Random Variables
* A Motivating Example

» Experiment. Sample £k students without replacement from the
population of all n students (labeled as 1, 2, ..., n, respectively)
In our class.

» Q= {al combinations} = {{i,, ..., i;}: 1<6,<---<¢,<n}

» A probability measure P can be defined on Q, e.g, when thereis
an equally likely chance of being chosen for each students,

P({i1,...,ix}) =1/(}).

» For an outcome nweQ2, the experimenter may be more interested
In some quantitative attributes of o, rather than the o itself, e.g.,

» The average weight of the & sampled students
» The maximum of their midterm scores

= The number of male students in the sample

Q: What mathematical structure would be useful to characterize
the random quantitative attributes of ®’s?

;lL\’/T

w ‘ > R
* Definition: A random variable X is afunction which maps the
sample space Q) to the real numbersR, i.e.,
X.Q—>R.

» The P defined on Q2 would be transformed into a new
probability measure defined on R through the mapping X
= the outcome of X israndom, but the map X is deterministic

»Example (Coin Tossing): Toss afair coin 3 times, and let

« X, = thetotal number of heads
X, = the number of heads on the first toss
X3 = the number of heads minus the number of tails

« Q ={ hhh, hht, hth, thh, htt, tht, tth, ttt}
L A
X,: 3 2 2 2 1 1, 1, o0

X,: 1, 1, 1, O 1, O, O O
X;: 3 1, 1, 1, -1, -1,-1, -8
» O: Why particularly interested in functions that map to “R”?
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» Q: How to define the probability measure of X (Py) from P?
Ans. For aset (an event) ACR,
Px(X € A)=P{w: X(w) € A}).
The P, is often called the distribution of X.

A
A occurs & 0 — R
E , occurs P Px
Px(A) = P(Ej) X Px(A) =77

Discrete Random Variables
* Definition: For arandom variable (r.v.) X, let
X ={X(w) :weQ},
be therange of X. Then, X iscalled discreteif x isafiniteor
countably infinite set, i.e.,
X =A{zx1,...,xn} or X = {x1,x9,...}.
»Example. The X, X,, X;in the Coin Tossing example.
e Q: Thesample space of ar.v. isthereal line R. Arethere some

particular ways to depict a probability measure (p.m.) on R?[c.f.,
for general sample space 2, ap.m. isdefined on (all) subsets of 2]

Ans. 3 commoniy used tools to depict the p.m. of discreter.v.’s:
1.Probability mass function (pmf)
2.Cumulative distribution function (cdf)
3.Moment generating function (mgf, Chapter 7)
» Definition: If X isadiscreter.v., then the probability mass
function of X isdefined by
fx(x)=Px{X =2})=PHweN: X(w) =1z}
for xeR. (c.f., the p: Q—R in LNp.2-5)
= Example. For the X, in the Coin Tossing example,
o X=1{0,1,2,3}
o fx,(0)=1/8, fx,(1)=3/8,
fx,(2) =3/8, fx,(3)=1/8.
and fx,(z)=0, forzé¢ X.
o Graphical display | |

= Example (Committees). A committee of size n=4is selected
from 5 men and 5 women. Then,

o Q={combination of 4}, #0Q = (') = 210 , P(A)=#A#Q
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pmf




o Let X be the number of women on the committee, then
o fx@)=Px(X=2)= () (,°,)/(})
*fx(0) = fx(4) = 535, [fx(1) = fx(3) =535,
» Q: What should apmf look like?

Theorem. If f isthe pmf of r.v. X withrange x , then
(i) fy(x) > O, foradl x € R,
(ii) fx(z) =0, for = ¢ x, N
(i) > cr fx(x)=1. IR

(iv) moreover, for ACR, Px(X € A) =) canx [x ().

= Theorem. Any function f that satisfies (i), (ii), and (iii) for
some finite or countably infinite set x isthe pmf of some
random variable X.

o Henceforth, we can define “pmf” as any function that
satisfies (i), (ii), and (iii).

o We can specify adistribution by giving y and f, subject
to the three conditions (i), (ii), (iii).

o O: Suppose that X and Y aretwo r.v.’swith same pmf. Is
it dlways true that X (o) = Y(w) for oeQ?

> Definition: A function F'y is called the cumulative distribution
function of arandom variable X if

Fy(x)=Py(X<z),zeR.
(Note. The definition of cdf can be applied to arbitrary r.v.’s)
« Example. For the X, in the Coin Tossing example,

, N pmf

0, x <0,
1/8, 0<xz<1,
Fx (z)=1< 4/8, 1<z <2, ]
7/8, 2<ux <3, N
1, 3 < x. | |
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» Q: What should a cdf look like?

Theorem. If F'y isthe cdf of ar.v. X, then it must satisfy the
following properties:

(1)0< Fy(z) < 1.

proof. 0< Fx(z) = P({w € 2: X(w) € (—o0,2]}) < 1.
_(2) Fy(x) isnondecreasing, i.e., Fy(a)< Fy(b) for a<b.
proof. For a<b, (—o0,a] C (—o0,b],

Fx(a) = Px((—o0,a]) < Px((—oo,

—(3) For any z€R, F'y(x) is continuous from the right, i.e.,
Fx(x) = Fx(z+) = limy), Fx(t),
QI’OOf. Let x,, be a sequence s.t. x,, | x.

A — D ((_~nn alN < D ((_~~ FIN — B (h
vi) — v

; )
LX\U).

(4) lim Fx(z)=1 and lim Fx(z)=0,

T—r— 00

proof. Let z,, | —oo, then E,, = (—o0,z,] | 0.

i, Fxlan) = Jim, Pr((=e0,2u])

— Px (nli_{& En) = Px(0) = 0.

Similarly, if z,, 1 oo, then E,, = (—o0,z,] T R, and

Jrn Fx(en) = Jim, Px((Zoo,2n])

— Py ( lim E,,_) — Px(R) = 1.

n—oo

(5) P(X>2)=1-F\(z) and Py(a<X<b)=Fy(b)—Fy(a).

“I’O f Px(X>$) = l—Px({X>$}c)
= 1—Px(X§£L‘):1—Fx( )

For a < b, (—o0,a] C (—o0,b], and

Px(a < X <b) = Px((—00,b] \ (—00,al)
= Px((—00,b]) — Px((—00,a]) = Fx(b) — Fx(a).
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(6) Moreover, if X isdiscrete with pmf f, then for xeR,
Fx(z) =) eiex fx(v;), and fx(z) = Fx(z) — Fx(z—).

x5 X

1 —

proof. Fx(z) = Px (X € (—o0,x]) =

So, fx(x) = Px({z}) =

= Px((—o00,z]) — pv((_on

(7) F has at most countably many discontinuity points.

proof. Let D be the collection of discontinuity points.
For z € D, let T, = (Fx(z—), Fx(z)).
Because Fx(z—) # Fx(z),
3 a rational number, denoted by r,, in 7.

Because the set of rational numbers is a countable set,
D is either finite or countably infinite.

» Theorem. If afunction F' satisfies (2), (3), and (4), then Fisa
cumulative distribution function of some random variable.

* Transformation

Q *R

»Theorem. Let X beadiscreter.v. with range x and pmf f; let
Y= g(X)

then, therange of Yis
Y={9(z):zec X},

I.e., Yisadiscreter.v., and the pmf of Yis

fr(y) =20 vex fx().

g(z)=

proof. Since {w € Q: Y (w) U {we: X(w) ==z},

TEX
g(z)=y

Y Pwe:X(w) =z})= > fx(x)

zeX zEX
g(=)=y g(=)=y

= Example. If Y=X?, then fy (v) = fx (V) + fx (=)
+ Reading: textbook, Sec 4.1, 4.2, 4.10




Expectation (M ean) and Variance

* : We often characterize a person by his’her height, weight, hair
color, .... How can we “roughly” characterize a distribution?

e Definition: If X isadiscreter.v. with pmf f, and rangey , then the
expectation (or called expected value) of X is

E(X) =2 pex zfx(2),
provided that the sum converges absolutely.

»Example. If all valuein x are equally likely, then E(X) is
simply the average of the possible values of X.

» Example (Committees). In the committees example,
5 50 100 50 5
E(X):0~2—10-|-1-m+2-m+3°2—10+4-%=2.
» Example (Indicator Function).
= For an event AcQ2, the indicator function of A isther.v.

1, ifweA,
1A(°")_{0, ifwe A

=« Itsrangeis{0, 1} and itspmf is

f0)=HAA)=1-KA) and f(1)=H(A),
for ap.m. P defined on Q.
S0, FE(14)=0-[1—P(A)]+1-P(A) = P(A).
> Intuitive Interpretation of Expectation

» Expectation of ar.v. parallels the notion of a weighted
average, where more likely values are weighted higher than
less likely values.

= It is helpful to think of the expectation asthe “center” of
mass of the pmf

ncenter of gravity: If we have arod with weights f a each
possible point z, then the point at which therod is
balanced is called the center of gravity.
. PS p(-1)=.10, p(0)=.25 p(1)=.30, p(2)=.35

-1 0 Al 2 A = center of gravity = .9

» EXpectation can be interpreted as
along-run average (Chapter 8)




 Expectation of Transformation
»Theorem. If X isadiscreter.v. with rangex and pmf f; let
Y= g(X),
and y betherange of Y, £, bethe pmf of Y, then
E(Y) =) ey ufy () = 2per 9(x) fx (),
provided that the sum converges absol utely.
proof. 3" g(@)fx(z) =Y Y g(@)fx(x)

g(z)=y

« Example. E(X?) =3, .4 2% fx(2). =

»Theorem. For a, b € R, E(aX+b) = a- E(X)+b.
Proof. gax +5) =3 (az +b) fx(@) = o3 afx(@)] + b3 fx(@)

zeX zeX zeX

X 3X 3X+3

81018 N O I Y N O l l
A A

A

*» Mean and Variance.

» Definition. The expectation of X isalso called the mean of X
and/or f . Thevariance of X (and/or f) isdefined by

Var(X) = E[(X — px)*] = Xex( — px)* fx(2).
provided that the sum converges.
» Example (Committees)

fl)  xf(@) (z—p)?flx) *f(z)
5/210  0/210 20/210 0/210
50/210  50/210  50/210  50/210
100/210 200/210  0/210  400/210
50/210 150/210  50/210  450/210
5/210  20/210  20/210  80/210
Totals 1 2 2/3 14/3

So, u=2and o2 = 2/3

= The E(X) is often denoted by 1, and Var(X) by o% . Also,
ox = +/o% Iscalledthe standard deviation of X.
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= Note.
o 1y and 52 only dependson f. They are fixed constants,
not random

olf X has units, then 1y and oy have the same unit as X
and variance has unit squarecf(

> Intuitive Interpretation of Variance

= Variance is the average value of the squared
deviation of X from u. ‘ ‘ |

= Variance isrelated to how the pmf is spread out

» Some properties of variance.
= The variance of ar.v. is always non-negative

= The only r.v. with variance equal to zeroisar.v. which can
only take on asingle value.

»Theorem. For a, b € R, Var(aX+b) = a? Var(X)
proof. Let Y = aX + b, then E(Y) =a-ux +b= py.
Var(Y) = B(Y - py)? = E[(aX +b) — (apux + b)J?
= E[a*(X — px)?] =a*E(X — px)? = a*Var(X)

3X+3

X 3X

» Theorem. If X isadiscreter.v. with mean u, then for any ceR,
E[(X —¢)*] = 0% + (c — px)*.
Proof. Ei(x - o = BI(X — ux +ux — ¢l = D [(@— ux + ux — ¢)fx(2)

TEX
= Y@ - ux)? + 2z — ux)(ux — ) + (ux — ) fx (@)

TEX

= Z(LU — px)*fx(x) +2(ux — ¢) Z($ — px)fx (@) + (ux —c)? Z fx(z)

= Corollary. E[(X—c)?] isminimized by letting c=u; and the
minimum valueis o%.
=« Corallary. o3= E(X?) — (E(X))2
(Recall:  E(x?) =3, ., 2°fx(2))
o Example (Committees). Var(X)=14/3-22=2/3.
> E(X7) is often called the n" moment of X
% Reading: textbook, Sec 4.3, 4.4, 4.5




Some Common Discrete Distributions

* Bernoulli and Binomial Distributions

»Experiment: A basic experiment with sasmple space QO is
repeated n times.
= Example. (a) Sampling with replacement (b) Coin Tossing
(c) Roulette
= The sample space for then trialsis
Q=Q, X - X Qy=Q"
= Assume that events depending on different trials are
Independent

= Q: Given an event A,CQ,, what isthe probability that A,
occurs k timesin then trials?

= Problem Formulation: Let A.CQ be
A, ={ A, occurson the " trial}, and

X=14++14,,
Q: What is P(X=k)?
(Note. A,, ..., A, are assumed to be independent events.)
» Example (Rouleite, n=4, k=2, LNp.2-3).
oLet W, ={Win oni"h Game}
L,=Ws={Loseoni" Game}.
Then, P(W,)=9/19 = p and P(L,)=10/19=1-p=q
olLet X =1, + 1w, + 1w, + 1w,, then
{(X =2} =W 1nNnWanNLsNLy)U(WiNLaNWs3N Ly)
UWiNLoNLsNWy)U (L NWo N W3 N Ly)
U(Ly NWo N L3N W4) U (L1 N Ly N W3 N Wy)

o S0,

+P(Ly N Ly N Ws N W)
P(W1)P(W2)P(L3)P(Lg) + - -
+P(L)P(Ls) P(Ws) P(W3)
pprqq + pgpq + pqqp

+4gppq + qpgp + qqpp

6p>q°.




» Probability Mass Function P 419
«Let A, ..., A, beindependent eventsand P(A,)=p, i=1, ..., n.
nlet X =14, +---4+14,. y n=10udp=.]
=« Then, for k=0, 1, ..., n, :

n

P =k = ()=

proof. We may choose k trials in (%) ways.
Say, {1,2,3,...,k} is chosen.

¢ c
[][] eee [ ] P(Alm"'ﬂAkﬂAkHﬂ---nAn}

= P(A;) x---x P(Ax) x P(A54,) X --- x P(A;})
= p*(1—-p" "
= (exercise) Show that the following function is a pmf.
(Z)pk(l —p)" Tk k=0,1,...,n,
0, otherwise.

» The distribution of ther.v. X is called the binomial
distribution with parameters n and p. In particular, when n=1,
it is called the Bernoulli distribution with parameter p.

aNotice that abinomial r.v. can be regarded as the sum of 7™
independent Bernoulli r.v.’s.

o The binomial distribution is called after the Binomial
Theorem: —(a + )" = 34, (3)a*b"*.
= Example (Bridge). Q: What is the probability that South gets
no Aceson at least k=5 of n=9 hands?
oLet A.={no Aceson theit hand}, i=1, 2, ..., 9, and
X=14,+ -4+ 14,
oThen, P(4;) = (13)/(}2) ~ 0.3038 = p.
nSo, fork=0,1,...,9,
Pec=1)= ()o@ -
nAnd, 9 9
P(X >5) = Z (k)pk’(l —p)" % ~0.1035.

k=5

» Theorem. The mean and variance of the ;
Binomial(n, p) distribution are ] /\
p=mnp and o =np(l—p).




proof.
E(X) = ( ”\ p(1—p)" = = Y‘m

=

(X* - X) =
/n\

N\a)

—1) \u,—z;) _
z— Nn — 2! p (1_p)n

—z)!

»Summary for X ~ Binomial(n, p
- Range: X = {0, 1,2, ..., n}
«PMf: fx(z) = (})p"(1—p)" % forze X
« Parameters. ne{1, 2, 3, ...} and 0<p< 1
» Mean: E(X)=np

» Variance: Var(X)=np(1-p)

» Geometric and Negative Binomial Distributions
»Experiment: A basic experiment with sasmple space Q, is
repeated infinite times.
= The sample spaceis
Q:Q()X Qox Qox °cc
= Assume that events depending on different trials are
Independent

= For agiven event A,C(2,, we continue performing the trials
until A, occurs exactly r times

» Q: What isthe probability that we need to perform & trials?




= Example. e
o A company must hire 3 engineers. L e LJL
o Each interview results in a hire with probability 1/3
o Q: What isthe probability that 10 interviews are required?

oWe need: (i) 2 hires on the first 9 interview (ii) Success on
the 10" interview

= So, the probability is(9) (1) (%)7 § (i) _ (9> (1) (2)7.
2)\3) \3 3 2)\3) \3
» Problem Formulation:
olLet Al, AZ’ ... C Qbe
A, ={A, occurson thei trial}, and
Xpn=14,+ - 4+1y ,forn=1,23,...

oLet Y, = smalest n with X > 1,

Y, = smallest n with X > 2,

e _ OO Leee
Y =smallest n with X, > 7,

o Q: What is A(Y =k)?

» Probability Mass Function
«Let A, A,, ... beindependent and P(A,)=p, i=1, 2,3, ....
= Then, for k=r, r+1, r+2, ...,
k-1
P(Y, =k) = ( )pr(l —p)* "
r—1
proof. Ifr=1, P(Y; = k) = P({Xx—1 =0} N Az)
P({Xy-1=0})- P(Ax) = (1 —p)*'p
In general, P(Y, = k) = P{Xx_1 =1 —1}N Ag)
= P({Xk-1=r—1})  P(Ax)
k—1
= (T _ 1)p'"‘l(l —p)*"p
= (exercise) Show that the following function is a pmf.
k—1\, r k—r
_ (T_l)p (1—p)* 7", k=rr+1,...,
f(k) { 0, otherwise.
= Thedistribution of ther.v. Y is called the negative binomial

distribution with parameters r and p. In particular, when r=1,
It is called the geometric distribution with parameter p.
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o A negative binomial r.v. can be regarded as the sum of r
Independent geometricr.v.’s.

([ Jeee (| eee [J]| eee |[Ieee (1]

o The negative binomia distribution is called after the
Negative Binomia Theorem:

1 (r+E-1)
=0 _kZ=O( L )tf, for |¢| < 1.
» Theorem. The mean and variance of negative binomial(r, p) is
p=r/p and o =r(1-p)/p°.
proof.

r i € - (3" — 1)! pr+1(1 _p)z—r

r-(r— 1Dz —r)!
o=r T\ A /

: 1) (1 — p)(::+1)—(r+1)

-1 _
(r + 1) - 1)””1(1 —p)V " =r/p
y=r+1

E[X(X +1)] = E(X?*+ X) = E(X*) + E(X)

(o o]

>+ (7] )ra-pe

T=r

r(rp—;— 1) ;:' . (z+1z-(z—1)! p,.+2(1 B p)(x+2}_(,.+2)

+1)r-(r— 1)z —r1)!

r(r p—zl— 1) Z (((-: 1‘ ;)) : i) P2 (1 — p) @t —(r2)

# Z ((r -:l{- ;)1_ 1)pr+2(1 _ p)y—(r+2)

y=r+4+2
r(r+1)/p?
Var(X) = E(X?) - [E(X)]? = [B(X?) + E(X)] — E(X) — [E(X)]?
_ r(r+1) r f_'r(l—p)

p2 p p*  p?

»Summary for X ~ Negative Binomial(r, p)
« Range X = {r,r +1,7+2,...}
« Pmf: fx(z) = (f:i)pr(l —p)* ", forx e X
« Parameters. re{1, 2, 3, ...} and 0<p< 1
=« Mean: E(X)=r/p
» Variance: Var(X)=r(1-p)/p?




 Poisson Distribution
» Recall: Expression for e*, e=2.7183- -

« First Expression: €* = limy, oo (1+2) .

, o 1 _k
= Second Expression; € =) ;5% -

» The Derivation
=« Consider a sequence of binomial(n, p,) distributions satisfying
(& p,, > Owhenn — oo
(b) n-p, — A whenn — oo, where 0 <A < oo
« Then, p, =~ A/In when n islarge enough.

n And, (Z)pl:b(l . pn)n—k
k n—k n—~k
g (3) (- g (o2)

= Here, for each fixed £,
n—k
lim % =1 and lim (1 — é) — e .

n— 00 nk n—o0 n

= S0, when n large and n. > &, @%1 nd (1i)nk%ex.

n n

p. 4-28

= In other words, when n large, n > k, and p, ~ 0,

1

Y & n—k . * yk_—X
(k>pn(1—pn) = k:!)\ e .

Joodoooddn e e e [T
»Example.

= A professor hits the wrong key with probability p=0.001 each
time he types a letter. Assume independence for the
occurrence of errors between different letter typings.

= Q: P(5or more errorsin n=2500 letters)=??
= Ans.

o Let X be the number of errors, then X~binomial (2500,
0.001) and

P(5 or more errors) =1 — P(X < 4)

4
2500 _
— 1—2( B )(0.001)’“(0.999)2500 k,

k=0
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o The probability can be approximated by Ake~* /k! with
A = 2500 x 0.001 = 2.5 times of errors,
where 2.5 is the expected number of the errors that would
occur in the 2500 typings. (Q: What should the A’ s be for
5000 typings, 7500 typings, and 10000 typings?)
00, P(X =k) = (2 5)k6_2'5/k| for k=0,1,2,3,4, and
k —25

1-P(X<4)~1- Z (2. 5)k| — 0.1088.
k=0

» Probability Mass Function

= T heorem. Let N
AMe X £ =0,1,2,...,

sy ={ o

then, f(k) isapmf.
proof. LNp 4-5, () & (ii) are straightforward. For (iii),

k_—X  yk
=5 (£ e

0, otherwise.

k=0 k=0
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o The pmf is called the Poisson pmf with parameter A. The
distribution is named after Simeon Poisson, who derived
the approximation of Poisson pmf to binomia pmf.

o The A can be interpreted as the average occurrence
frequency.

: { ' h=5 ., A=10
_ 0Hl'l Hﬂﬂn_.. 0;

0123 453 01 23 45 012345678901 RBUISIEITIEIND 0123456789001 BUIS6EITBIIN
X

@
>Theorem. The mean and variance of Poisson(}) is
p=XA and o% =\
proof.




= Note: For X~hi nom|al(n p) Wher e (1) n large; (i) p small,
o distribution of X ~ Poisson(A=np)
o F(X) = np = mean of the Poisson = A
o Var(X)= np(1—p) = variance of the Poisson = A
» Poisson Process
« Example:

(1) # of earthquakes occurring during some fixed time span
(2) # of people entering a bank during atime period

0

2% 3
To model them, we can

oDivide the time period, say [0, ], into n small intervals

o Make the intervals so small (i.e., n islarge) that at most
one event can occur in each interval

— Then, we can treat the number of eventsinasingle * "
interval asaBernoulli r.v. withasmall p,

o Assume that the number of eventsto occur in
non-overlapping intervals are independent

= Now, the number of eventsin the whole period of time
[0, t] isbinomial(n, p,), where n is aquite large number
and p,, Isasmall probability

o The distribution for the number of events occurring in [0, ¢]
can be approximated by Poisson(n:p,)

= Definition. A Poisson processwith rate A isafamily of r.v.’s
N,, 0<t<oo , for which
N,=0 and N,—-N,~Poisson(r:(t—s)),
for 0<s<t<oo , and
Ni, — Ng,,1=1,2,....m
are independent whenever
0<5,<t;<5,<t, <+ <5, <t .
o Here, N, denotes the # of events that occurs by time ¢
o A iSthe average # of events occurring per unit time




=« Example.

o Traffic accident occurs (at ¥, 78 %6 & & Mk a,eq.)
according to a Poisson process at a rate of A=5.5 per month

o Q: What is the probability of 3 or more accidents occur in
a 2 month periods?

oHere, At =5.5x2 =11. (Q: What should At be for one and
half months? for ayear?)

aS0, (N, = k) = 11*-¢-1Y/k! and

o
Z

8_11 . llk

P(Ny>3)=1-P(Ny<2)=1— i

=0

»Summary for X ~ Poisson(i)
« Range: X ={0,1,2,...}
« PMf: fx(z) = \%e */x!, forx € X
» Parameter: O<i< oo
=« Mean: E(X)=\
» Variance: Var(X)=A

« Hypergeometric Distribution
» Experiment: Draw a sample of n (<NN) balls without replacement
from a box containing R red balls and N—R white balls

= Let X be the number of red ballsin the sample
» Q: What is A(X=k)?
« Example. The Committee Example.
= (C.f.) If drawn with replacement, what is the distribution of X?

» Probability Mass Function
« Theorem. For £=0,1, 2, ..., n, [1[] eee [J[]

(Notice that (%) = 0 when either t<0 or r<t.)




proof. Label the N balls as ry,...,7g, w1, ..., WN—R-
(2: combinations of size n from N different balls. = #) =

fO<k<Rand0<n—-kE<N-R,

k red balls may be chosen in (R\ wavs
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n — k white balls may be chosen in (n_ k) ways.
= #H{X =k} = () (52F)
= (exercise) Show that the following function is a pmf.
Ry (N—R N
_ L WE/G) k=01n
f() { 0, otherwise.

= The distribution of ther.v. X is called the hypergeometric
distribution with parametersn, NV, and R.

o The hypergeometric distribution is called after the

hypergeometric identity: /, 1 p " /a b
() =Z 0

» Theorem. The mean and variance of hypergeometric(n, IV, R) are

n nR(IN—R)(N—n
,LL——R and o2 = (NQ(N)_(l) )

proof.
E(X) = Z -

R)(N R

o

_ nR - (YD) RS AT R
N (n-1) N ) N

r=1 n—1 y=0 n—1

(hes)
Z:c R z)! ' (N)

n

E[X(X —1)] = B(X? - X) = E(X?) — E(X)

s GOD _§n iy R

O E= z(R—z)!

N-2 R—2
n(n— )RR — 1) & Z (22 (3t
NN —1)

(n2)

()R nn— )RR -

(¥2) - NV -1

n(n —1)R(R—1) &«
N(N —1) ?;)
Var(X) = E(X?) - [E(X)]* = [E(X?) — E(X)] + BE(X) - [E(X))?
n(n—1)R(R—1) nR (nR\? nR(N —R)(N —n)
NN-1) N _(W) - N2(N-1)




» Theorem. Let N,—o00 and R,—oo in such away that
where 0 <p < 1, then

() oy

D1 { AT
I;: AP

\= T ~%

T KB(Ri—k)! (n—k)[(N;—R;) — (n—k)]! !

2 \1
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i
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»Summary for X ~ Hypergeometric(n, N, R)
« Rangee X ={0,1,2,...,n}
« Pmf: fx(2) = () (52)/(5), forz € X
» Parameters: n, N, R € {1, 2,3, ...} andn<N, R<N
« Mean: E(X)=nRIN
« Variance: Var(X)=nR(N-R)(N—n)/(N?(N-1))

*+ Reading: textbook, Sec 4.6, 4.7, 4.8.1~4.8.3



