Continuous Random Variables

» Recall: For discrete random variables, only afinite or countably
infinite number of possible values with positive probability.

» Often, there isinterest in random variables that can take (at |east
theoretically) on an uncountable number of possible values, e.qg.,

the weight of arandomly selected person in a population,
the length of time that a randomly selected light bulb works,
the error in experimentally measuring the speed of light.
»Example (Uniform Spinner, LNp.2-14):

n Q = (-7, 7]
= For (a, b]CQ, A(a, b]) = b—al(2r)
» Consider the random variables:

X:Q—=> R, and X(o)=oforwnel,

YQ— R, and Y(o)=tan(wn)for oeQ.

Then, X and Y are random variables that takes on an
uncountable number of possible values.

= Notice that:
o P ({ X =2})=0, forany z € R,
oBut, for —n <a<b<m,
P.({X € (a, b]})=PF(a, b]) = b—al(2r) > O.

Q: Can we till define a probability mass function for X7 If
not, what can play asimilar role like pmf for X?

* Probability Density Function and Continuous Random Variable
»Definition. A function f: R—R iscalled aprobability density

function (pdf) if
1. f(z) > 0, for al z€(~00, 0o), and /\
2. ffooo f(x)dx = 1. L AW

»Definition: A random variable X iscalled continuous if there
existsapdf f such that for any set B of real numbers

Py({X € B}) = [ f(z) d.
= For example, Py (a < X < b) = fj f(x)dx




» Theorem. If fisapdf, then there must exist a continuous
random variable with pdf f.

» Some properties
« Px({X =a}) =[] f(y)dy =0 foranyz € R
= It does not matter if the intervals are open or closg, i.e.,
P(X € [a,b]) = P(X € (a,b]) = P(X € [a,b)) = P(X € (a,b)).
= It isimportant to remember that the value a pdf f(x) isNOT
a probability itself
= It isquite possible for a pdf to have value greater than 1
= Q: How to interpret the value of a pdf f(z)? For small dz,

Plz—% <X <z+%) —fff;?mf(y)dy%f(w)dw-

= f(x) isameasure of how likely it isthat X will be near =

»\We can characterize the distribution of a continuous random
variable in terms of its

1.Probability Density Function (pdf)
2.Cumulative Distribution Function (cdf)
3.Moment Generating Function (mgf, Chapter 7)

 Relation between the pdf and the cdif

» Theorem. If F'y and f arethe cdf and the pdf of a continuous
random variable X, respectively then

« Fx(z) =P(X <z)=["__ fx(y)dy for al —oo<wz<oco
« fx(z) = Fi(z) = L Fx(x) at continuity pointsof f

» Some Notes
» FOr —0o0<a<b< oo
Pla< X <b) = Fx(b) — Fx(a) = [ fx(z)d
= The cdf for continuous random variables has

the same interpretation and propertiesasin
the discrete case

= The only differenceisin plotting F'y. In the
discrete case, there are jumps. In the
continuous case, F'y IS acontinuous non-
decreasing function.




» Example (Uniform Distributions) fo
n If —oo<a<p<oo, then
Bfla, ifa<z<p,
0, otherwise,

Isapdf since
1. f(x) >0foradlx e R
2. 7 f(x) da:—fﬁ da:—ﬁa(ﬁ—a) 1.
= Its corresponding cdf is
. 0, if x < a
:/ fwdy =1 5=, Ha<z<p,
- 1, if x > (.
= (exercise) Conversely, it can be easily checked that F'is a cdf
and f(z)=F (x) except a xz=o and x=p (Derivative does not
exist when z=a and x=[3, but it does not matter.)

» An example of Uniform distribution isther.v. X inthe
Uniform Spinner example where a=—m and ==

 Transformation
» Q: Y=¢g(X), how to find the distribution of Y?
= Suppose that X is a continuous random variable with cdf F'y
and pdf f.
» Consider Y=¢(X), where g isastrictly monotone (increasing
or decreasing) function. Let R, bethe range of g.
= Note. Any strictly monotone function has an inverse function,
l.e., glexistson R,.
» The cdf of Y, denoted by F3,
1.Suppose that g isastrictly increasing function. For ye R,
Fy(y) = P <y)
= P(g(X)<y)=P(X <97 '(v)

= Fx(9'(y))
2.Suppose that g isadgtrictly decreasing function. For ye Ry,

Fy(y) = P <y)
PgX)<y)=P(X>g'(y)=1-P(X <g '(y)
1—Fx(g~"(y))-
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» Theorem. Let X be a continuous random variable whose cdf
Fy possesses auniqueinverse F'y 1. Let Z=F(X), then Z
has a uniform distribution on [0, 1].

Proof. For 0<z<1, Fz(z) = Fx(Fx'(2)) = 2.

= Theorem. Let U be auniform random variable on [0, 1] and
Fisacdf which possesses auniqueinverse F-1. Let
X=FYU), thenthe cdf of X is F.

Proof. Fix(z) = Fy(F(z)) = P(U < F(z)) = F(z).

= The 2 theorems are useful for pseudo-random number
generation in computer simulation.

o X isrv. = F(X)Iisr.v.

n Xy, ..., X, r.v.’swith cdf F
= (X)), ..., F(X,):rv.'’s
with distribution Uniform(0, 1)

, onU,, ..., U, r.v.’ swith

: distribution Uniform(0, 1)

' = YUY, ..., FYU,):rVv.s

0 ¥ Hx#“m% —% - I with cdf F

> The pdf of Y, denoted by f,- b5
1.Suppose that g is a differentiable strictly increasing function.
For ye Ry,
d d

fry) = @Fy(y)=@Fx(g‘1(y))

= Ixtm OV = e |22

2.Suppose that g is adifferentiable strictly decreasing function.
For ye Ry,
d

o) = 3Frl) = 5-(- Fx(a™'®)

dy B
= (g—l(y»dg O peaw)

= Theorem. Let X be acontlnuous random variable with pdf
fx Let Y=¢g(X), where g isdifferentiable and strictly
monotone. Then, the pdf of Y, denoted by fy, is

fr () = fx (97 () | 52,
for y such that y=g(x) for some x, and f,(y)=0 otherwise.

dg~ 1(:9)‘




» Q: What istherole of |dg(y)/dy|[? How to interpret it?

oo
-%&)J %

Tf.‘ T 92 Tlslow
- (=D

dg;‘l l

» Some Examples. Given the pdf f, of random variable X,
= find the pdf f,, of Y=a X+b, where a;tO

ar+b = z=g'(y) =

_ s (y—0
fr(y) = fx ( -
= find the pdf f, of Y=1/X.

y=g(r) = %:> z=g"(y) =

fy(y) =

= find the cdf Fy and pdf f,, of Y=X2.

“ Fy(y) = P(Y<y=P(-/y<X<Vy)
= P(X € (—o0,y]) — P(X € (—o0, —

_ {FX(\/g)—FX(—\/g), if y > 0,
0, if y <0.

o For y > 0,
fr(y) = —Fy( ) = [Fx(\/_) Fx (=vy)]

-1 fx(yy) + fx(=/9)
N 2y

= fx(WVY)- — fx (=) -

\/_
For y <0, fy(y) =0.

» Expectation, Mean, and Variance

» Definition. If X hasapdf f,, then the expectation of X is
defined by

ffooo z - fx(x) dz,
provided that the integral converges absolutely.




=« Example (Uniform Distributions). If

if a <ax <0,

fx (@) = { otherwise,
then

p 1
E(X) = /x-ﬁ_adx—a 5 a

2 2
JO N ¢

~
(84

» Some properties of expectation
= Expectation of Transformation. If Y=g(X), then

EY)=["y-fy@w)dy=["__g(x) fx(z)dx
provided that the integral converges absolutely.
proof. (homework)
= Expectation of Linear Function. E(aX+b)=a-E(X)+b, since

E(@X +b) = ffooo(aa:+b)fx(sc) dz
= af° z-fx(x)dz+b[° fx(z)dz

= a-E(X)+0b.
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» Definition. If X hasapdf f,, then the expectation of X isalso
called the mean of X or f, and denoted by x, so that
px = B(X) = [ 2 fx(x) da.
The variance of X is defined as
Var(X) = E[(X — pa)?] = [7 (& — ux)* - fx(2) da
and denoted by o3,. The oy iscaled the standard deviation.

» Some properties of mean and variance
» The mean and variance for continuous random variables
have the same intuitive interpretation as in the discrete case.

n Var(X) = E(X?) —[E(X)]?

= Variance of Linear Function. Var(aX+b)=a?Var(X)

. Theorem For a nonnegative continuous random variable X,
fo 1 — Fx(z)dz = [, P(X > z)dx.

Proof. E(X) J e fx(

) dx
fO (fO 1 dt)
I fo fX ) dt d:c
fo f (x)dx dt = fo 1 — Fx(t)dt.




+ Reading: textbook, Sec 5.1, 5.2, 5.3, 5.7

Some Common Continuous Distributions
e Uniform Distribution
»Summary for X ~ Uniform(ea, /)

« Pdf: — ifa<zx
f(x):{l/(ﬁ ), fa<z<p,

0, otherwise,

= Cdf: { 0, if x < a,

Flz)=4 (z—a)/(f—a), fa<z<f,
L 1, if x > (.
» Parameters. —oco<a< ff<oo
» Mean: E(X)=(at+p)/2
« Variance: Var(X)= (f~a)3/12

» Exponentia Distribution ' o 514

» For >0, the function A - A A= Golid)
f(x) { Ae M, if x>0, L A =1 (dotted),

07 if x < 0, _m A = 2 (dashed).
isapdf since (1) f(z) > Ofordlz € R,and (2)

ffooo f(,’]j) dr = fOOO )\e—)\x dr = —)\:c’O 1 o

= The distribution of arandom variable X with this pdf is
called the exponential distribution with parameter A.
» The cdf of an exponential r.v. is F(x)=0 for x <0, and for x>0,

F(z)=P(X <z)= [ e M dy = —e_Ay‘g =1—e 77,

» Theorem. The mean and variance of an exponential distribution
with parameter A are
=1/X and o%=1/)\%

Proof. E(X) fo :13)\6 ’\mdm—fo (Ae™¥)+dy
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» Some properties
= The exponentia distribution is often used to model the length
of time until an event occurs

o The parameter A is caled the rate and is the average
number of events that occur in unit time. This gives an
intuitive interpretation of E(X)=1/\.
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» Theorem (relationship between exponential, gamma, and
Poisson distributions, Sec. 9.1). Let

1.7, 7,7, ..., beindependent and ~ exponential (1),
2.5, =1 +--+T,,k=1,2,3, ...,

3. X, be the number of S,’sthat fallsin the time interval
(t,_ ., t], =1, ..., m.

Then, (i) X, ..., X,, areindependent,
(i1) X,~Poisson(A(t.—t; ,)),
(iii) S, ~ Gamma(k, 7).
(iv) The reverse statement is also true.

o The rate parameter A is the same for both the Poisson and
exponential random variable.

o The exponentia distribution can be thought of as the
continuous analogue of the geometric distribution.

= Theorem. The exponential distribution (like the geometric
distribution) is memoryless, i.e., for s, ¢ > 0,
P(X >s+tX >s)=P(X >t).




Proof. P
PU{X>s+t}n{X>t}) PHX >s+1t})

P(IX > g1) T P(IX > gl
LL )' L L J

> s}
1—Fx(s+1t) e Astt)

P(X >s+t|X >s) =

= 2 j

— At DYV o~ 1)
= =P(X >1)

P(Xi>s+tXi>8)=P(Xo>t). |  1—Fx(s) e

o This means that the distribution of the waiting time to the
next event remains the same regardless of how long we
have already been waiting.

o This only happens when events occur (or not) totally at
random, i.e., independent of past history.
o Notice that it does not mean the two events { X > s+t}
and { X >t} are independent.
»Summary for X ~ Exponential (L)
= Pdf: f(z) = { e if x>0,
0, if 2 < 0.
= Cdf: 1—e?® ifzx>0,
Fz) = 0, if z < 0.
» Parameters: A > 0.
» Mean: E(X)= 1/\.
» Variance: Var(X)= /A%

» Gamma Distribution
» Gamma Function
= Definition. For a > 0, the gamma function is defined as

I(a) = [, z* e ™ dux.
() =1andI'(1/2) =/ (exercise)
o [(atl) = al (o)

Proof. By integration by parts,

Fa+1) = [Fz% *dr
= —z% "+ [ ax® e ™ dz = al'(w).

» ['(a)=(a—-1)! if o isan integer

FNa)=(a—1Nl'(a-1)=---=(a—1)(a—=2)---T'(1) = (a—1)!

 [(/2) = vl DL it o jsan odd integer

2a—1(a=l)]
D(5) = (2305 —1) =+ = (552)(55") - 3T(})
=« Gammafunction is a generalization of the factorial functions
»For a, A>0, the function

AY —-1_—X :
mxo‘ e M ifx >0,

0, if x <0,




iIsapdf since (1) f(z) > Ofordl x € R, and (2)
ffooo f(x)dx = fooo %xo‘_l e dx

- I‘(a)foo eV dy = 1.
= The distribution of arandom variable X with this pdf is
called the gamma distribution with parameters oo and A.
» The cdf of gamma distribution can be expressed in terms of the
incompl ete gamma function, i.e., F(z)=0 for <0, and for x > 0O,

T AY  a—1._—\ . Ax yo—1,—z _ v(a,Ax)
= J, T(a) Y temWdy = F(a)f temFdz = 7r(oz) :

» Theorem. The mean and variance of agamma distribution with
parameter oo and A are
p=a/X and o?=a/)\.
_ [©°° A a—1 —>\$
Proof. F(X) = for( Fg())‘)x - dz
A a+ oo\« a+1)—1 —Aa: _
I'(a) Aotl f I‘(a—l—l)aj( - dr = 5
2 0o 2 A\Y o 1 — Az
E(X*) = (11( x g( oy ¢ dz
A a+2 © AT (a+2)—-1_,—)Azx _
T(a) AoT2 Jo T(at2) ¥ (T2 =lem AT dy =

k AFT (o) ?
E(3r) = 2552, for0<k <a.
» Some properties

» The gamma distribution can be used to

 (exercise) B(X®) = &2 for 0 < k, and

model the waiting time until a number of
random events occurs
o When oc:l, it is exponential (1)
o Tl, ..., T.» independent exponential (1)
r.v. s:>T+ -+ T ~Gamma(n, \)

o Gamma distribution can be thought of as a continuous
analogue of the negative binomial distribution
A summary Discrete Time Continuous Time
Version Version
number of events binomial Poisson

waiting time until
1 event occurs

waiting time until
r events occur

= o iscalled shape parameter and A scale parameter (Q: how to
interpret . and A from the viewpoint of waiting time?)

geometric exponential

negative binomial gamma
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= A special case of the gamma distribution occurs when
o=n/2 and A=1/2 for some positive integer n. Thisis known
as the Chi-squared distribution with n degrees of freedom
(Chapter 6)
»Summary for X ~ Gamma(o, A)
= Pdf: %xo‘_le_)‘m, if x > 0,
f<x)_{o,() if 2 < 0.
« Cdf: F(z) = vy(a, A\z) /T ().
» Parameters: a, A > 0.
« Mean: E(X) = a/A.

« Variance: Var(X) = a/\2.

» Beta Distribution
»Beta Function: B(a fo 11— 2)f 1 dg = L'(a)T(B)

I'(a+p)
»For o, >0, thefunctlon

' o — _ .
f(a:){ rerme” (=)’ f0<e <

0, otherwise,
Isapdf (exercise).

= The distribution of arandom variable X with thispdf is
called the beta distribution with parameters o and 3.

» The cdf of beta distribution can be expressed in terms of the
Incompl ete beta function, i.e., F{x)=0 for <0, F(x)=1 for x>1,
andfor0< x <1,

) — Pla+B) [F o _\B—-1 :B($5aaﬂ)
F(z) I‘(a)r(ﬁ)/o y* " (1-y) dy——B(ajﬂ).

at+p—1
_ , (a+p-1!
= (exercise) i:Ea ot p-1- Z_)!SL' (1—=z
for integer values of o and

» Theorem. The mean and variance of a beta distribution with
parameters o and 3 are

)a+ﬁﬁlwa

_ _a 2 __ af
= o1 and o ~ (a+B)2(at+B+1)”

Proof.
oo  I'(«a a— —
E(X) = [ rreare® (1 —2)P~ da
I'(a+B) T(a+)I(B) poo T'(a+B+1) (a+1)—1(1 _ .\8—1
r&a)r(g) T (a+03+1) f l—‘(a—i—l)f‘(ﬁ)x( - (1—2) dx

a+pi3°




E(X?) = [ 902%0%%:60‘_1(1 — )1 dzx
I'(a+p) D(a+2)I(B) oo T'(a+B+2) _(a+2)—1/1 _ .\B—1
F(a)F((B)l)F(a+ﬁ+2) 0 F(O¢+2)F(ﬁ)x( ) (1—2) dx

ala+
(a+8)(a+p+1) "

» Some properties

= When a=B=1, the beta distribution is
the same as the uniform(0, 1).

» Whenever a=f, the beta distribution is
symmetric about =0.5, i.e,,
f(0.5-A)=f(0.5+A).

o Asthe common value of o and 3
increases, the distribution becomes
more peaked at x=0.5 and thereis
less probability outside of the |
central portion. - S

= When 3>, values close to 0 become more likely than those
closeto 1; when B<a, values close to 1 are more likely than
those closeto 0 (Q: How to connect it with E(X)?)

»Summary for X ~ Beta(a., p)

P ) e L —e) T o<z <,
0, otherwise,
« Cdf: F(z) = B(z;a,0)/B(a, §).
» Parameters: o, 3 > 0.
« Mean: E(X) = o/(a + B).
» Variance: Var(X) = [o(a + D )/[(a + B)(a + B +1)].
* Normal Distribution
»For neR and >0, the function

| e
f(@) = o2=—e "2, —o0 <z < o0,

iIsapdf since (1) f(x) > Oforadl x € R, and (2)

_(m—w)?
20’2

oo 1
f—OO \/%0’6

and 12 = ([




» The distribution of arandom variable X
with this pdf is called the normal (Gaussian) 7
distribution with parameters 1 and o,
denoted by N(u, c2).

= The normal pdf is abell-shaped curve.

oIt is symmetric about the point p, i.e.,
f(utA)=f(u—A) and falls off in the rate
determined by o.

o The pdf hasamaximum at u (can be
shown by differentiation) and the
maximum height is 1/(cv/2m).

» The cdf of normal distribution does not have a close form.
> Theorem. The mean and variance of a N(u, c2) distribution are
u and o2, respectively.
= L location parameter; o2: scale parameter

(az—m?

y2
Proof. p(x) = f_ooa;\/;_we— de = [7 (ay + ) 127re_7 dy

= = [ ve Tdy+,uf00\/—e Tdy
= #-O—I—,u 1= pu.

vordl IO/

» Some properties

=« Normal distribution is one of the most widely used
distribution. It can be used to model the distribution of many
natural phenomena.

= Theorem. Suppose that X~N(u, 62). The random variable
Y=aX+b, where a+0, isalso normally distributed with
parameters ap+b and a?c?, i.e., Y~N(au+b, a’c?).

Proof.




o Corollary. If X~N(u, ?), then
X —p
Isanormal r?:mdom variable with parametersO and 1, i.e,,
N(O, 1), which is called standard normal distribution.

= The N(O, 1) distribution is very important since properties of
any other normal distributions can be found from those of the
standard normal.
o The cdf of N(O, 1) isusually denoted by @.
o Theorem. Suppose that X~N(u, 62). The cdf of X is
Fx(z) = (%3*).

Proof. Fy(z) = F; (££) = & (4).

(o)

o Example. Suppose that X~N(u, 62). For —oo<a<b<oo,
Pla< X <b)=P (“;“ < B < b‘“)

— P(St<z<bt) =P (7<) - P(2< )

@ (221) - @ (+24).
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o Table 5.1 (textbook, p.201) gives values of ®@. To read the
table:

1.Find the first value of z up to the first place of decimal
in the left hand column.

2.Find the second place of decimal across the top row.

3.The value of ®(z) iswhere the row from the first step
and the column from the second step intersect.

TABLE 5.1: AREA ¢(x) UNDER THE STANDARD NORMAL CURVE TO THE LEFT OF x
x | .00 .01 .02 .03 04 .05 .06 07 .08 .09
\ 5000 .5040 .5080 .5120 .5160 .5199 .5239 5279 .5319 .5359
5398 5438 5478 5517 5557 .5596 .5636 .5675 .5714 5753
l 5793 5832 5871 5910 .5948 .5987 .6026 .6064 .6103 .6141

3.21.9993 9993 9994 9994 9994 9994 9994 9995 .9995 .9995
3.31.9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997
3.4 |.9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998

+ For the values greater than z=3.49, O©(z2) ~ 1.
» For negative values of z, use ®(—z)=1-D(z)

= Normal distribution plays a central role in the limit theorems
of probability (e.g., CLT, chapter 8)




»Normal approximation to the Binomial
» Recall. Poisson approximation to Binomial
= Theorem. Suppose that X ,~binomial(n, p). Define

Zn = (Xn —np)/+/np(1 = p).
Then, as n— o0, the distribution of Z converge to the N(O, 1)
distribution, i.e., F'z (z) = P(Z, < z) — ®(2).
Proof. It isaspecial case of the CLT in Chapter 8.

1T 1 oPlotthe pmf of X ~binomial(n, p)
HI | oSuperimpose the pdf of Y. ~N(u, , ¢, 2)
wt ] B ] with p,=np and 5,2= np(1-p).

e ew o wm  oWhenn |ssuff|C|entIy large, the
s ] our 1 normal pdf approximates the

T ] oot ] bi nomial pmf.

0.04 -

3020_5(520230 _oznmm;r) (Y Hn)/c
o The size of n to achieve a good approximation depends on
the value of p.
+ For p near 0.5 = moderate n is enough
+ For p close to zero or one = require much larger n

0.30
025

= Continuity Correction
o Q: Why need continuity correction? Ans. The
binomial(n, p) is adiscrete random variable and we are
approximating it with a continuous random variable.
+ For example, suppose X~binomial (50, 0.4) and we
want to find A(X=18), which islarger than O.
+ With the normal pdf, however, P(Y=18)=0 since we
are using a continuous distribution
o Instead, we make a continuity correction,

— — _ 17.5— (50 0. 4) 18.5—(5{]-0.4)

- 17.5—(50-0.4) 18.5—(50-0.4)
- P( v/50-0.4-0.6 <Z< \/500406)

- P( 25 <7< - ) (

= o(uh) e (o) = (12 () - (

= (25/VI2) - @ (15/V12).

and can obtain the approximate value from Table 5.1.

oSimilary, _ _ 29.5—(50-0.4)
y P(Xzso)_P(X>29.5)_P(Zn> 20 )

~ P(Z>9.5/V/12) =1—®(9.5/1/12).

m) P(Z<

and



P(10 < X < 30) = P(9.5 < X < 30.5)

9.5—(50-0.4) 30.5—(50-0.4)
j= (—m < 7, < 20230 )

P(—10.5//12 < Z < 10.5//12)
®(10.5//12) — ®(—10.5/1/12) = 2 - ®(10.5//12) —

> Summary for X ~ Normal(p, 02)

= P f(z) = ———e~ 2ché —00 < & < 00,

2wo !
» Cdf: no close form, but usually denoted by ®((xz—u)/o).
» Parameters. neR and ¢>0.
« Mean: E(X) = p.
» Variance: Var(X) = c2
» Weibull Distribution

»For a, p>0and veR, the function
m—y)ﬁ

fay={ 2= e ite >y,
if x < v,

0,
isapdf since (1) f(z) > Oforal z € R, and (2)
f_oooo f(fE) der = fVOO g (:U;I/)ﬁ_l 6_($;v)ﬁ Iz
= Jo eVdy= ey =1

= The distribution of arandom variabie X with this pdf is
called the Weibull distribution with parameters o, 3, and v .

» (exercise) The cdf of Weibull distribution is
1—6_(90;”)[3, if x > v,
0, if x < v.

» Theorem. The mean and variance of aWeibull distribution with

F(zx) =

parameter a, 3, and v are
p = al’ (1—}—%) +v and

o? — o? {F(H 2) - [ (1+1)] }
Proof. B(X) = [®z- & (2z) e~ (575)" gy
= [y (ay'/P 4 p)ev dy
= afoooyl/ﬁe_y dy+,ufoooe_y dy = al’ <% + 1) + u
X7) = 207 2 (222)" () o
Jo (ay'/P + p)?emv dy
a? fooo y2/Pe=Y dy + 2au fooo yl/Be=v dy + u? fooo e Y dy
2T (% + 1) + 20T (% + 1) + 2




» Some properties
=« Welbull distribution iswidely used to
model lifetime.
» 0. Scale parameter; 3: shape parameter;
v: location parameter
= Theorem. If X~exponential (1), then
Y:a()\X)l/ﬁ—l—,u
Is distributed as Weibull with parameter o, 3, and v (exercise).
» Cauchy Distribution
»For ueR and >0, the function

isapdf since (1) f(z) > Oforal x € R, and (2)
ffooo f(x)dz = ffooo %JQJF(;:_MP dx

= armpdy=qtan ()] =1

= The distribution of arandom variable X with this pdf is
called the Cauchy distribution with parameters u1 and o,
denoted by Cauchy(u, o).

» The cdf of Cauchy distribution is
Flz)=["_2 02—|—(;—,u)2 dy = 5+ tan™! (%£)
for —oo<r<oo. (exercise)
» The mean and variance of Cauchy distribution do not exist
because the integral does not converge absolutely
» Some properties
» Cauchy isaheavy tal distribution
» U location parameter; . scale parameter
» Theorem. If X~Cauchy(u, o), then
aX+b~Cauchy(autb, |alo). (exercise)

+ Reading: textbook, Sec 5.4, 5.5, 5.6



