

Introduction to Probability

- Uncertainty/Randomness (不確定性/隨機性) in our life

➤ Many events are random in that their result is unknowable before the event happens.

- Will it rain tomorrow?
- How many wins can 王建民 achieve this season?
- What numbers will I roll on two dice?
- **Q:** Is your height/weight measure random?

➤ We often want to assess *how likely* are the outcomes of such events. Probability is that measurement.

- Distinction between Discovery (發現) and Invention (發明), e.g.,

➤ 哥倫布 “發現” 新大陸

➤ 爱迪生 “發明” 電燈泡

➤ **Q:** 相對論是發明還是發現?

- 機率論是人類 “發明” 來處理生活中的不確定性之理論

➤ 爱因斯坦: “上帝永遠不會擲骰子”

NTHU MATH 2810 2011 Lecture Notes
made by Shih-Wen Chang (NTHU Taiwan)

Combinatorial Analysis

- An example:

➤ A communication system is to consist of n seemingly identical antennas that are to be lined up in a linear order

➤ A resulting system will be functional as long as no two consecutive antennas are defective

➤ If it turns out m ($=2$) of the n ($=4$) antennas are defective, what is the probability that the resulting system will be functional?

- Many problems in probability theory can be solved simply by *counting the number* of different ways that a certain event can occur
- The mathematical theory of counting is formally known as *combinatorial analysis*
- What to Count? (i) Lists, (ii) Permutations, (iii) Combination, (iv) Partition, (v) Number of integer solutions.

- Lists

➤ Definition

- Order Pairs: $(x, y) = (w, z)$ iff $w=x$ and $z=y$.
- Ordered Triples: $(x, y, z) = (u, v, w)$ iff $u=x$, $v=y$, and $w=z$.
- List of Length r : $(x_1, \dots, x_r) = (y_1, \dots, y_s)$ iff $s=r$ and $x_i=y_i$ for $i=1, \dots, r$.

➤ Example (License Plates): A license plate has the form $LMNwxyz$, where

$$L, M, N \in \{A, B, \dots, Z\},$$

$$w, x, y, z \in \{0, 1, \dots, 9\},$$

and, so, is a list of length seven.

➤ The basic principle of counting - multiplication principle

- For Two: If there are m choices for x and for each choice of x , n choice for y , then there are mn choices for (x, y) .
- For several: If there are n_i choices for x_i , $i=1, \dots, r$, then there are $n_1 n_2 \cdots n_r$ choices for (x_1, \dots, x_r) .

■ Example:

As I was going to St. Ives, I met a man with seven wives

Every wife had seven sacks, Every sack had seven cats

Every cat had seven kits, Kits, cats, sacks, wives

How many were going to St. Ives?

□ Ans: none

□ However, how many were going the other way?

7 Wives, $7 \times 7 = 49$ sacks, $49 \times 7 = 343$ cats, $343 \times 7 = 2401$ kits

Total = $7 + 49 + 343 + 2401 = 2800$

■ Example (license plates): A license plate has the form $LMNwxyz$, where

$$L, M, N \in \{A, B, \dots, Z\}$$

$$w, x, y, z \in \{0, 1, \dots, 9\}$$

There are $26^3 \times 10^4 = 175,760,000$ license plates. Of these,

$$26 \times 25 \times 24 \times 10 \times 9 \times 8 \times 7 = 78,624,000$$

have distinct letter and digits (no repetition).

• Permutation

- Definition: A *permutation* of length r is a list (x_1, \dots, x_r) with distinct components (no repetition); that is $x_i \neq x_j$ when $i \neq j$
- Example: $(1, 2, 3)$ is a permutation of three elements; $(1, 2, 1)$ is not a permutation
- Counting Formulas. From n objects, there are

$$n^r = n \times \cdots \times n \quad (r \text{ factors})$$

lists of length r and

$$(n)_r \equiv n \times (n-1) \times \cdots \times (n-r+1)$$

permutations of length r may be formed.

- Example: There are $10^3 = 1000$ three digit numbers, of which $(10)_3 = 10 \times 9 \times 8 = 720$ lists with distinct digits.

➤ Some notations

- Factorials: For positive integers n and r , when $r=n$, write
$$n! \equiv (n)_n = n \times (n-1) \times \cdots \times 2 \times 1$$
- Conventions: $(n)_0 = 1$ and $0! = 1$

NTHU MATH 2810 2011 Lecture Notes

made by Shao-Wei Cheng (NTHU, Taiwan)

■ Some Notes

- The textbook only consider $r=n$.
- $(n)_r = 0$ if $r > n$.
- If $r < n$, then $n! = (n)_r (n-r)!$

- Example: A group of 9 people may choose officers (P, VP, S, T) in $(9)_4 = 3024$ ways.

➤ Example:

- 7 books may be arranged in $7! = 5040$ ways
- If there are 4 math books and 3 science books, then there are $2 \times 4! \times 3! = 288$ arrangements in which the math books are together and the science books are together

• Combinations

- Definition: A *combination* of size r is a set $\{x_1, \dots, x_r\}$ of r distinct elements. Two combinations are equal if they have the same elements, possibly written in different order.

- Example: $\{1, 2, 3\} = \{3, 2, 1\}$,
but $(1, 2, 3) \neq (3, 2, 1)$

► Example: How many committees of size 4 may be chosen from 9 people? Choose officers in two steps: p. 1-7

Choose a committee in ?? Ways.

Choose officers from the committee in $4!$ Ways

From the Basic principle

- $(9)_4 = 4! \times ??$
- So, ?? = $(9)_4/4! = 126$

► Combinations Formula

- From $n \geq 1$ objects,

$$\binom{n}{r} = \frac{1}{r!}(n)_r$$

combinations of size $r \leq n$ may be formed

- Example (bridge): A bridge hand is a combination of $r=13$ cards drawn from a standard deck of $n=52$. There are

$$\binom{52}{13} = 635,013,559,600$$

such hands.

• Binomial coefficients

► Alternatively,

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}.$$

► **The Binomial Theorem:** For all $-\infty < x, y < \infty$

$$(x+y)^n = \sum_{r=0}^n \binom{n}{r} x^r y^{n-r}.$$

- Proof. If

$$(x+y)^n = (x+y) \times \cdots \times (x+y).$$

is expanded, then $x^r y^{n-r}$ will appear as often as x can be chosen from r of the n factors; i.e., in $\binom{n}{r}$ ways

- Example. When $n=3$, $(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$.

► Binomial identities

- Setting $x=y=1$, we get

◆ Example: how many subsets are there of a set consisting of n elements?

- Letting $x=-1$ and $y=1$, we get

➤ A useful identity:

$$\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}$$

- Partitions

➤ Example: How many distinct arrangements formed from the letters

M I S S I S S I P P I ?

- There are 11 letters which can be arranged in $11!$ Ways
- But, this leads to double counting. If the 4 “S” are permuted, then nothing is changed. Similarly, for the 4 “I”s and 2 “P”s.
- So, the each configuration of letters

$$4! \times 4! \times 2! = 1,152$$

times and the answer is $\frac{11!}{4!4!2!} = 34,650$.

➤ Definition: Let Z be a set with n elements. If $r \geq 2$ is an integer, then, an *ordered partition* of Z into r subsets is a list

$$(Z_1, \dots, Z_r)$$

where Z_1, \dots, Z_r are mutually exclusive subsets of Z whose union is Z ; i.e.,

- $Z_i \cap Z_j = \emptyset$, if $i \neq j$, and
- $Z_1 \cup \dots \cup Z_r = Z$.

➤ Let $n_i = \#Z_i$, the number of elements in Z_i . Then, $n_1, \dots, n_r \geq 0$, and $n_1 + \dots + n_r = n$.

- Example: In the “MISSISSIPPI” example, 11 positions,

$$Z = \{1, 2, \dots, 11\}$$

were partitioned into four groups of size

$$n_1 = 4 \text{ “I”s}, \quad n_2 = 1 \text{ “M”s}, \quad n_3 = 2 \text{ “P”s}, \quad n_4 = 4 \text{ “S”s}$$

- In a bridge game, a deck of 52 cards is partitioned into four hands of size 13 each, one for each of South, West, North, and East.

➤ The Partitions Formula. Let $n, r \geq 1$, and $n_1, \dots, n_r \geq 0$ be integers s.t. $n_1 + \dots + n_r = n$. If Z is a set of n elements, then there are

$$\binom{n}{n_1, \dots, n_r} \equiv \frac{n!}{n_1! \times \dots \times n_r!}$$

(called *multinomial coefficients*) ways to partition Z into r subsets (Z_1, \dots, Z_r) for which $\#Z_i = n_i$ for $i = 1, \dots, r$.

➤ The multinomial theorem

$$(x_1 + \cdots + x_r)^n = \sum_{n_1 + \cdots + n_r = n} \binom{n}{n_1, \dots, n_r} x_1^{n_1} \cdots x_r^{n_r}.$$

➤ Examples:

- 9 children are to be divided into A, B, C 3 teams of 3 each. How many different divisions?
- 9 children are to be divided into 3 groups of 3 each, to play a game. How many different divisions?
- a knockout tournament involving $n=2^m$ players
 - ◆ n player divided into $n/2$ pairs
 - ◆ losers of each pair eliminated; winner go next round
 - ◆ the process repeated until a single player remains
 - ◆ Q: How many possible outcomes for the 1st round?
- ◆ Q: How many possible outcomes of the tournament?

• The Number of Integer Solutions

➤ If n and r are positive integers, how many integer solutions are there to the equations: $n_1, \dots, n_r \geq 0$ and $n_1 + \cdots + n_r = n$?

➤ Example: How many arrangements from a A's and b B's, for example, ABAAB? There are $\binom{a+b}{a} = \binom{a+b}{b}$

such arrangements, since an arrangement is determined by the a places occupied by A.

➤ Example: Suppose $n=8$ and $r=4$. Represent solutions by “o” and “+” by “|”.

- For example, ooo|oo||ooo means $n_1=3, n_2=2, n_3=0, n_4=3$.
- Note: only $r-1$ (=3) “|”s are needed.
- There are as many solutions as there are ways to arrange “o” and “|”. By the last example, there are

$$\binom{8+3}{3} = \binom{11}{3} = 165$$

solutions.

➤ A general formula. For positive integers n and r , there are

$$\binom{n+r-1}{r-1} = \binom{n+r-1}{n}$$

integer solutions to $n_1, \dots, n_r \geq 0$ and $n_1 + \dots + n_r = n$.

➤ If $n \geq r$, then there are

$$\binom{n-1}{r-1}$$

solutions with $n_i \geq 1$, for $i=1, \dots, r$.

❖ **Reading:** textbook, Chapter 1

NTHU MATH 2810, 2011, Lecture Notes
made by Shao-Wei Cheng (NTHU, Taiwan)