



made by Shao-Wei Cheng (NTHU, Taiwan)

NTHU MATH 2810, 2011

NTHU MATH 2810, 2011	Lecture
□ For an event $A \subset \Omega$, let	p. 2-7
$P(A) = \sum_{n \in A} p(n).$	
For example, $Odd = \{1, 3, 5, 7,\}$	
$P(\text{Odd}) = \sum_{k=0}^{\infty} p(2k+1) = \sum_{k=0}^{\infty} rq^{(2k+1)-1} = r\sum_{k=0}^{\infty} q^{2k}$	î
$= r/(1-q^2) = 19/29.$	
• Some Consequences of the 3 Axioms $\Xi \mathbb{R} \mathcal{B} \mathbb{R} \mathcal{B} \to any color$)
Proposition: If A is an event in a sample space Ω and A^c is the	e r
complement of A, then $3 - P(A^c) = 1 - P(A).$ proof: $A^c \cup A = \mathcal{A}$, $A^c \cap A = \phi$	
$1 = P(\Omega) = P(A^{c}) + P(A)$	
Proposition: For any sample space Ω, the probability of the empty set is zero, i.e. $P(\Omega) = P(\Omega) + \sum_{n=2}^{\infty} P(\varphi)$ proof: In (Ax3) Let AI= Ω, A2An,= φ $P(\Omega) = 0$	
proof: In (Ax3) Let AIER, A2An, $p = 0$	
Proportion: For any finite sequence of mutually exclusive finite events $A_1, A_2,, A_n$, of Asiron $P(A_1 \cup A_2 \cup \cdots \cup A_n) \stackrel{\checkmark}{=} P(A_1) + P(A_2) + \cdots + P(A_n)$. proof: In (Ax3), Let Ann=Ann= $\cdots = \Phi$, Then, $\therefore P(\Phi) = 0$	p. 2-8
Proposition: If A and B are events in a sample space Ω and $A \subset B$, then	
$P(A) \le P(B)$ and $P(B-A) = P(B \cap A^c) = P(B) - P(A)$	· <u>R</u>
$proof: B = A \cup (B \cap A^{c}) \qquad by(A \times 1)$ $P(B) = p(A) + P(B \cap A^{c}) \ge P(A)$	B
Proposition: If A is an event in a sample space Ω , then	
This is Axiom! $A \times 1 \leftarrow 0 \le P(A) \le 1.=P(\Omega) \& A \subset \Omega$ in textback.	
Proposition: If A and B are two events in a sample space Ω ,	
then $P(A \cup B) = P(A) + P(B) - P(A \cap B)$	ß
proof: AUB=IVIIVIII, & I, II, III mutually exclusive	B
$P(A \cup B) = P(I) + p(II) + P(II)$ $P(A) = P(I) + p(II), P(A \cap B) = P(II)$ $P(B) = p(I) + p(II)$	

made by Shao-Wei Cheng (NTHU, Taiwan)

> Proposition: If
$$A_1, A_2, ..., A_n$$
 are events in a sample space Ω .
then $P(A_1 \cup \cdots \cup A_n) \leq P(A_1) + \cdots + P(A_n), \leq \Phi \otimes \Phi$
prof: $P((A_1 \cup \cup \cup A_n) \cup DA_n) \leq P(A_1 \cup \cdots \cup A_{n-1}) + P(A_n)$
(provide the events in the second s

made by Shao-Wei Cheng (NTHU, Taiwan)

NTHU MATH 2810, 2011

• Example (The Matching Problem).
• Applications: (a) Taste Testing. (b) Gift Exchange.
• Let
$$\Omega$$
 be all permutations $\omega = (i_1, \dots, i_n)$ of $1, 2, \dots, n$.
Thus, $\#\Omega = n!$.
• Thus,

made by Shao-Wei Cheng (NTHU, Taiwan)

NTHU MATH 2810, 2011 Lecture Notes > check example on LNp. 2-4 p. 2-13 Monotone Sequences **Q**: How to define probability in a continuous sample space? c.f. Definition: A sequence of events A_1, A_2, \ldots , is called *increasing* define P.M $A_1 \subset A_2 \subset \cdots \subset A_n \subset A_{n+1} \subset \cdots \subset \bigcap$ A2 fordiscrete sample and decreasing if A3 Aц $A_1 \supset A_2 \supset \cdots \supset A_n \supset A_{n+1} \supset \cdots \supset \mathcal{P}_{lm}$ space Ω Wp.26 A3 The limit of an increasing sequence is defined as A_2 $\lim_{n \to \infty} A_n = \cup_{i=1}^{\infty} A_i$ ImAn A, and the limit of an decreasing sequence is $\lim_{n \to \infty} A_n = \bigcap_{i=1}^{\infty} A_i$ Example: If $\Omega = R$ and $A_k = (-\infty, 1/k)$, then A_k 's are decreasing and $\lim_{k \to \infty} A_k = \{ \omega : \omega < 1/k \text{ for all } k \in \mathbb{Z}_+ \} = (-\infty, 0].$ (exercise) $A_k = (-\infty, -\frac{1}{k}] \land$ Ans $\lim A_n$ Proportion: If A_1°, A_2, \ldots , is increasing or decreasing, then =(-0, 0) $M_{p,2-2}$ $D_{eMorgonis} (\lim_{n \to \infty} A_n)^c = \lim_{n \to \infty} A_n^c (\bigcup_{b=1}^{\infty} A_b^\circ) = \bigcup_{a=1}^{\infty} A_b^\circ = \lim_{a \to \infty} A_b^\circ$ and p. 2-14 Proportion: If A_1, A_2, \ldots , is increasing or decreasing, then satisfy (Ax1)-(Ax3) $\lim_{n \to \infty} P(A_n) = P\left(\lim_{n \to \infty} A_n\right) \cdot \quad Bi \cap Bj = \phi$ proof An increasing O Bn = UAn, UBn = UAn A_1 $Let_n Bn = An \cap An = I \Rightarrow n = IBn = UAn$, n = IBn = IAn $B_1 = AI$ $B_1 = AI$ $B_1 = AI$ $B_1 = AI$ Az $P(I \operatorname{Im} A_n) = P(\bigcup_{n=1}^{\infty} A_n) = P(\bigcup_{n=1}^{\infty} B_n) = \sum_{n=1}^{\infty} P(B_n) = \lim_{k \to \infty} \sum_{n=1}^{k} P(B_n)$ ImAn $(2) An decreasing, =) A_n^c mcreasing.$ = lim p(UBn) = lim p(UAn) $P(lim An) = l - p(NAn) - p((NAn)^c)$ = lim p(UAn)k > 00 p(IAn)k > 00 $|-P(ImA_n)=|-P(\bigcap_{n=1}^{\infty}A_n)=P((\bigcap_{n=1}^{\infty}A_n)^{c})$ $= \lim_{k \to \infty} P(A_k)$ $= P(\bigcup_{n=1}^{c} A_n^{c}) = P(\lim_{n \to \infty} A_n^{c}) = \lim_{n \to \infty} P(A_n^{c})$ = $\lim_{n \to \infty} 1 - P(A_n) = 1 - \lim_{n \to \infty} P(A_n)$ K Example (Uniform Spinner): Let $\Omega = (-\pi, \pi]$. Define $P((a,b)) = \frac{b-a}{2\pi}$, play a role similar to Cifi p.M. For discrete for subintervals $(a, b] \subset \Omega$. Then, extend P to other subsets using the 3 axioms. For example, if $-\pi < a < b < \pi$,

NTHU MATH 2810, 2011

Lecture Notes

$$P(a,b) = P\left(\left(\bigcap_{k=1}^{\infty} (a - \frac{1}{k}, b] \cap \Omega\right) = P\left(\bigcap_{k=1}^{\infty} (a - \frac{1}{k}, b] \cap \Omega\right)\right)$$
Note $[a,b] = (a,b]$

$$= \lim_{k \to \infty} P\left((a - \frac{1}{k}, b] \cap \Omega\right)$$

$$= P\left(\left(a - \frac{1}{k}, b\right) \cap \Omega\right)$$

$$= \lim_{k \to \infty} P\left((a - \frac{1}{k}, b] \cap \Omega\right)$$

$$= \int_{k \to \infty} P\left((a - \frac{1}{k}, b] \cap \Omega\right)$$

$$= \int_{k \to \infty} \frac{1}{2\pi}(b - a + \frac{1}{k}) = \frac{b - a}{2\pi}$$

$$= P([a,b]) \in Note: P([a,b]) \text{ if } A_{a} = [a,b]$$

$$= O([a,b]) \in Note: P([a,b]) = P([a,b]) = P([a,b]) = 0. P([a,b])$$

$$= O([a,b])$$

$$= O([a,b]) = O([a,b]) = O([a,b]) = O([a,b]) = O([a,b])$$

$$= O([a,b]) = O([a,b]) = O([a,b]) = O([a,b]) = O([a,b])$$

$$= O([a,b]) = O([a,b]) = O([a,b]) = O([a,b]) = O([a,b])$$

$$= O([a,b]) = O([a,b]) = O([a,b]) = O([a,b]) = O([a,b])$$

$$= O([a,b]) = O([a,b]) = O([a,b]) = O([a,b]) = O([a,b])$$

$$= O([a,b]) = O([a,b]) = O([a,b]) = O([a,b]) = O([a,b])$$

$$= O([a,b]) = O([a,b]) = O([a,b]) = O([a,b]) = O([a,b]) = O([a,b])$$

$$= O([a,b]) = O([a,b]) = O([a,b]) = O([a,b]) = O([a,b]) = O([a,b])$$

$$= O([a,b]) = O$$

NTHU MATH 2810, 2011	Lecture Notes
$O(A^c) = \frac{P(A^c)}{P(A)} = \frac$	p. 2-17
$\Rightarrow P(A) \leq \frac{2}{3}$ Probabilities are simply personal measures of how likely we think it is that a certain event will accur	e
think it is that a certain event will occur e.g. how likely you think Shakespeare wrote Hamlet? This can be applied even when the idea of repeated	
Summary experiments is not feasible	
pabability sample space of events (2 ⁿ) - subsets - set operations - Energy - subsets - rule of set - Energy - subsets - subsets - subsets - subsets - set operations - subsets - subsets - set operations - subsets - subsets - set operations - set	
• probability measure P: 2° = [0, 1] integretation subjective objective	
classical modern approach approach consequence $P(\phi) = 0$:	
$P(A) = \frac{\#A}{\#SL} \qquad \qquad$	
define restrict P discrete 2 -> 1st, define a small p on wi, w2, u	<i>V</i> 3
but not then extend $\leftarrow P(A) = \sum_{\omega \in A} P(\omega)$	
define. L continuous D [then extend < monotone sequence	
L com mous J L L then extend < monotone sequence	e e
* Reading: textbook, Sec. 2.3~2.7	