
p. 4-1

Random Variables
• A Motivating Exampleg p

Experiment: Sample k students without replacement from the 
population of all n students (labeled as 1, 2, …, n, respectively) 
in our class.

  = {all combinations} = {{i1, …, ik}: 1≤i1<<ik≤n}

A probability measure P can be defined on , e.g, when there is
an equally likely chance of being chosen for each students, 

For an outcome ∈, the experimenter may be more interested 
in some quantitative attributes of , rather than the  itself, e.g.,

 The average weight of the k sampled students

 The maximum of their midterm scores

 The number of male students in the sample

Q: What mathematical structure would be useful to characterize
the random quantitative attributes of ’s? 
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Definition: A random variable X is a function which maps the 
sample space  to the real numbers R, i.e.,

X: → R.
The P defined on  would be transformed into a new

probability measure defined on R through the mapping X
 the outcome of X is random, but the map X is deterministic the outcome of X is random, but the map X is deterministic
Example (Coin Tossing): Toss a fair coin 3 times, and let

 X1 = the total number of heads
X h b f h d h fiX2 = the number of heads on the first toss
X3 = the number of heads minus the number of tails

 ={hhh, hht, hth, thh, htt, tht, tth, ttt} {hhh, hht, hth, thh, htt, tht, tth, ttt}

X1 :    3,     2,     2,     2,     1,     1,   1,    0. 
X2 : 1 1 1 0 1 0 0 0

 Q: Why particularly interested in functions that map to “R”?

X2 :    1,     1,     1,     0,     1,     0,   0,    0.
X3 :    3,     1,     1,     1, 1, 1, 1, 3. 
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p. 4-3 Q: How to define the probability measure of X (PX) from P?
Ans: For a set (an event) A⊂R, 

The PX is often called the distribution of X.
PX (X ∈ A) ≡ P ({ω : X(ω) ∈ A}).

A
RΩ

P PX

A

P (A) ??
EA

A occurs 
EA occurs

P (A) P (E ) X PX(A) =??

Discrete Random Variables

PX(A) = P (EA)

• Definition: For a random variable (r.v.) X, let 

b th f X Th X i ll d di t if i fi it
X = {X(ω) : ω ∈ Ω},

be the range of X. Then, X is called discrete if     is a finite or 
countably infinite set, i.e.,

X

X = {x1, . . . , xn} or X = {x1, x2, . . .}.{ 1, , n} { 1, 2, }
Example. The X1, X2, X3 in the Coin Tossing example.

• Q: The sample space of a r.v. is the real line R. Are there someQ p p
particular ways to depict a probability measure (p.m.) on R? [c.f., 
for general sample space , a p.m. is defined on (all) subsets of ]

p. 4-4Ans: 3 commonly used tools to depict the p.m. of discrete r.v.’s:
1.Probability mass function (pmf)
2 C l ti di t ib ti f ti ( df)2.Cumulative distribution function (cdf)
3.Moment generating function (mgf, Chapter 7)

Definition: If X is a discrete r v then the b bilitDefinition: If X is a discrete r.v., then the probability mass 
function of X is defined by 

fX(x) ≡ PX({X = x}) = P ({ω ∈ Ω : X(ω) = x})
for x∈R. (c.f., the p: →R in LNp.2-5)

 Example For the X in the Coin Tossing example

fX(x) PX({X x}) P ({ω ∈ Ω : X(ω) x})

 Example. For the X1 in the Coin Tossing example,





X = {0, 1, 2, 3}
fX1(0) = 1/8, fX1(1) = 3/8, .8

1
.0

pmf

and 

fX1(0) 1/8, fX1(1) 3/8,
fX1(2) = 3/8, fX1(3) = 1/8.

fX1 (x) = 0, for x /∈ X .

0
.2

0
.4

0
.6

0

 Graphical display

 Example (Committees). A committee of size n=4 is selected 
0 1 2 3

0
.0

0

from 5 men and 5 women. Then,

={combination of 4},                            , P(A)=#A/##Ω = 10
4 = 210
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p. 4-5
 Let X be the number of women on the committee, then

 fX (x) = PX(X = x) = 5
x

5
4−x / 10

4



x 4 x 4

fX (0) = fX (4) =
5
210 , fX (1) = fX (3) =

50
210 , fX (2) =

100
210 .

 Q: What should a pmf look like?Q: What should a pmf look like?

Theorem. If fX is the pmf of r.v. X with range      , then

(i) fX(x) ≥ 0, for all x ∈ R,
X

8
1
.0(i) fX(x) ≥ 0, for all x ∈ R,

(ii) fX(x) = 0, for 

(iii)

x /∈ X ,

0 1 2 3

0
.0

0
.2

0
.4

0
.6

0
.8

fX(x) = 1(iii) 

(iv) moreover, for A⊂R, PX(X ∈ A) = x∈A∩X fX(x).
x∈X fX(x) = 1.

 Theorem. Any function f that satisfies (i), (ii), and (iii) fory f ( ), ( ), ( )
some finite or countably infinite set      is the pmf of some 
random variable X. 

X

p. 4-6

Henceforth, we can define “pmf” as any function that 
satisfies (i), (ii), and (iii).

We can specify a distribution by giving and f subjectWe can specify a distribution by giving     and f, subject
to the three conditions (i), (ii), (iii). 

 Q: Suppose that X and Y are two r.v.’s with same pmf. Is

X

 Q: Suppose that X and Y are two r.v. s with same pmf. Is
it always true that X() = Y() for ∈?

Definition: A function FX is called the cumulative distribution 
function of a random variable X if

FX(x)  PX(X ≤ x), x ∈ R.

(Note. The definition of cdf can be applied to arbitrary r.v.’s)

 Example. For the X1 in the Coin Tossing example,
pmf df

0
.6

0
.8

1
.0

pmf cdf

0
.6

0
.8

1
.0

FX1
(x) =

0, x < 0,
1/8, 0 ≤ x < 1,
4/8, 1 ≤ x < 2,

0 1 2 3

0
.0

0
.2

0
.4

0 1 2 3

0
.0

0
.2

0
.4

1
( ) / , ,

7/8, 2 ≤ x < 3,
1, 3 ≤ x.
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p. 4-7
 Q: What should a cdf look like?

Theorem. If FX is the cdf of a r.v. X, then it must satisfy the 

(1)0 ≤ FX(x) ≤ 1.

following properties:

4
0
.6

0
.8

1
.0

(2) FX(x) is nondecreasing, i.e., FX(a)≤FX(b) for a<b.

1
.0

proof. 
0 1 2 3

0
.0

0
.2

0
.4

X X X

2
0

.4
0

.6
0

.8

proof. For a<b, 

(3) For any x∈R, FX(x) is continuous from the right, i.e.,0 1 2 3

0
.0

0
.2

0
.8

1
.0

FX(x) = FX(x+) ≡ limt↓x FX(t),

proof. 

0
.2

0
.4

0
.6

0 X( ) X( +) t↓x X( ),

0 1 2 3

0
.0

p. 4-8
(4) lim

x→∞FX(x) = 1 and lim
x→−∞FX(x) = 0,

proof. 8
1
.0

p oo .

0
.2

0
.4

0
.6

0
.8

0 1 2 3

0
.0

(5) PX(X>x)=1FX(x) and PX(a<X≤b)=FX(b)FX(a).

proof. 

0
.4

0
.6

0
.8

1
.0

0 1 2 3

0
.0

0
.2
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p. 4-9
(6) Moreover, if X is discrete with pmf fX, then for x∈R,

fX (x) = FX(x)− FX(x−).FX(x) = xi∈X
xi≤x

fX(xi), and

0
.8

1
.0

xi≤x

proof. 

0
0

.2
0

.4
0
.6

0 1 2 3

0
.0

(7) F has at most countably many discontinuity points(7) FX has at most countably many discontinuity points.

proof. 

0
.6

0
.8

1
.0

0 1 2 3

0
.0

0
.2

0
.4

 Theorem If a function F satisfies (2) (3) and (4) then F is a Theorem. If a function F satisfies (2), (3), and (4), then F is a
cumulative distribution function of some random variable.

p. 4-10
• Transformation

g
RΩ

P PXX

R

Y
PY =??

XTheorem. Let X be a discrete r.v. with range     and pmf fX; let
Y = g(X)Y g(X)

then, the range of Y is
Y = {g(x) : x ∈ X},

i.e., Y is a discrete r.v., and the pmf of Y is
fY (y) = x∈X

g(x)=y
fX(x).

proof. 

 Example. If Y=X2, then
 Reading: textbook, Sec 4.1, 4.2, 4.10
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p. 4-11

• Q: We often characterize a person by his/her height weight hair

Expectation (Mean) and Variance
• Q: We often characterize a person by his/her height, weight, hair

color, …. How can we “roughly” characterize a distribution?

• Definition: If X is a discrete r.v. with pmf fX and range    , then theXp fX g ,
expectation (or called expected value) of X is

X

E(X) = x∈X xfX(x),

provided that the sum converges absolutely.

Example. If all value in     are equally likely, then E(X) is X

( ) x∈X ( )

p q y y, ( )
simply the average of the possible values of X.

Example (Committees). In the committees example,

X

 l ( di i )

E(X) = 0 · 5

210
+ 1 · 50

210
+ 2 · 100

210
+ 3 · 50

210
+ 4 · 5

210
= 2.

Example (Indicator Function).

 For an event A, the indicator function of A is the r.v.

1A(ω) =
1, if ω ∈ A,
0, if ω /∈ A.

p. 4-12
 Its range is {0, 1} and its pmf is 

f(0)=P(Ac)=1P(A)   and f(1)=P(A),

for a p.m. P defined on .

 So, E(1A) = 0 · [1− P (A)] + 1 · P (A) = P (A).

Intuitive Interpretation of Expectation

 Expectation of a r.v. parallels the notion of a weighted 

, ( A) [ ( )] + ( ) ( )

p p g
average, where more likely values are weighted higher than 
less likely values.

i h l f l hi k f h i h “ ” f It is helpful to think of the expectation as the “center” of 
mass of the pmf 

center of gravity: If we have a rod with weights f at eachcenter of gravity: If we have a rod with weights fX at each
possible point xi then the point at which the rod is 
balanced is called the center of gravity.

E t ti b i t t d Expectation can be interpreted as
a long-run average (Chapter 8)
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p. 4-13
• Expectation of Transformation

Theorem. If X is a discrete r.v. with range    and pmf fX; let X
Y = g(X),

and      be the range of Y, fY be the pmf of Y, thenY

provided that the sum converges absolutely.
E(Y ) ≡ y∈Y yfY (y) = x∈X g(x)fX(x),

proof. 

E(X2) = x∈X x2fX (x). Example. 

Theorem. For a, b ∈ R, E(aX+b) = a·E(X)+b.
proof. 

, , ( ) ( )

X 3X 3X+3

0
.1

0
.2

0
.3

0
.4

0 1 2 3 4 5 6

-0
.1

p. 4-14
• Mean and Variance. 

Definition. The expectation of X is also called the mean of Xp
and/or fX . The variance of X (and/or fX) is defined by

V ar(X) ≡ E[(X − μX)
2] = x∈X (x− μX)

2fX(x).

provided that the sum converges. 
x∈X

 Example (Committees)p ( )

So,  = 2 and 2 = 2/3

The E(X) is often denoted by  and Var(X) by Alsoσ2 The E(X) is often denoted by X and Var(X) by       . Also,
is called the standard deviation of X.σX = σ2X

σX
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p. 4-15
 Note.

 X and        only depends on fX. They are fixed constants, 
not random

σ2X
not random.

If X has units, then X and X have the same unit as X
and variance has unit squared. 

Intuitive Interpretation of Variance
 Variance is the average value of the squared 

deviation of X from deviation of X from X.
 Variance is related to how the pmf is spread out

Some properties of varianceSome properties of variance.
 The variance of a r.v. is always non-negative
 The only r.v. with variance equal to zero is a r.v. which cany q

only take on a single value.

Theorem. For a, b ∈ R, Var(aX+b) = a2 Var(X)
proof. 

p. 4-16
X 3X 3X+3

0
.1

0
.2

0
.3

0
.4

0 1 2 3 4 5 6

-0
.1

Theorem. If X is a discrete r.v. with mean X, then for any c∈R, 

E[(X − c)2] = σ2X + (c− μX)
2.[( ) ] X ( μ )

proof. 

C ll E[(X )2] i i i i d b l tti d th Corollary. E[(Xc)2] is minimized by letting c=X; and the
minimum value is .

 Corollary = E(X2)  EX2
σ2X

σ2 Corollary. = E(X )  EX .
(Recall:                                          )

Example (Committees). Var(X)=14/322=2/3.
E(X2) = x∈X x2fX(x).

σX

p ( ) ( )

 Reading: textbook, Sec 4.3, 4.4, 4.5

 E(Xn) is often called the nth moment of X
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p. 4-17Some Common Discrete Distributions
• Bernoulli and Binomial Distributions

Experiment: A basic experiment with sample space 0 is 
repeated n times.

 Example. (a) Sampling with replacement (b) Coin Tossing 
(c) Roulette

Th l f th t i l i The sample space for the n trials is
 = 0 ×  × 0 = 0

n

 Assume that events depending on different trials are Assume that events depending on different trials are 
independent

 Q: Given an event A0⊂0, what is the probability that A0Q 0 0 p y 0
occurs k times in the n trials?

 Problem Formulation: Let Ai⊂ be

Ai = {A0 occurs on the ith trial}, and

X = 1A1 + · · ·+ 1An ,

Q: What is P(X=k)?
(Note. A1, …, An are assumed to be independent events.)

A1 An ,

p. 4-18
 Example (Roulette, n=4, k=2, LNp.2-3).

Let Wi = {Win on ith Game}
Li = Wi

c = {Lose on ith Game}.
Then, P(Wi)=9/19  p and P(Li)=10/19=1p  q

 Let                                                         thenX = 1W1 + 1W2 + 1W3 + 1W4 ,

{X = 2} = (W1 ∩W2 ∩ L3 ∩ L4) ∪ (W1 ∩ L2 ∩W3 ∩L4)
∪(W1 ∩ L2 ∩ L3 ∩W4) ∪ (L1 ∩W2 ∩W3 ∩L4)
∪(L1 ∩W2 ∩ L3 ∩W4) ∪ (L1 ∩ L2 ∩W3 ∩W4)

 So So, 
P ({X = 2}) = P (W1 ∩W2 ∩ L3 ∩ L4) + · · ·

+P (L1 ∩ L2 ∩W3 ∩W4)+P (L1 ∩ L2 ∩W3 ∩W4)

= P (W1)P (W2)P (L3)P (L4) + · · ·
+P (L )P (L )P (W )P (W )+P (L1)P (L2)P (W3)P (W4)

= ppqq + pqpq + pqqp

+qppq + qpqp+ qqpp

= 6p2q2.
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p. 4-19
Probability Mass Function 

 Let A1, …, An be independent events and P(Ai)=p, i=1, …, n. 

 Let 

 Then, for k=0, 1, …, n,

X = 1A1 + · · ·+ 1An .

P (X = k) =
n

k
pk(1− p)n−k.

proof. 

  

 (exercise) Show that the following function is a pmf.
n k(1 )n−k k 0 1

 The distribution of the r v X is called the binomial

f(k) =
n
k

pk(1− p)n k, k = 0, 1, . . . , n,
0, otherwise.

 The distribution of the r.v. X is called the binomial
distribution with parameters n and p. In particular, when n=1, 
it is called the Bernoulli distribution with parameter p. 

p. 4-20
Notice that a binomial r.v. can be regarded as the sum of n

independent Bernoulli r.v.’s.

The binomial distribution is called after the Binomial 
Theorem: (a+ b)n =

n
k=0

n
k akbn−k.

 Example (Bridge). Q: What is the probability that South gets 
no Aces on at least k=5 of n=9 hands?

A { A h th h d} 1 2 9 dLet Ai={no Aces on the ith hand}, i=1, 2, …, 9, and
X = 1A1 + · · ·+ 1A9 ,

48 52
Then, 

So, for k = 0, 1, …, 9, 
9

P (Ai) =
48
13 / 52

13 ≈ 0.3038 ≡ p.

P (X = k) =
9

k
pk(1− p)n−k.

And, 
P (X ≥ 5)

9
9 k(1 )n−k ≈ 0 1035P (X ≥ 5) =

k=5
k

pk(1− p)n k ≈ 0.1035.

Theorem. The mean and variance of the 
Bi i l( ) di t ib tiBinomial(n, p) distribution are

μ = np and σ2 = np(1− p).
0.0 0.2 0.4 0.6 0.8 1.0
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p. 4-21proof. 

p. 4-22Summary for X ~ Binomial(n, p)

 Range: X = {0, 1, 2, ..., n}
 Pmf:
 Parameters: n∈{1, 2, 3, …} and 0≤p≤ 1

fX (x) =
n
x px(1− p)n−x, for x ∈ X

 Mean: E(X)=np

 Variance: Var(X)=np(1p) 

• Geometric and Negative Binomial Distributions

Experiment: A basic experiment with sample space 0 isExperiment: A basic experiment with sample space 0 is 
repeated infinite times.

 The sample space is
 = 0 × 0 × 0 × 

 Assume that events depending on different trials are 
independentindependent

 For a given event A0⊂0, we continue performing the trials 
until A0 occurs exactly r timesuntil A0 occurs exactly r times

 Q: What is the probability that we need to perform k trials?
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p. 4-23
 Example. 

A company must hire 3 engineers.   

Each interview results in a hire with probability 1/3
 Q: What is the probability that 10 interviews are required?
We need: (i) 2 hires on the first 9 interview (ii) Success onWe need: (i) 2 hires on the first 9 interview (ii) Success on

the 10th interview
So, the probability is 9

2

1

3

2
2

3

7

× 1

3
=

9

2

1

3

3
2

3

7

.
2 3 3 3 2 3 3

 Problem Formulation: 

Let A1, A2, … ⊂  be

Ai = {A0 occurs on the ith trial}, and

Xn = 1A1 + · · ·+ 1An , for n = 1, 2, 3, ....

Let Y1 = smallest n with Xn ≥ 1,
Y ll t ith X ≥ 2Y2 = smallest n with Xn ≥ 2,
…,
Y = smallest n with X ≥ r

  
Yr  smallest n with Xn ≥ r,

 Q: What is P(Yr=k)?

p. 4-24
Probability Mass Function 

 Let A1, A2, … be independent and P(Ai)=p, i=1, 2, 3, …. 

 Then, for k=r, r+1, r+2, …,

proof.proof. 

 (exercise) Show that the following function is a pmf.
k−1 r(1 )k−r k + 1

 The distribution of the r v Y is called the negative binomial

f(k) =
k 1
r−1 pr(1− p)k r, k = r, r+ 1, . . . ,

0, otherwise.
 The distribution of the r.v. Yr is called the negative binomial

distribution with parameters r and p. In particular, when r=1, 
it is called the geometric distribution with parameter p.
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p. 4-25
A negative binomial r.v. can be regarded as the sum of r

independent geometric r.v.’s.

Th ti bi i l di t ib ti i ll d ft th

          

The negative binomial distribution is called after the 
Negative Binomial Theorem:

Theorem The mean and variance of negative binomial(r p) isTheorem. The mean and variance of negative binomial(r, p) is

μ = r/p and σ2 = r(1− p)/p2.

p. 4-26

Summary for X ~  Negative Binomial(r, p)
{ } Range: 

 Pmf:
 Parameters: r∈{1 2 3 } and 0≤p≤ 1

X = {r, r+ 1, r + 2, ...}
fX (x) =

x−1
r−1 pr(1− p)x−r, for x ∈ X

 Parameters: r∈{1, 2, 3, …} and 0≤p≤ 1
 Mean: E(X)=r/p
 Variance: Var(X)=r(1p)/p2
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p. 4-27
• Poisson Distribution

Recall: Expression for ex, e=2.7183

 First Expression:

 Second Expression:

ex = limn→∞ 1 + x
n

n
.

ex =
∞
k=0

1
k!x

k.p k!

The Derivation
 Consider a sequence of binomial(n, pn) distributions satisfyingn

(a) pn → 0 when n→∞
(b) n·pn →  when n→∞, where 0 <  < ∞

Th / h i l h Then, pn ≈ /n when n is large enough.
 And,

k k k

n

k
pkn(1− pn)

n−k

 Here for each fixed k

≈ 1

k!
(n)k

λ

n

k

1− λ

n

n−k
=
1

k!
λk
(n)k

nk
1− λ

n

n−k
.

 Here, for each fixed k,

lim
n→∞

(n)k

nk
= 1 and lim

n→∞ 1− λ

n

n−k
= e−λ.

k

 So, when n large and n À k, (n)k

nk
≈ 1 and 1− λ

n

n−k
≈ e−λ.

p. 4-28
 In other words, when n large, n À k, and pn ≈ 0,

n

k
pkn(1− pn)

n−k ≈ 1

k!
λke−λ.

k
pn( pn)

k!

  

Example. p

 A professor hits the wrong key with probability p=0.001 each 
time he types a letter. Assume independence for the 

f b t diff t l tt t ioccurrence of errors between different letter typings.

 Q: P(5 or more errors in n=2500 letters)=??

A Ans. 

 Let X be the number of errors, then X~binomial(2500, 
0 001) and0.001) and
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p. 4-29
 The probability can be approximated by ke /k! with 

 =  2500 × 0.001 = 2.5 times of errors,,

where 2.5 is the expected number of the errors that would 
occur in the 2500 typings. (Q: What should the ’s be foryp g (Q
5000 typings, 7500 typings, and 10000 typings?)

 So, P(X = k) ≈ (2.5)ke2.5/k!, for k=0,1,2,3,4, and 

Probability Mass Function

 Theorem Let k λ Theorem. Let

h f(k) i f

f(k) =
λke−λ
k!

, k = 0, 1, 2, . . . ,
0, otherwise.

then, f(k) is a pmf.
proof. LNp.4-5, (i) & (ii) are straightforward. For (iii),

p. 4-30
 The pmf is called the Poisson pmf with parameter The 

distribution is named after Simeon Poisson, who derived 
th i ti f P i f t bi i l fthe approximation of Poisson pmf to binomial pmf. 

 The  can be interpreted as the average occurrence 
frequencyfrequency.

Theorem. The mean and variance of Poisson() is
μ = λ and σ2 = λμ = λ and σ = λ.

proof. 
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 Note: For X~binomial(n, p), where (i) n large; (ii) p small,
 distribution of X  Poisson(np)

E(X) np mean of the Poisson 

P i P

 E(X)  np  mean of the Poisson 
 Var(X) np(1p)  variance of the Poisson 

Poisson Process
 Example: 

(1) # of earthquakes occurring during some fixed time span(1) # of earthquakes occurring during some fixed time span
(2) # of people entering a bank during a time period

To model them, we can 

Divide the time period, say [0, t], into n small intervalsp , y [ , ],
Make the intervals so small (i.e., n is large) that at most 

one event can occur in each interval
p. 4-32 Then, we can treat the number of events in a single 

interval as a Bernoulli r.v. with a small pn

Assume that the number of events to occur in 
non-overlapping intervals are independent

 Now the number of events in the whole period of time Now, the number of events in the whole period of time
[0, t] is binomial(n, pn), where n is a quite large number 
and pn is a small probabilityn

The distribution for the number of events occurring in [0, t] 
can be approximated by Poisson(n·pn)

 Definition. A Poisson process with rate  is a family of r.v.’s
Nt, 0≤t<∞ , for which

N 0 d N N P i ( (t ))N0 = 0     and Nt – Ns ~ Poisson(·(ts)),
for 0≤s<t<∞ , and 

N N i = 1 2 m
are independent whenever

0 ≤ s1 < t1 ≤ s2 < t2 ≤ ≤ sm < tm.

Nti −Nsi , i = 1, 2, ..., m

≤ 1 1 ≤ 2 2 ≤ ≤ m m

 Here, Nt denotes the # of events that occurs by time t
  is the average # of events occurring per unit time
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 Example. 

T ffi id t ( t 光復路&建功路口 )Traffic accident occurs (at 光復路&建功路口, e.g.) 
according to a Poisson process at a rate of =5.5 per month

 Q: What is the probability of 3 or more accidents occur in Q: What is the probability of 3 or more accidents occur in
a 2 month periods?

Here, t = 5.5×2 = 11. (Q: What should t be for one and, (Q
half months? for a year?)

So, P(N2 = k) = 11k·e11/k! and

p. 4-34Summary for X ~  Poisson()
 Range: 

P f
X = {0, 1, 2, ...}

f ( ) λx −λ/ ! f ∈ X Pmf:
 Parameter: 0∞
 Mean: E(X)=

fX(x) = λxe λ/x!, for x ∈ X

 Mean: E(X) 
 Variance: Var(X)=

• Hypergeometric Distributionyp g
Experiment: Draw a sample of n (≤N) balls without replacement

from a box containing R red balls and NR white balls
Let X be the number of red balls in the sample Let X be the number of red balls in the sample

 Q: What is P(X=k)? 
 Example. The Committee Example. Example. The Committee Example.
 (c.f.) If drawn with replacement, what is the distribution of X?

Probability Mass Function

P (X = k) =
(Rk)(

N−R
n−k )

  
y

 Theorem. For k = 0, 1, 2, …, n, 

(Notice that             when either t<0 or r<t.) 

P (X = k) =
(Nn)

.

r
t ≡ 0
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p. 4-35
proof. 

 (exercise) Show that the following function is a pmf.

f(k) =
R
k

N−R
n−k / N

n
, k = 0, 1, . . ., n,

 The distribution of the r.v. X is called the hypergeometric 
di ib i i h N d R

f(k) = k n k n

0, otherwise.

distribution with parameters n, N, and R.

The hypergeometric distribution is called after the 
hypergeometric identity:

Theorem The mean and variance of hypergeometric(n N R) are

hypergeometric identity:

Theorem. The mean and variance of hypergeometric(n, N, R) are

μ = nR
N and σ2 = nR(N−R)(N−n)

N2(N−1) .

p. 4-36proof. 
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p. 4-37Theorem. Let Ni→∞ and Ri→∞ in such a way that
pi ≡ Ri/Ni → p,

where 0 < p < 1, then

Ri
k

Ni−Ri

n−k n k(1 )n−kk n k
Ni

n

→
k

pk(1− p)n−k.

proof.proof. 

p. 4-38Summary for X ~  Hypergeometric(nNR)
 Range: 

Pmf:
X = {0, 1, 2, ..., n}

f (x) R N−R / N for x ∈ X Pmf:
 Parameters: n, N, R ∈ {1, 2, 3, …} and n≤N, R≤N
 Mean: E(X)=nR/N

fX (x) = x n−x /
n

, for x ∈ X

 Variance: Var(X)=nR(NR)(Nn)/(N2(N1))

 Reading: textbook, Sec 4.6, 4.7, 4.8.1~4.8.3
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