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MATTER WAVE!
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Uncerteinty inciple.

Consider the Pllowig wave pockel” (€ can be wewed as
__wye,.’/) with finife  wid# AX.
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Since the microscope Red Cimited resolution, one
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Size of H atom.
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TPe mass of star (T)
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Life fime ard enersy wiath.
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WAVE
FUNCTION

BY E. SCHRODINGER
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Quantem Mechanics

o descrite a Quartum particle, one needs o Anow
o Wave Funchion ¥“Uxyzt)
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Compare with Wave Eguation
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Woave function

b

ly |2

To describe a quantum
particle, we need the new
concept of wave function:

a b

CRO08 Thomson - Baoohs Cose

The interpretation of the wave function is the following: the square of the
wave function is the probability density to find the particle at the location x
and at the time ¢,

P, 1) = [z, 1)

For instance, the probability to find the particle at the interval between a and
b is the spatial integral of |¢(x,t)|? in this regime.
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Schrodinger equation

The dynamics of the wave
function is described by the
Schrodinger equation. Note
that the time derivative is
only first-order.

Thursday, May 19, 2011



Solving time dependence

The of the wave function can be
solved rather easily. Make an educated guess of
the following form:

The time dependence of the Schrodinger equation

drops out. This is the so-called time-independent
Schrodinger equation:
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Frequency of matter wave

There is some physics in
the we
just solved. Note that when

the phase winds by
Et/h =27

the wave function comes
back to itself. That is to say,
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Schrodinger equation

We can solve the spatial
part of the wave function:

b(x) = ™

Combined with the time varying phase, we obtain
the solution for a free particle:

w(:E) . ei(kx—wt)
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Wavelength of matter wave

Substitute the solution
into the Schrodinger eq.

It is easy to verify the other relation postulated by
de Broglie:
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Time - Independent Schrbdinger equation
Since the Sohdidinger equation is first-order cn time, (LS
#time dependence can be Solved easiGy
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Rraumerd Degeneracy
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E<O Solufion
Consider the E<O dolution Br o free particle.
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PARTICLE IN BOX




Free quantum particle

How does a free particle propagate according to
quantum mechanics!?
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Particle in a box

For a classical particle, since
the is constant, the 1 (Y mmei— — —
probability density to detect
the particle anywhere inside
the box is also a constant. o

£2004 Thomson - Beooks/Cole
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Boundary conditions

Since the potential energy is
infinite outside the well, the z
wave function is also zero. U

But the wave function should

> 3

be , thus we expect
it also vanishes at the _ |
boundaries. 0 o )

S2004 Thomaon - BrockaCole

$(0) =0 = o(L)
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Finding solutions...

Inside the potential well,

the particle is free. Thus,

the Schrodinger equation
is identically the same.

With a given energy, the general solution is a linear superposition of the
right-going and left-going solutions,

¢(£IZ‘) _ Aeikx _|_Bezkac

where A and B are constants determined by the boundary conditions.
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B.C.at x=0

The boundary condition
of the wave function at
x=0 leads to

A+ B=0—A=-B

The solution takes the
form of sine, L

0

¢($) — CSln(kgp) . s

(b)

35

Thursday, May 19, 2011



S2004 Thomaon - BrockaCole

(b)

B.C.at x=L

~ f—— 3

The boundary condition at x=L
gives rise to the constraint on
the momentum

sinklL =0 — kL =nm

The momentum is quantized!!
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Nodal structure

©2004 Thomson - Brooks/Cole
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Normailzation

Since the square of the wave function represents the probability denisty, it
must satisty the normalization condition

/ S lo(@) = 1

Given the solution we found previously, the normalization condition leads to

L
5 . o (MTX | 2
C’/desm(L) C 7

Finally, the properly normalized wave function for the particle inside the infinite
potential well is
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Energy quantization

n

Because the momentum
is quantized, the energy
is also quantized,

4 E, = 16E,

1'13 - 9['41

1':«-) - 41':1

I
=)

Com Pa re Wlth PhOtOnS! Ground-state energy > ()

£2004 Thomson - Brooks/Cole
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