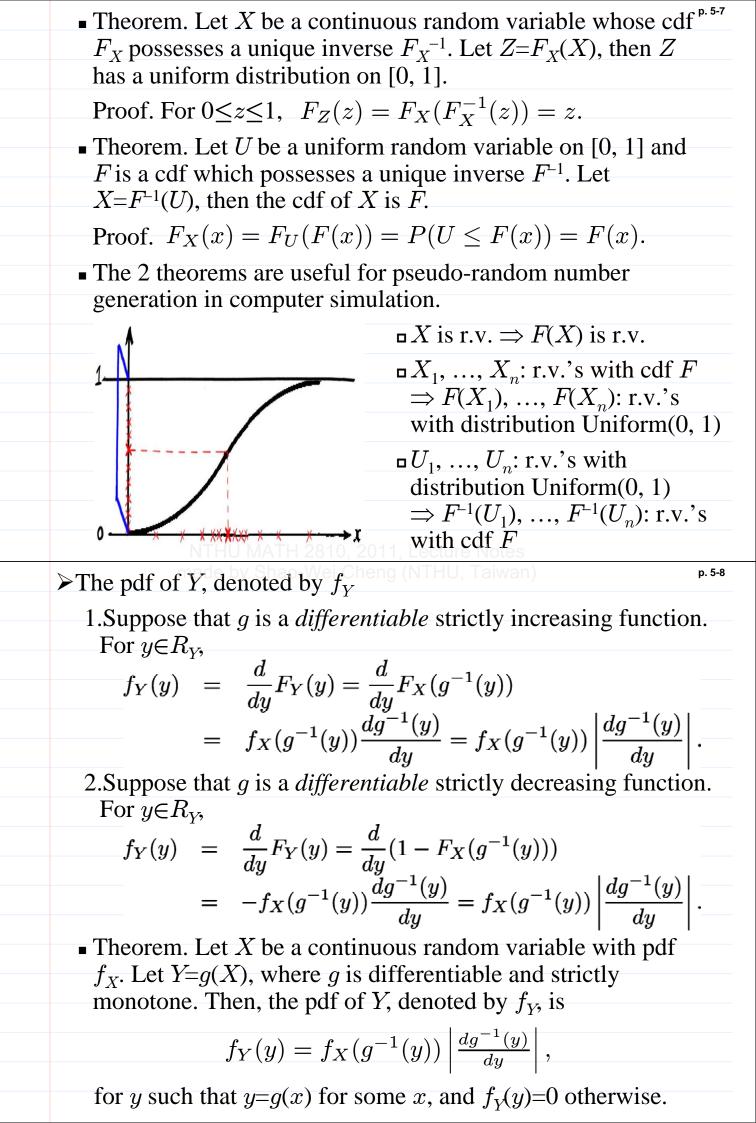
Continuous Random Variables

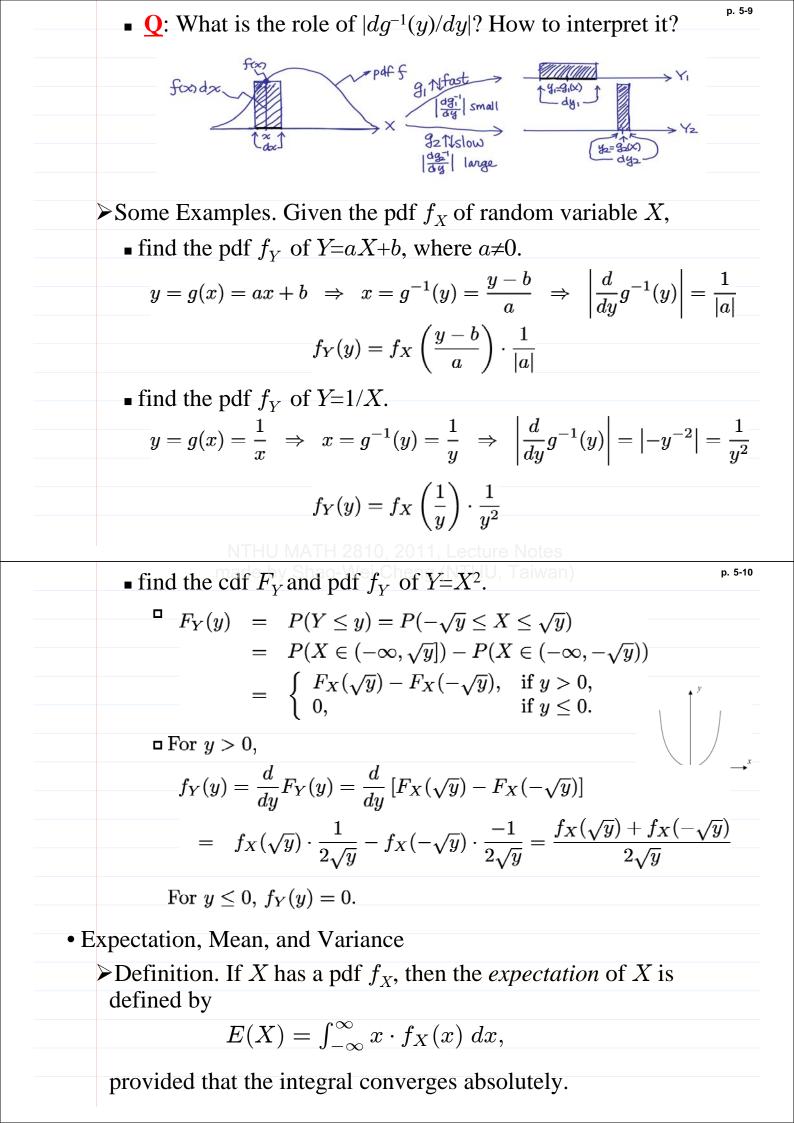
• <u>Recall</u> : For <i>discrete</i> random variables, only a <i>finite</i> or <i>countably infinite</i> number of possible values with positive probability.
➢Often, there is interest in random variables that can take (at least theoretically) on an <i>uncountable</i> number of possible values, e.g.,
the weight of a randomly selected person in a population,
the length of time that a randomly selected light bulb works,
the error in experimentally measuring the speed of light.
Example (Uniform Spinner, LNp.2-14):
• $\Omega = (-\pi, \pi]$
• For $(a, b] \subset \Omega$, $P((a, b]) = b - a/(2\pi)$
 Consider the random variables:
$X: \Omega \to \mathbb{R}$, and $X(\omega) = \omega$ for $\omega \in \Omega$,
$Y: \Omega \to \mathbb{R}$, and $Y(\omega) = tan(\omega)$ for $\omega \in \Omega$.
Then, X and Y are random variables that takes on an uncountable number of possible values.
■ Notice that: p. 5-2
• Notice that: $P_X(\{X = x\}) = 0, \text{ for any } x \in \mathbb{R},$
■ Notice that:
• Notice that: $\square P_X(\{X = x\}) = 0, \text{ for any } x \in \mathbb{R},$
Notice that: $\Box P_X(\{X = x\}) = 0, \text{ for any } x \in \mathbb{R},$ $\Box But, \text{ for } -\pi \leq a < b \leq \pi,$
• Notice that: $\Box P_X(\{X = x\}) = 0, \text{ for any } x \in \mathbb{R},$ $\Box But, \text{ for } -\pi \leq a < b \leq \pi,$ $P_X(\{X \in (a, b]\}) = P((a, b]) = b - a/(2\pi) > 0.$
Notice that: $\square P_X(\{X = x\}) = 0, \text{ for any } x \in \mathbb{R},$ $\square But, \text{ for } -\pi \leq a < b \leq \pi,$ $P_X(\{X \in (a, b]\}) = P((a, b]) = b - a/(2\pi) > 0.$ $Q: \text{ Can we still define a probability mass function for } X? \text{ If }$
Notice that: $P_X(\{X = x\})=0, \text{ for any } x \in \mathbb{R},$ $But, \text{ for } -\pi \leq a < b \leq \pi,$ $P_X(\{X \in (a, b]\})=P((a, b]) = b-a/(2\pi) > 0.$ Q: Can we still define a probability mass function for X? If not, what can play a <i>similar</i> role like pmf for X?
 Notice that: □ P_X({X = x})=0, for any x ∈ R, □ But, for -π ≤a<b≤π,< li=""> P_X({X ∈ (a, b]})=P((a, b]) = b-a/(2π) > 0. Q: Can we still define a probability mass function for X? If not, what can play a <i>similar</i> role like pmf for X? Probability Density Function and Continuous Random Variable > Definition. A function f: R→R is called a probability density function (pdf) if 1. f(x) ≥ 0, for all x∈(-∞, ∞), and </b≤π,<>
 Notice that: □ P_X({X = x})=0, for any x ∈ R, □ But, for -π ≤a<b≤π,< li=""> P_X({X ∈ (a, b]})=P((a, b]) = b-a/(2π) > 0. Q: Can we still define a probability mass function for X? If not, what can play a <i>similar</i> role like pmf for X? Probability Density Function and Continuous Random Variable > Definition. A function f: R→R is called a probability density function (pdf) if </b≤π,<>
 Notice that: □ P_X({X = x})=0, for any x ∈ R, □ But, for -π ≤a<b≤π,< li=""> P_X({X ∈ (a, b]})=P((a, b]) = b-a/(2π) > 0. Q: Can we still define a probability mass function for X? If not, what can play a <i>similar</i> role like pmf for X? Probability Density Function and Continuous Random Variable > Definition. A function f: R→R is called a probability density function (pdf) if f(x) ≥ 0, for all x∈(-∞, ∞), and ∫[∞]_{-∞} f(x)dx = 1. </b≤π,<>
 Notice that: □ P_X({X = x})=0, for any x ∈ R, □ But, for -π ≤a<b≤π,< li=""> P_X({X ∈ (a, b]})=P((a, b]) = b-a/(2π) > 0. Q: Can we still define a probability mass function for X? If not, what can play a <i>similar</i> role like pmf for X? Probability Density Function and Continuous Random Variable > Definition. A function f: R→R is called a probability density function (pdf) if 1. f(x) ≥ 0, for all x∈(-∞, ∞), and </b≤π,<>

• For example, $P_X(a \le X \le b) = \int_a^b f(x) dx$.

Theorem. If f is a pdf, then there must exist a continuous random variable with pdf f .
Some properties
• $P_X({X = x}) = \int_x^x f(y)dy = 0$ for any $x \in \mathbb{R}$
• It does not matter if the intervals are open or close, i.e.,
$P(X \in [a, b]) = P(X \in (a, b]) = P(X \in [a, b]) = P(X \in (a, b)).$
 It is important to remember that the value a pdf f(x) is NOT a probability itself
It is quite possible for a pdf to have value greater than 1
• Q : How to interpret the value of a pdf $f(x)$? For small dx ,
$P\left(x - \frac{dx}{2} \le X \le x + \frac{dx}{2}\right) = \int_{x - \frac{dx}{2}}^{x + \frac{dx}{2}} f(y) dy \approx f(x) \cdot dx.$
$\Rightarrow f(x)$ is a measure of how likely it is that X will be near x
We can characterize the distribution of a continuous random variable in terms of its
1.Probability Density Function (pdf)
2.Cumulative Distribution Function (cdf)3.Moment Generating Function (mgf, Chapter 7)
millo WATE 2010, 2011, Leeture Notes
• Relation between the pdf and the cdf
Theorem. If F_X and f_X are the cdf and the pdf of a continuous random variable X, respectively, then
• $F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(y) dy$ for all $-\infty < x < \infty$
• $f_X(x) = F'_X(x) = \frac{d}{dx}F_X(x)$ at continuity points of f_X
Some Notes
• For $-\infty \le a < b \le \infty$
$P(a < X \le b) = F_X(b) - F_X(a) = \int_a^b f_X(x) dx.$
• The cdf for continuous random variables has
the same interpretation and properties as in $\begin{bmatrix} 1.00\\0.80\\0.60\end{bmatrix}$
the discrete case
• The only difference is in plotting F_X . In the discrete case, there are <i>jumps</i> . In the continuous case, F_X is a <i>continuous</i> non-decreasing function.
deereasing runeuon.

$$\begin{array}{l} \textbf{Figure (Uniform Distributions)} & \textbf{if} \quad \textbf{a} \quad \textbf{a} \quad \textbf{b} \quad \textbf{b} \quad \textbf{b} \quad \textbf{c} \quad$$





• Example (Uniform Distributions). If

$$f_X(x) = \begin{cases} \frac{1}{\beta-\alpha}, & \text{if } \alpha < x \le \beta, & \text{otherwise,} \\ 0, & \text{otherwise,} & \\ 1 = \\ E(X) = \int_{\alpha}^{\beta} x \cdot \frac{1}{\beta-\alpha} dx = \frac{1}{2} \cdot \frac{x^2}{\beta-\alpha} \Big|_{\alpha}^{\beta} & \\ = \frac{1}{2} \cdot \frac{\beta^2 - \alpha^2}{\beta - \alpha} = \frac{\alpha + \beta}{2}. \end{cases}$$
Some properties of expectation
• Expectation of Transformation. If $Y=g(X)$, then
 $E(Y) = \int_{-\infty}^{\infty} y \cdot f_Y(y) dy = \int_{-\infty}^{\infty} g(x) \cdot f_X(x) dx, \text{provided that the integral converges absolutely. proof. (homework)
• Expectation of Linear Function. $E(aX+b)=a \cdot E(X)+b$, since $E(aX+b) = \int_{-\infty}^{\infty} (ax+b)f_X(x) dx + \int_{-\infty}^{\infty} f_X(x) dx = a \int_{-\infty}^{\infty} x \cdot f_X(x) dx + b \int_{-\infty}^{\infty} f_X(x) dx = a \cdot E(X) + b. \end{cases}$
Poefinition. If X has a pdf f_X , then the expectation of X is also^{p-som} called the *mean* of X or f_X and denoted by μ_X , so that $\mu_X = E(X) = \int_{-\infty}^{\infty} x \cdot f_X(x) dx.$
The variance of X is defined as $Var(X) = E[(X - \mu_X)^2] = \int_{-\infty}^{\infty} (x - \mu_X)^2 \cdot f_X(x) dx,$ and denoted by σ_X^2 . The σ_X is called the standard deviation.
>Some properties of mean and variance
• The mean and variance for continuous random variables have the same intuitive interpretation as in the discrete case.
• $Var(X) = E(X) - [E(X)]^2$
• Variance of Linear Function. $Var(aX+b)=a^2 \cdot Var(X)$
• Theorem. For a nonnegative continuous random variables have the same intuitive interpretation as in the discrete case.
• $Var(X) = E(X) - [E(X)]^2$
• Variance of Linear Function. $Var(aX+b)=a^2 \cdot Var(X)$
• Theorem. For a nonnegative continuous random variables have the same intuitive interpretation as in the discrete case.
• $Var(X) = E(X) - [E(X)]^2$
• Variance of $\int_{0}^{\infty} f_X \cdot f_X(x) dx$
 $= \int_{0}^{\infty} \int_{0}^{\infty} f_X(x) dt dx$
 $= \int_{0}^{\infty} \int_{0}^{\infty} f_X(x) dt dx$$

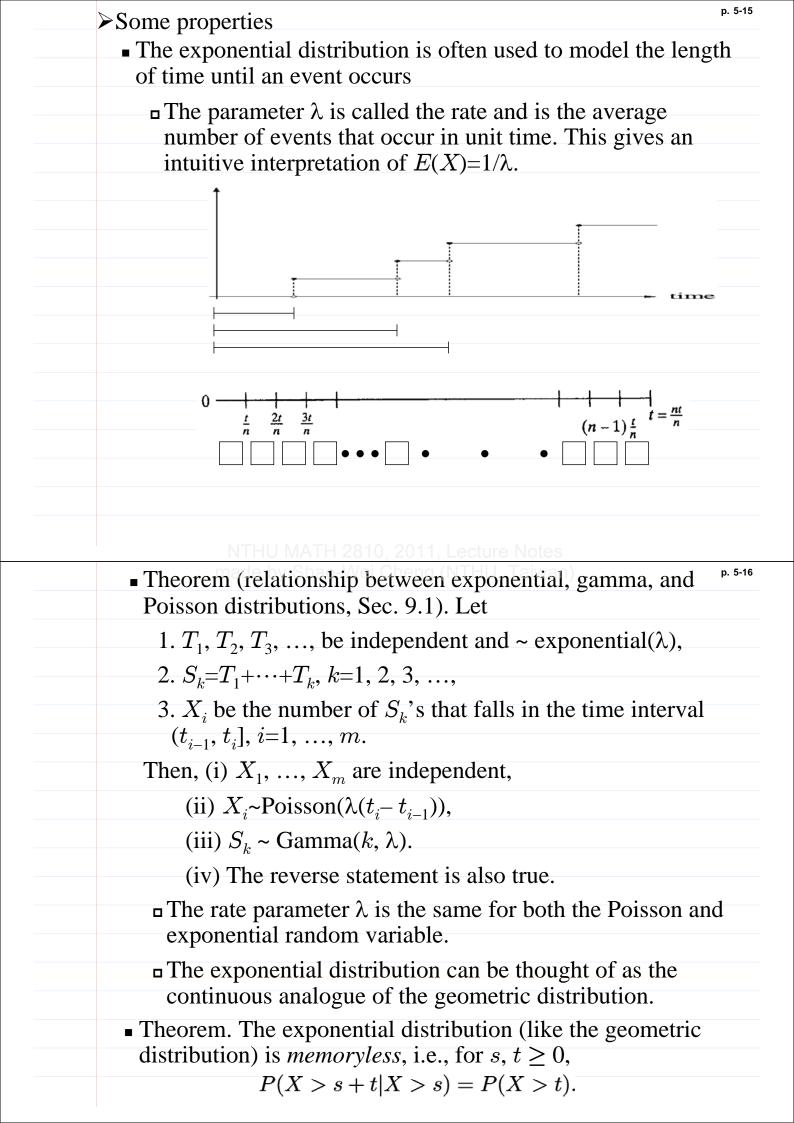
• 1

.

. •

`

p. 5-13 Example (Uniform Distributions) $E(X^2) = \int_{-\infty}^{\infty} \frac{x^2}{\beta - \alpha} dx = \left. \frac{1}{3} \frac{x^3}{\beta - \alpha} \right|_{-\infty}^{\beta} = \frac{\beta^3 - \alpha^3}{3(\beta - \alpha)} = \frac{\beta^2 + \alpha\beta + \alpha^2}{3}.$ $Var(X) = E(X^{2}) - [E(X)]^{2} = \frac{\beta^{2} + \alpha\beta + \alpha^{2}}{3} - \left(\frac{\alpha + \beta}{2}\right)^{2}$ $= \frac{4(\beta^{2} + \alpha\beta + \alpha^{2}) - 3(\beta^{2} + 2\alpha\beta + \alpha^{2})}{12} = \frac{(\beta - \alpha)^{2}}{12}.$ Reading: textbook, Sec 5.1, 5.2, 5.3, 5.7 **Some Common Continuous Distributions** Uniform Distribution Summary for $X \sim \text{Uniform}(\alpha, \beta)$ • Pdf: $f(x) = \begin{cases} 1/(\beta - \alpha), & \text{if } \alpha < x \le \beta, \\ 0, & \text{otherwise,} \end{cases}$ • Cdf: $F(x) = \begin{cases} 0, & \text{if } x \le \alpha, \\ (x - \alpha)/(\beta - \alpha), & \text{if } \alpha < x \le \beta, \\ 1, & \text{if } x > \beta. \end{cases}$ • Parameters: $-\infty < \alpha < \beta < \infty$ • Mean: $E(X) = (\alpha + \beta)/2$ • Variance: $Var(X) = (\beta - \alpha)^2/12$ p. 5-14 • Exponential Distribution For $\lambda > 0$, the function $f(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \ge 0, \\ 0, & \text{if } x < 0, \end{cases}$ $\lambda = .5 \text{ (solid)}$ $\lambda = 1 \text{ (dotted)}, \lambda = 2 \text{ (dashed)}. \end{cases}$ is a pdf since (1) $f(x) \ge 0$ for all $x \in \mathbb{R}$, and (2) $\int_{-\infty}^{\infty} f(x) \, dx = \int_{0}^{\infty} \lambda e^{-\lambda x} \, dx = -e^{-\lambda x} \Big|_{0}^{\infty} = 1$ • The distribution of a random variable X with this pdf is called the *exponential* distribution with parameter λ . The cdf of an exponential r.v. is F(x)=0 for x < 0, and for x > 0, $F(x) = P(X \le x) = \int_0^x \lambda e^{-\lambda y} \, dy = -e^{-\lambda y} \Big|_0^x = 1 - e^{-\lambda x}.$ > Theorem. The mean and variance of an exponential distribution with parameter λ are $\mu = 1/\lambda$ and $\sigma^2 = 1/\lambda^2$. $E(X) = \int_0^\infty x \lambda e^{-\lambda x} dx = \int_0^\infty \frac{y}{\lambda} (\lambda e^{-y}) \frac{1}{\lambda} dy$ Proof. $= \frac{1}{\lambda} \int_0^\infty y e^{-y} dy = \frac{1}{\lambda} \Gamma(2) = \frac{1}{\lambda}$ $E(X^2) = -\int_0^\infty x^2 \lambda e^{-\lambda x} dx = \int_0^\infty \left(\frac{y}{\lambda}\right)^2 (\lambda e^{-y}) \frac{1}{\lambda} dy$ $= \frac{1}{\lambda^2} \int_0^\infty y^2 e^{-y} dy = \frac{1}{\lambda^2} \Gamma(3) = \frac{2}{\lambda^2}.$



Proof.

$$P(X > s + t|X > s) = \frac{P((X > s + t|) \cap \{X > t\})}{P((X > s))} = \frac{P((X > s + t|))}{P((X > s))}$$

$$= \frac{1 - F_X(s + t)}{P((X > s))} = \frac{P(X > t + t)}{P((X > s))}$$

$$= \frac{1 - F_X(s + t)}{P((X > s))} = \frac{P(X > t + t)}{P((X > s))}$$

$$= \frac{1 - F_X(s + t)}{P((X > s))} = \frac{P(X > t + t)}{P((X > s))}$$

$$= \frac{1 - F_X(s + t)}{P((X > s))} = \frac{P(X > t + t)}{P((X > s))}$$

$$= \frac{1 - F_X(s + t)}{P((X > s))} = \frac{P(X > t + t)}{P((X > s))}$$

$$= \frac{1 - F_X(s + t)}{P((X > s))} = \frac{P(X > t + t)}{P((X > s))}$$

$$= \frac{1 - F_X(s + t)}{P((X > s))} = \frac{P(X > t + t)}{P((X > s))}$$

$$= \frac{1 - F_X(s + t)}{P((X > s))} = \frac{P(X > t + t)}{P((X > s))}$$

$$= \frac{1 - F_X(s + t)}{P((X > s))} = \frac{P(X > t + t)}{P((X > s))}$$

$$= \frac{1 - F_X(s + t)}{P((X > s))} = \frac{P(X > t + t)}{P((X > s))}$$

$$= \frac{1 - F_X(s + t)}{P((X > s))} = \frac{P(X > t + t)}{P((X > s))}$$

$$= \frac{1 - F_X(s + t)}{P((X > s))} = \frac{P(X > t + t)}{P((X > s))}$$

$$= \frac{1 - F_X(s + t)}{P((X > s))} = \frac{P(X > t + t)}{P((X > s))}$$

$$= \frac{1 - F_X(s + t)}{P((X > s))} = \frac{P(X > t + t)}{P((X > s))}$$

$$= \frac{1 - F_X(s + t)}{P((X > s))} = \frac{P(X > t + t)}{P((X > s))}$$

$$= \frac{1 - F_X(s + t)}{P(X > t + t)} = \frac{1 - F_X(s + t)}{P(X > t + t)}$$

$$= \frac{1 - F_X(s + t)}{P(X > t + t)} = \frac{1 - F_X(s + t)}{P(X > t + t)}$$

$$= \frac{1 - F_X(s + t)}{P(X > t + t)} = \frac{1 - F_X(s + t)}{P(X > t + t)}$$

$$= \frac{1 - F_X(s + t)}{P(X > t + t)} = \frac{1 - F_X(s + t)}{P(X > t + t)}$$

$$= \frac{1 - F_X(s + t)}{P(X > t + t)} = \frac{1 - F_X(s + t)}{P(X > t + t)}$$

$$= \frac{1 - e^{-\lambda x}}{P(X > t + t)} = \frac{1 - e^{-\lambda x}}{P(X > t + t)}$$

$$= \frac{1 - e^{-\lambda x}}{P(X > t + t)} = \frac{1 - e^{-\lambda x}}{P(X > t + t)}$$

$$= \frac{1 - e^{-\lambda x}}{P(X > t + t)} = \frac{1 - e^{-\lambda x}}{P(X > t + t)}$$

$$= \frac{1 - e^{-\lambda x}}{P(X > t + t)} = \frac{1 - e^{-\lambda x}}{P(X > t + t)} = \frac{1 - e^{-\lambda x}}{P(X > t + t)}$$

$$= \frac{1 - e^{-\lambda x}}{P(X > t + t)} = \frac{1 - e^{-\lambda x}}{P(X > t + t)}$$

$$= \frac{1 - e^{-\lambda x}}{P(X > t + t)} = \frac{1 - e^{-\lambda x}}{P(X > t + t)}$$

$$= \frac{1 - e^{-\lambda x}}{P(X > t + t)} = \frac{1 - e^{-\lambda x}}{P(X > t + t)}$$

$$= \frac{1 - e^{-\lambda x}}{P(X > t + t)} = \frac{1 - e^{-\lambda x}}{P(X > t + t)}$$

$$= \frac{1 - e^{-\lambda x}}{P(X > t + t)}$$

$$= \frac{1 - e^{-\lambda x}}{P(X > t + t)}$$

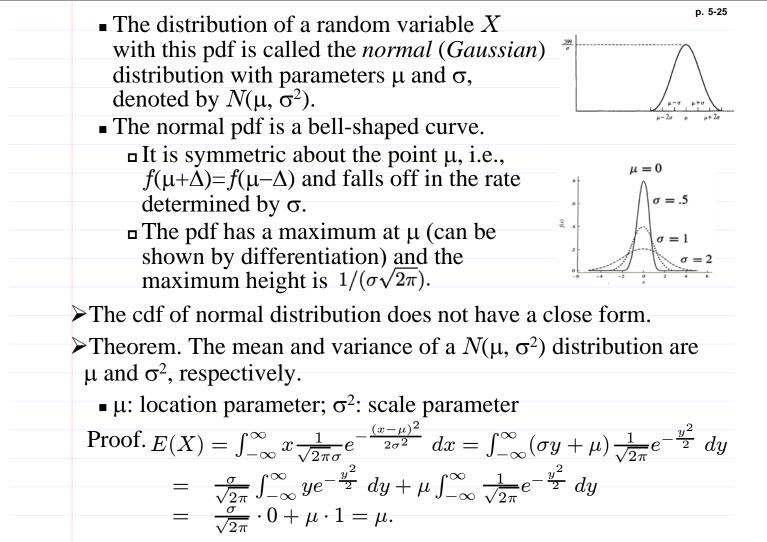
$$=$$

is a pdf since (1)
$$f(x) \ge 0$$
 for all $x \in \mathbb{R}$, and (2)

$$\int_{-\infty}^{\infty} f(x) dx = \int_{0}^{\infty} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} dx$$

$$= \frac{1}{\Gamma(\alpha)} \int_{0}^{0} y^{\alpha-1} e^{-y} dy = 1.$$
• The distribution of a random variable X with this pdf is
called the gamma distribution with parameters α and λ .
> The cdf of gamma distribution can be expressed in terms of the
incomplete gamma function, i.e., $F(x)=0$ for $x<0$, and for $x \ge 0$,
 $F(x) = \int_{0}^{x} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} y^{\alpha-1} e^{-\lambda y} dy = \frac{1}{\Gamma(\alpha)} \int_{0}^{\lambda x} z^{\alpha-1} e^{-z} dz \equiv \frac{\gamma(\alpha, \lambda x)}{\Gamma(\alpha)}.$
> Theorem. The mean and variance of a gamma distribution with
parameter α and λ are
 $\mu = \alpha/\lambda$ and $\sigma^2 = \alpha/\lambda^2$.
Proof. $E(X) = \int_{0}^{\infty} x \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} dx$
 $= \frac{\lambda^{\alpha}}{\Gamma(\alpha)} \frac{\Gamma(\alpha+2)}{(\alpha+1)} \int_{0}^{\infty} \frac{\lambda^{\alpha+1}}{\Gamma(\alpha+1)} x^{(\alpha+1)-1} e^{-\lambda x} dx = \frac{\alpha}{\lambda}.$
 $E(X^2) = \int_{0}^{\infty} x^2 \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} dx$
 $= \frac{\lambda^{\alpha}}{\Gamma(\alpha)} \frac{\Gamma(\alpha+2)}{\lambda^{\alpha+2}} \int_{0}^{\infty} \frac{\lambda^{\alpha+2}}{\Gamma(\alpha+2)} x^{(\alpha+2)-1} e^{-\lambda x} dx = \frac{\alpha(\alpha+1)}{\lambda^2}.$
NUMENTALLY OF OUTHOREMENTS
• (exercise) $E(X^k) = \frac{\Gamma(\alpha+k)}{\lambda^{k}\Gamma(\alpha)}$, for $0 < k$, and
 $E(\frac{1}{\lambda^k}) = \frac{\lambda^k \Gamma(\alpha-k)}{\Gamma(\alpha)}$, for $0 < k < \alpha$.
> Some properties
• The gamma distribution can be used to
model the waiting time until a number of
random events occurs
• When $\alpha=1$, it is exponential(λ)
 $x.v.'s $\Rightarrow T_1+\cdots+T_n \sim \text{Gamma}(n, \lambda)$
• Gamma distribution can be thought of as a continuous
analogue of the negative binomial distribution
• A summary Discrete Time Continuous Time
 $\frac{1}{\sqrt{1-1}} \frac{1}{\sqrt{1-1}} \frac{1}$$

p. 5-21 • A special case of the gamma distribution occurs when $\alpha = n/2$ and $\lambda = 1/2$ for some positive integer n. This is known as the Chi-squared distribution with n degrees of freedom (Chapter 6) Summary for $X \sim \text{Gamma}(\alpha, \lambda)$ $f(x) = \begin{cases} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}, & \text{if } x \ge 0, \\ 0, & \text{if } x < 0. \end{cases}$ Pdf: • Cdf: $F(x) = \gamma(\alpha, \lambda x) / \Gamma(\alpha)$. • Parameters: α , $\lambda > 0$. • Mean: $E(X) = \alpha/\lambda$. • Variance: $Var(X) = \alpha/\lambda^2$. Beta Distribution ► Beta Function: $B(\alpha,\beta) = \int_0^1 x^{\alpha-1} (1-x)^{\beta-1} dx = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$. For α , $\beta > 0$, the function $f(x) = \begin{cases} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}, & \text{if } 0 \le x \le 1, \\ 0, & \text{otherwise,} \end{cases}$ is a pdf (exercise). p. 5-22 • The distribution of a random variable X with this pdf is called the *beta* distribution with parameters α and β . \triangleright The cdf of beta distribution can be expressed in terms of the incomplete beta function, i.e., F(x)=0 for x<0, F(x)=1 for x>1, and for 0 < x < 1, $F(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \int_0^x y^{\alpha-1} (1-y)^{\beta-1} dy \equiv \frac{B(x;\alpha,\beta)}{B(\alpha,\beta)}.$ $= (\text{exercise}) \sum_{i=1}^{\alpha+\beta-1} \frac{(\alpha+\beta-1)!}{i!(\alpha+\beta-1-i)!} x^i (1-x)^{\alpha+\beta-1-i},$ for *integer values* of α and β Theorem. The mean and variance of a beta distribution with parameters α and β are $\mu = \frac{\alpha}{\alpha + \beta}$ and $\sigma^2 = \frac{\alpha \beta}{(\alpha + \beta)^2 (\alpha + \beta + 1)}$. Proof. $E(X) = \int_0^\infty x \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1} dx$ $= \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(\alpha+1)\Gamma(\beta)}{\Gamma(\alpha+\beta+1)} \int_0^\infty \frac{\Gamma(\alpha+\beta+1)}{\Gamma(\alpha+1)\Gamma(\beta)} x^{(\alpha+1)-1} (1-x)^{\beta-1} dx$ $= \frac{\alpha}{\alpha+\beta}.$



U MATH 2810, 2011, Lecture Notes

$$\begin{split} E(X^2) &= \int_{-\infty}^{\infty} x^2 \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \, dx = \int_{-\infty}^{\infty} (\sigma y + \mu)^2 \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} \, dy \\ &= \sigma^2 \int_{-\infty}^{\infty} y^2 \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} \, dy + \frac{2\mu\sigma}{\sqrt{2\pi}} \int_{-\infty}^{\infty} y e^{-\frac{y^2}{2}} \, dy \\ &+ \mu^2 \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} \, dy \\ &= \sigma^2 \cdot 1 + \frac{2\mu\sigma}{\sqrt{2\pi}} \cdot 0 + \mu^2 \cdot 1 = \sigma^2 + \mu^2. \end{split}$$

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} y \left(y e^{-\frac{y^2}{2}} \right) \, dy = \frac{1}{\sqrt{2\pi}} y \left(-e^{-y^2/2} \right) \Big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \left(-e^{-\frac{y^2}{2}} \right) \, dy$$

Some properties

- Normal distribution is one of the most widely used distribution. It can be used to model the distribution of many natural phenomena.
- Theorem. Suppose that $X \sim N(\mu, \sigma^2)$. The random variable Y=aX+b, where $a\neq 0$, is also normally distributed with parameters $a\mu+b$ and $a^2\sigma^2$, i.e., $Y \sim N(a\mu+b, a^2\sigma^2)$.

$$f_Y(y) = f_X\left(\frac{y-b}{a}\right) \frac{1}{|a|} = \frac{1}{\sqrt{2\pi}|a|\sigma} e^{-\frac{[y-(a\mu+b)]^2}{2\sigma^2 a^2}}$$

Corollary. If $X \sim N(\mu, \sigma^2)$, then $Z = \frac{X - \mu}{\sigma}$

is a normal random variable with parameters 0 and 1, i.e., N(0, 1), which is called *standard normal distribution*.

• The *N*(0, 1) distribution is very important since properties of any other normal distributions can be found from those of the standard normal.

The cdf of N(0, 1) *is usually denoted by* Φ.
Theorem. Suppose that *X*~*N*(μ, σ²). The cdf of *X* is

$$F_X(x) = \Phi\left(\frac{x-\mu}{\sigma}\right).$$

Proof. $F_X(x) = F_Z\left(\frac{x-\mu}{\sigma}\right) = \Phi\left(\frac{x-\mu}{\sigma}\right).$

Example. Suppose that $X \sim N(\mu, \sigma^2)$. For $-\infty < a < b < \infty$,

 $P(a < X < b) = P\left(\frac{a-\mu}{\sigma} < \frac{X-\mu}{\sigma} < \frac{b-\mu}{\sigma}\right)$ = $P\left(\frac{a-\mu}{\sigma} < Z < \frac{b-\mu}{\sigma}\right) = P\left(Z < \frac{b-\mu}{\sigma}\right) - P\left(Z < \frac{a-\mu}{\sigma}\right)$ = $\Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)$.

Table 5.1 (textbook, p.201) gives values of Φ. To read the table:

1. Find the first value of z up to the first place of decimal in the left hand column.

2. Find the second place of decimal across the top row.

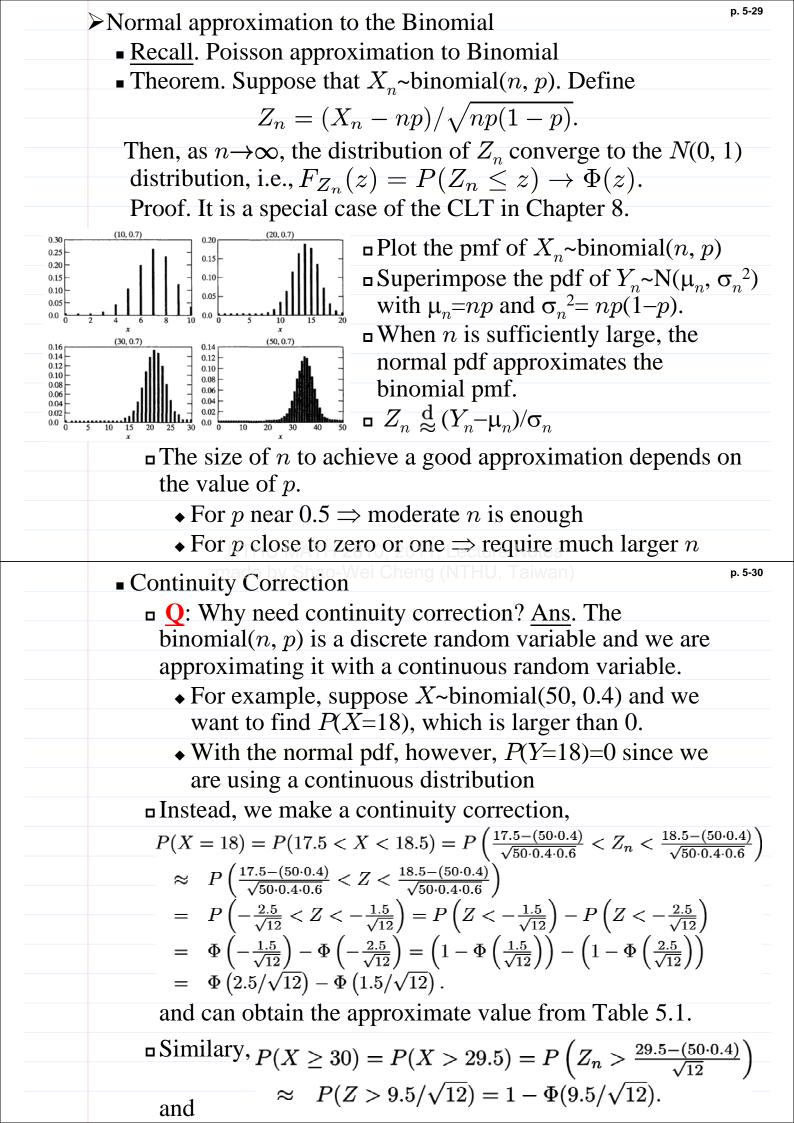
3. The value of $\Phi(z)$ is where the row from the first step and the column from the second step intersect.

TABLE 5.1: AREA $\Phi(x)$ UNDER THE STANDARD NORMAL CURVE TO THE LEFT OF x											
X	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09	
.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359	
.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753	
.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141	
• • •											
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995 -	
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997	
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998	
	1										

• For the values greater than z=3.49, $\Phi(z) \approx 1$.

• For negative values of z, use $\Phi(-z)=1-\Phi(z)$

 Normal distribution plays a central role in the limit theorems of probability (e.g., CLT, chapter 8)



$$P(10 \le X \le 30) = P(9.5 < X < 30.5)$$

$$= P\left(\frac{9.5 - (56.04)}{\sqrt{12}} < Z_n < \frac{30.5 - (50.04)}{\sqrt{12}}\right)$$

$$= P\left((-10.5/\sqrt{12}) - Z_n < 10.5/\sqrt{12}\right)$$

$$= \Phi(10.5/\sqrt{12}) - \Phi(-10.5/\sqrt{12}) = 2 \cdot \Phi(10.5/\sqrt{12}) - 1.$$

$$\Rightarrow Summary for X \sim Normal(\mu, \sigma^2)$$

$$• Pdf: f(x) = \frac{1}{\sqrt{2\pi\sigma}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty,$$

$$• Cdf: no close form, but usually denoted by $\Phi((x-\mu)/\sigma).$

$$• Parameters: \mu \in \mathbb{R} \text{ and } \sigma > 0.$$

$$• Mean: E(X) = \mu.$$

$$• Variance: Var(X) = \sigma^2.$$

$$• Weibull Distribution$$

$$\Rightarrow For \alpha, \beta > 0 \text{ and } v \in \mathbb{R}, \text{ the function}$$

$$f(x) = \begin{cases} \frac{\beta}{\alpha} \left(\frac{x-\nu}{\alpha}\right)^{\beta-1} e^{-\left(\frac{x-\mu}{\alpha}\right)^{\beta}}, \quad \text{if } x \ge \nu, \\ 0, & \text{if } x < \nu, \end{cases}$$
is a pdf since (1) $f(x) \ge 0$ for all $x \in \mathbb{R}$, and (2)

$$\int_{-\infty}^{\infty} f(x) \, dx = \int_{\nu}^{\infty} \frac{\beta}{\alpha} \left(\frac{x-\nu}{\alpha}\right)^{\beta-1} e^{-\left(\frac{x-\mu}{\alpha}\right)^{\beta}} \, dx$$

$$= ce^{-y} \left[0 \right]^{\infty} = 1.$$

$$\bullet The distribution of a random variable X with this pdf is called the Weibull distribution is the exploration of a random variable X with this pdf is called the Weibull distribution is the exploration of a random variable X with this pdf is called the Weibull distribution is the exploration of a random variable X with this pdf is called the Weibull distribution is the exploration of a random variable X with this pdf is called the Weibull distribution with parameters $\alpha, \beta, \text{ and } v$.
$$\Rightarrow (\text{exercise}) The cdf of Weibull distribution is the exploration of a random variable X with this pdf is called the Weibull distribution with parameter $\alpha, \beta, \text{ and } v$ are $\mu = \alpha \Gamma\left(1 + \frac{1}{\beta}\right) - \left[\Gamma\left(1 + \frac{1}{\beta}\right)\right]^2\right\}.$
Proof. $E(X) = \int_{\infty}^{\infty} x \cdot \frac{\beta}{\alpha} \left(\frac{x-\omega}{\alpha}\right)^{\beta-1} e^{-\left(\frac{x-\omega}{\alpha}\right)^{\beta}} \, dx$

$$= \int_{0}^{\infty} (\alpha y^{1/\beta} + \mu) e^{-y} \, dy$$

$$= \alpha \int_{0}^{\infty} (\alpha y^{1/\beta} + \mu)^2 e^{-y} \, dy$$

$$= \alpha \int_{0}^{\infty} (\alpha y^{1/\beta} + \mu) e^{-y} \, dy$$

$$= \alpha \int_{0}^{\infty} (\alpha y^{1/\beta} + \mu)^2 e^{-y} \, dy$$

$$= \alpha \int_{0}^{\infty} (\alpha y^{1/\beta} + \mu)^2 e^{-y} \, dy$$

$$= \alpha \int_{0}^{\infty} (\alpha y^{1/\beta} + \mu)^2 e^{-y} \, dy$$

$$= \alpha \int_{0}^{\infty} (\alpha y^{1/\beta} + \mu)^2 e^{-y} \, dy$$

$$= \alpha \int_{0}^{\infty} (\alpha y^{1/\beta} + \mu)^2 e^{-y} \, dy$$

$$= \alpha \int_{0}^{\infty} (\alpha y^{1/\beta} + \mu)^2 e^{-y} \, dy$$

$$= \alpha \left\{ \int_{0}^{$$$$$$$$

p. 5-33 Some properties • Weibull distribution is widely used to model lifetime. • α : scale parameter; β : shape parameter; v: location parameter • Theorem. If X~exponential(λ), then $Y = \alpha \left(\lambda X\right)^{1/\beta} + \mu$ is distributed as Weibull with parameter α , β , and ν (exercise). Cauchy Distribution For $\mu \in \mathbb{R}$ and $\sigma > 0$, the function $f(x) = \frac{\sigma}{\pi} \frac{1}{\sigma^2 + (x - \mu)^2}, \quad -\infty < x < \infty,$ is a pdf since (1) $f(x) \ge 0$ for all $x \in \mathbb{R}$, and (2) $\int_{-\infty}^{\infty} f(x) \, dx = \int_{-\infty}^{\infty} \frac{\sigma}{\pi} \frac{1}{\sigma^2 + (x-\mu)^2} \, dx$ $= \int_{-\infty}^{\infty} \frac{1}{\pi} \frac{1}{1+y^2} \, dy = \frac{1}{\pi} \tan^{-1}(y) \Big|_{-\infty}^{\infty} = 1.$ • The distribution of a random variable X with this pdf is called the *Cauchy* distribution with parameters μ and σ , denoted by Cauchy(μ , σ). p. 5-34 ≻The cdf of Cauchy distribution is $F(x) = \int_{-\infty}^{x} \frac{\sigma}{\pi} \frac{1}{\sigma^2 + (y-\mu)^2} \, dy = \frac{1}{2} + \frac{1}{\pi} \tan^{-1} \left(\frac{x-\mu}{\sigma}\right)$ for $-\infty < x < \infty$. (exercise) The mean and variance of Cauchy distribution do not exist because the integral does not converge absolutely Some properties Cauchy is a heavy tail distribution • μ : location parameter; σ : scale parameter • Theorem. If X~Cauchy(μ , σ), then aX+b~Cauchy($a\mu+b$, $|a|\sigma$). (exercise)