
p. 2-1Sample Space and Events
• Sample Space : the set of all possible outcomes in a random 

phenomenon. Examples:

1.Sex of a newborn child:  = {girl, boy}

2.The order of finish in a race among the 7 horses 1, 2, …, 7:

 = {all 7! Permutations of (1, 2, 3, 4, 5, 6, 7)}

3.Flipping two coins:  = {(H, H), (H, T), (T, H), (T, T)}

4.Lifetime of a transistor:  = [0, )

• Event: Any (measurable) subset of  is an event. Examples:
1. A={girl}: the event - child is a girl.
2. A={all outcomes in  starting with a 3}: the event - horse 3 wins

the race.
3 A={(H H) (H T)}: the event head appears on the 1st coin3. A={(H, H), (H, T)}: the event - head appears on the 1st coin.
4. A=[0, 5]: the event - transistor does not last longer than 5 hours.
• an event occurs: outcome  the eventan event occurs: outcome  the event

• Q: How many different events if #=n < ?

p. 2-2
• Set Operations of Events

Union. C: either A or B occursC = A ∪B ⇒
Intersection. C: both A and B occur

Complement. C: A does not occurC = Ac ⇒
C = A ∩B ⇒

p

Mutually Exclusive. A and B have no 
outcomes in common.

A ∩B = ∅ ⇒

Definitions of union and intersection for more than two 
events can be defined in a similar manner 

S Si l R l f S t O ti• Some Simple Rules of Set Operations

Commutative Laws.

A i ti L

A ∪ B = B ∪ A and A ∩ B = B ∩ A

Associative Laws. 

Distributive Laws (A B) C (A C) (B C)

(A ∩ B) ∩ C = A ∩ (B ∩C).

Distributive Laws.

DeMorgan’s Laws.

(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C)
(A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C)

(∪ni=1Ai)
c
= ∩ni=1Ac

i and (∩ni=1Ai)
c
= ∪ni=1Ac

i .

 Reading: textbook, Sec 2.2
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p. 2-3

• The Classical Approach

Probability Measure

Sample Space  is a finite set

Probability: For an event A, 

Example (Roulette):
P (A) =

#A

#Ω
p ( )

  = {0, 00, 1, 2, 3, 4, …, 35, 36}

 P({Red Outcome}) = 18/38 = 9/19.({ })

Example (Birthday Problem): n people gather at a party. What 
is the probability that they all have different birthdays?

  = lists of n from {1, 2, 3, …, 365}

 A = {all permutations}

 Pn(A) = (365)n/365n


n 8 16 24 32 40n 8 16 24 32 40

Pn(A) .926 .716 .462 .247 .109

p. 2-4
Inadequacy of the Classical Approach

P (A) =
#A

#Ω
 It requires:

Finite 

( )
#Ω

Symmetric Outcomes
 Example (Sampling Proportional to Size):

N invoicesN invoices.
Sample n < N.
Pick large ones with higher probability.g g p y
Note: Finite , but non equally-likely outcomes.

 Example (Waiting for a success): 
Play roulette until a win.
 = {1, 2, 3, …}.
P = ??P = ??

 Example (Uniform Spinner):
Random Angle (in radians).g ( )
 = (, ].
P = ??
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p. 2-5
• The Modern Approach

A probability measure on  is a function P from subsets of  to 
the real number that satisfies the following axioms:

(Ax1) Non-negativity. For any event A, P(A)0. 

(Ax2) Total one. P()=1

(Ax3) Additivity. If A1, A2, …, is a sequence of mutually 
l i t i A ÅA ∅ h i j thexclusive events, i.e., AiÅAj=∅ when ij, then

 Notes:
P (A1 ∪A2 ∪ · · ·) = P (A1) + P (A2) + · · · .

 Notes: 

These axioms restrict probabilities, but do not define them.

Probability is a property of eventsProbability is a property of events.

Define Probability Measures in a Discrete Sample Space. 

Q: Is it required to define probabilities on every events? (e g Q: Is it required to define probabilities on every events? (e.g.,
n possible outcomes in , 2n1 possible events) 

 Suppose  = {1, 2, …}, finite or countably infinite, let Suppose   {1, 2, …}, finite or countably infinite, let
satisfyp : Ω→ R

p(w) ≥ 0 for all ω ∈ Ω and ω∈Ω p(w) = 1.

p. 2-6
Let 

for A⊂ then P is a probability measure (exercise)

P (A) = ω∈A p(ω)

for A⊂, then P is a probability measure. (exercise)

(Q: how to define p?)

 Example: In the classical approach Forp(ω) 1/#Ω Example: In the classical approach,                        For 
example, throw a fair dice, ={1, …, 6}, p(1)=…=p(6)=1/6 
and P(odd)=P({1, 3, 5})=p(1)+p(3)+p(5)=3/6=1/2.

p(ω) = 1/#Ω.

 Example (non equally-likely events): Throwing an unfair dice 
might have p(1)=3/8, p(2)=p(3)=…=p(6)=1/8, and 
P(odd)=P({1 3 5})=p(1)+p(3)+p(5)= 5/8 (c f ExampleP(odd)=P({1, 3, 5})=p(1)+p(3)+p(5)= 5/8. (c.f., Example
in LNp.2-4)

 Example (Waiting for Success – Play Roulette Until a Win):Example (Waiting for Success Play Roulette Until a Win):

Let r=9/19 and q=1r=10/19

 = {1, 2, 3, …}  {1, 2, 3, …}

 Intuitively, p(1)=r, p(2)=qr, p(3)=q2r, …, p(n)=qn1r, … >0, 
and ∞ ∞

n=1

p(n) =
n=1

rqn−1 =
r

1− q
= 1.
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p. 2-7
 For an event A⊂, let

P (A) = n∈A p(n).

For example, Odd={1, 3, 5, 7, …}
∈

P (Odd)

∞
(2k + 1)

∞
(2k+1)−1

∞
2kP (Odd) =

k=0

p(2k + 1) =
k=0

rq(2k+1) 1 = r
k=0

q2k

= r/(1− q2) = 19/29.

• Some Consequences of the 3 Axioms

Proposition: If A is an event in a sample space  and Ac is the

/( q ) /

P (Ac) = 1− P (A).

Proposition: If A is an event in a sample space  and A is the
complement of A, then

Proposition: For any sample space , the probability of the 
i i

P (∅) = 0.empty set is zero, i.e., 

p. 2-8
Proportion: For any finite sequence of mutually exclusive 

events A1, A2, …, An, 
P (A ∪A ∪ ∪A ) P (A ) + P (A ) + + P (A )

Proposition: If A and B are events in a sample space  and

P (A1 ∪A2 ∪ · · ·∪An) = P (A1) + P (A2) + · · ·+ P (An).

Proposition: If A and B are events in a sample space  and 
A⊂B,  then

P (A) ≤ P (B) and P (B − A) = P (B ∩ Ac) = P (B) − P (A).( ) ( ) ( ) ( ) ( ) ( )

Proposition: If A is an event in a sample space , then

Proposition: If A and B are two events in a sample space ,

0 ≤ P (A) ≤ 1.
p p p

then P (A ∪B) = P (A) + P (B) − P (A ∩ B).
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p. 2-9Proposition: If A1, A2, …, An are events in a sample space , 
then P (A1 ∪ · · ·∪ An) ≤ P (A1) + · · ·+ P (An).

Proposition (inclusion-exclusion identity): If A1, A2, …, An are
any n events, let

σ1 =

n

P (Ai),
i=1

σ2 =
1≤i<j≤n

P (Ai ∩Aj),

Q: For an outcome w contained in 
m out of the n events, how many 
times is its probability repetitively 1≤i<j≤n

σ3 =
1≤i<j<k≤n

P (Ai ∩Aj ∩Ak),

times is its probability repetitively 
counted in 1 , …, n?

· · · = · · ·
σk =

1≤i1<···<ik≤n
P (Ai1 ∩ · · · ∩ Aik)

1≤i1<···<ik≤n
· · · = · · ·
σn = P (A1 ∩A2 ∩ · · · ∩An).

thenthen,

P (A1 ∪ · · · ∪An) = σ1 − σ2 + σ3 − · · ·+ (−1)k+1σk + · · ·+ (−1)n+1σn.

p. 2-10

 Notes:
n

There are        summands in k

 In symmetric examples,

n

k

 It can be shown that

σk =
n

k
P (A1 ∩ · · · ∩ Ak)

 It can be shown that
P (A1 ∪ · · ·∪An) ≤ σ1

P (A1 ∪ · · ·∪An) ≥ σ1 − σ2( 1 n) ≥ 1 2

P (A1 ∪ · · ·∪An) ≤ σ1 − σ2 + σ3

· · · · · · · · ·
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p. 2-11
 Example (The Matching Problem).

Applications: (a) Taste Testing. (b) Gift Exchange.

Let  be all permutations  = (i1, …, in) of 1, 2, …, n. 
Thus, # = n!. 

Let

Aj = {: ij = j}    and                    ,A = ∪ni=1Ai

Q: P(A)=? (What would you expect when n is large?)

By symmetry, 
n

Here,

σk =
n

k
P (A1 ∩ · · ·∩ Ak),

for k = 1, …, n.

p. 2-12

So,
n

1
P (A) = σ1 − σ2 + · · ·+ (−1)n+1σn =

k=1

(−1)k+1 1
k!

,

n
k 1 1

Note: approximation accurate to 3 decimal places if n  6

P (A) = 1−
k=0

(−1)k 1
k!
≈ 1− 1

e
⇒ P (Ac) ≈ e−1

Proportion: If A1, A2, …, is a partition of , i.e.,

1 ∪∞ A Ω

Note: approximation accurate to 3 decimal places if n  6.

1.

2. A1, A2, …, are mutually exclusive,

th f t A 

∪∞i=1Ai = Ω,

then, for any event A⊂,

P (A) =

∞
P (A ∩ Ai).

i=1
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p. 2-13• Monotone Sequences 

 Q: How to define probability in a continuous sample space?

Definition: A sequence of events A1, A2, …, is called increasing
if

A1 ⊂ A2 ⊂ · · · ⊂ An ⊂ An+1 ⊂ · · ·
and decreasing if

1 ⊂ 2 ⊂ ⊂ n ⊂ n+1 ⊂

A1 ⊃ A2 ⊃ · · · ⊃ An ⊃ An+1 ⊃ · · ·
The limit of an increasing sequence is defined as

1 ⊃ 2 ⊃ ⊃ n ⊃ n+1 ⊃

lim An = ∪∞i=1Ai

and the limit of an decreasing sequence is
n→∞ i=1

lim An = ∩∞i=1Ai
n→∞ i=1

Example: If =R and                          , then Ak’s are decreasing 
and

Ak = (−∞, 1/k)

lim A {ω : ω < 1/k for all k ∈ Z } ( ∞ 0]lim
k→∞

Ak = {ω : ω < 1/k for all k ∈ Z+} = (−∞, 0].

Proportion: If A1, A2, …, is increasing or decreasing, thenProportion: If A1, A2, …, is increasing or decreasing, then

lim
n→∞

An

c

= lim
n→∞

Ac
n

p. 2-14
Proportion: If A1, A2, …, is increasing or decreasing, then

lim P (An) = P lim An .
n→∞

( )
n→∞

Example (Uniform Spinner): Let  = (, ]. DefineExample (Uniform Spinner): Let   ( , ]. Define

f bi t l ( b]  Th t d P t th b t i

P ((a, b]) =
b− a

2π
.

for subintervals (a, b]⊂. Then, extend P to other subsets using
the 3 axioms. For example, if  < a < b < , 
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p. 2-15

P ([a, b]) = P

∞
(a − 1

k
, b] ∩ Ω = P

∞
(a− 1

k
, b] ∩ Ω

k=1
k

k=1
k

= lim
k→∞

P (a − 1

k
, b] ∩ Ω

k→∞ k

= lim
k→∞

1

2π
(b − a+

1

k
) =

b− a

2π
.

P ({a}) = P ([a, b]− (a, b]) = P ([a, b])− P ((a, b]) = 0.

 Some notes



 If C={1, 2, …}⊂, then

P (C) =

∞
P ({ωi}) = 0 + 0 + · · · = 0.

The probability of a rational outcome is zero

( )
i=1

({ i})

• Objective vs Subjective Interpretations of Probability• Objective vs. Subjective Interpretations of Probability

 Q: What do we mean if we say that the probability of rain 
tomorrow is 40%?tomorrow is 40%? 

Objective: Long run relative frequencies
Subjective: Chosen to reflect opinion

p. 2-16The Objective (Frequency) Interpretation

 Through Experiment: Imagine the experiment repeated N
times. For an event A, let

NA= # occurrences of A.

Then, 
P (A) ≡ lim

N→∞
NA

N
.

 Example (Coin Tossing):

N 100 1000 10000 100000

NH 55 493 5143 50329

 Example (Coin Tossing):

NH 55 493 5143 50329

NH/N .550 .493 .514 .503

The result is consistent with P(H)=0 5The result is consistent with P(H)=0.5.

The Subjective Interpretation

S A b bili i b i i i b Strategy: Assess probabilities by imagining bets
 Examples:

Peter is willing to give two to one odds that it will rainPeter is willing to give two to one odds that it will rain
tomorrow. His subjective probability for rain tomorrow is 
at least 2/3
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p. 2-17
Paul accepts the bet. His subjective probability for rain 

tomorrow is at most 1/3

 Probabilities are simply personal measures of how likely we 
think it is that a certain event will occur

Thi b li d h h id f d This can be applied even when the idea of repeated 
experiments is not feasible

 Reading: textbook, Sec. 2.3~2.7
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