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• Johnson noise

J. B. Johnson discovered the voltage difference across a resistor without any
external bias fluctuates at finite temperature [Nature 119, 50 (1927)]. The
characteristic property of Johnson noise is that the mean square voltage is
proportional to the resistance R, temperature τ and the bandwidth ∆f of
the circuit,

〈V 2〉 = 4Rτ∆f. (1)

Making use of the distribution of one-dimensional photons in thermal equi-
librium, this interesting phenomena is later explained by H. Nyquist [Phys.
Rev. 32, 110 (1928)].

The non-vanishing mean square voltage 〈V 2〉 is caused by thermal fluc-
tuations. Thus, its proportionality to temperature is expected. Loosely
speaking, the “channels” of fluctuations are proportional the bandwidth ∆f ,
justifying its appearance in the above relation. But, what about the resis-
tance R? Under the external bias voltage, the current flows through the
resistor and the ratio between them is defined as the (linear) resistance.
Therefore, resistance R indicates how energy is dissipated when the resistor
is slightly out of equilibrium (due to the applied voltage and the presence
of flowing current). The relation in Eq. (1) reveals a secret connection be-
tween fluctuations (in equilibrium) and dissipation (out of equilibrium) for
a resistor. The Nyquist relation is just a special realization of the general
fluctuation-dissipation theorem in statistical physics.

• Nyquist’s derivation

We now follow Nyquist’s original argument to derive Eq. (1). The trick is
to connect two identical resistors of resistance R through a one-dimensional
transmission wire without dissipation, i.e. zero resistance. The capacitance
and inductance of the wire are C and L and the characteristic impedance
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Zc =
√
L/C = R matches with the resistors. Because the transmission

wire is matched on both ends, electromagnetic waves propagating in either
directions are absorbed at the ends without any reflection back to the wire.
Or, in quantum language, the matching resistors serve as perfect absorbers
for photons reaching the ends.

Let us compute the energy density inside the transmission wire in thermal
equilibrium first. The frequencies of the standing waves are quantized,

ωn =
nπc′

L
. (2)

For each frequency interval δf = δω/(2π) = c′/(2L), there is one photon
mode. At high temperatures, the average energy is τ (according to equipar-
tition theorem of energy). The energy density of the wire in thermal equilib-
rium is

ρ = (average energy/length)× (number of modes)

= (τ/L)×∆f/δf = 2τ∆f/c′, (3)

proportional to the temperature τ and the bandwidth ∆f .
The energy flows can be deduced from the energy density ρ. The right-

moving and left-moving energy currents are defined as JR = ρRc
′ and JL =

−ρLc′ respectively. Because the total current in thermal equilibrium is zero,
JR + JL = 0, it leads to ρR = ρL = ρ/2. The energy current flowing out of
the right end is

JR =
1

2
ρc′ = τ∆f. (4)

Note that, due to the matching condition, the energy flows into the resistor
without any reflection.

Because the resistor is in thermal equilibrium, the incoming energy flow
JR equals the dissipating power, P = 〈I2〉R. It is clear from the circuit that
V = 2IR. The power can also be expressed as voltage fluctuations,

P = 〈I2〉R =
〈V 2〉
4R

. (5)

Equating the powers into the wire in Eq. (4) and that leaving the wire in
Eq. (5), we arrived at the relation,

〈V 2〉 = 4Rτ∆f. (6)

Note that Nyquist’s derivation presented here makes use of equilibrium be-
tween the resistors and the transmission wire. Even without knowing the
microscopic details in the resistor, one can derive the mean square voltage
across the resistor!
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• microscopic reasoning

We now turn to the microscopic derivation for Nyquist theorem. Zoom into
the microscopic details, there are N conducting electrons in the resistor. The
equation of motion governing the center-of-mass dynamics is

M
du

dt
= −Mγu+QV (t), (7)

where γ arises from friction and V (t) is the fluctuating voltage. The total
mass is M = Nme and the tool charge is Q = −Ne. It is worth emphasizing
why we focus on the center of mass. Suppose we try to write down a similar
dynamical equation for an individual electron. The noise term then consists
of the random forces coming from the voltage fluctuations and also the mutual
interactions between electrons. But, by focusing on the dynamics of the
center of the mass, the mutual interactions cancel each other and can be
ignored. The random force is solely related to the voltage fluctuations.

The equation of motion can be rewritten as,

d

dt

[
u(t)eγt

]
=

Q

ML
V (t)eγt, (8)

and the dynamics of the center of mass is obtained by integration,

u(t) = u(0)e−γt +
Q

ML
e−γt

∫ t

0

V (t′)eγt
′
dt′. (9)

The above solution allows us to compute the mean square velocity of the
center of mass,

〈u2(t)〉 = 〈u2(0)〉e−2γt +

(
Q

ML

)2 ∫ t

0

∫ t

0

〈V (t1)V (t2)〉eγt1eγt2dt1dt2. (10)

Assuming the voltage fluctuations at different times are not correlated,

〈V (t1)V (t2)〉 = 〈V 2〉 δt1,t2 , (11)

where 〈V 2〉 = 〈V 2(t)〉 is independent of time in thermal equilibrium. Making
use of the integral relation,∫ ∆ω

−∆ω

dωeiω(t1−t2) ≈ 2∆ω δt1,t2

−→ 2πδ(t1 − t2), as ∆ω goes to infinity. (12)
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Thus, Kronecker delta symbol is related to Dirac’s delta function,

δt1,t2 ≈
π

∆ω
δ(t1 − t2). (13)

Finally, the voltage correlation function can be expressed as,

〈V (t1)V (t2)〉 = 〈V 2〉 δt1,t2 ≈ 〈V 2〉 × π

∆ω
δ(t1 − t2). (14)

Substituting the voltage correlation function into Eq. (10) and making
use of the relation 〈u2(t)〉 = 〈u2(0)〉 ≡ 〈u2〉, the time dependence beautifully
cancels out and the relation reads

〈u2〉 =
πQ2

2M2L2γ∆ω
〈V 2〉. (15)

In thermal equilibrium, the mean square velocity of the center of mass can
be easily computed,

〈u2〉 =
m2

M2

∑
ij

〈vivj〉 =
τ

M
. (16)

Therefore, the mean square voltage is proportional to the temperature and
the bandwidth,

〈V 2〉 = 4

(
MγL2

Q2

)
τ∆f. (17)

We are almost done except the final brush to show that the constant in the
bracket is just the resistance R.

In the presence of external voltage V , the center of mass reaches the
steady state with a drift velocity,

vd =
Q

MγL
V ∝ V. (18)

It is important to emphasize that the proportionality to the driving V is a
direct consequence of friction. The current flowing through the resistor is

I = λvd =
Q

L
× QV

LMγ
=

(
Q2

L2Mγ

)
V. (19)

According to Ohm’s law V = IR, the resistance is

R =
MγL2

Q2
. (20)
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Substituting into Eq. (17), Nyquist relation is obtained,

〈V 2〉 = 4Rτ∆f. (21)

Personally, I like the microscopic derivation better but the macroscopic deriva-
tion by Nyquist works as well.


