
Chapter 9: Electromagnetic Waves
9.1 Waves in One Dimension 9.1.1 The Wave Equation

What is a “wave”?

A start: A wave is a disturbance of a continuous medium that 

propagates with a fixed shape at constant velocity.

⚫ In the presence of absorption, the wave will diminish in

size as it moves;

⚫ If the medium is dispersive, different frequencies travel at 

different speeds;

⚫ Standing waves do not propagate;

⚫ Light wave can propagate in vacuum;…
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The Wave Equation

The function f(z, t) depends on them only in the very special

combination z − vt;

When that is true, the function f(z, t) represents a wave of 

fixed shape traveling in the z direction at speed v.

How to represent such a “wave” mathematically?

Hint: The wave at different times, once at t = 0, and again at 

some later time t --- each point on the wave form simply shifts 

to the right by an amount vt, where v is the velocity.

initial shape 

subsequent form

f (z, 0) = g(z)

f (z,t) = ?

f (z, t) = f (z − vt, 0) = g(z − vt)
(capture (mathematically) the 

essence of wave motion.)



The Wave Equation (II)

a standing wave

2

1
−b( z−vt )f (z, t) = Ae

f2 (z, t) = Asin[b(z − vt)]

b(z − vt)2 +1

A
f3(z, t) =

Examples:

2

How about these functions?
2

f4 (z, t) = Ae−b(z +vt )

f5 (z, t) = Asin(bz) cos(bvt)

=
A

[sin(b(z + vt)) + sin(b(z − vt))]
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The Wave Equation of a String

From Newton’s second law we have

Small angle approximation:

sin  tan =
y

x

2 y

t2

2 y
F[sin( +)−sin()]= (x)

t2x2

2 y
= ( / F)

the mass per unit lengththe force on the segment
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The Wave Equation

Derive the wave equation that a disturbance propagates 

without changing its shape.

f (z, t) = g(z − vt); Let u  z − vt

2 f dg 2 d 2g

t2 du2
= − v ( )=v

f df u
= = −v

dg

du t du




d 2g
=

v2 v2

1 2 f 2 f 2 f 1 2 f
=  − = 0 qed

du2 t2 z2 z2 t2

+v or − v

f (z, t) = g(z − vt) + h(z + vt) the wave equation is linear.

2 f
=

t du t

f
= ( )=
 dg d 2g

z2 z du du2

df u dg
=

z du z du

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9.1.2 Sinusoidal Waves


k =

2
, : wave length

wave speed

(i) Terminology

f (z, t) = Acos[k(z − vt) + ]

amplitude wave number phase constant

f (z, t) = Acos[k(z − vt) + ] = Acos(kz −t + )

 : angular frequency

f : frequency

v
 = kv = 2


=2 f




6



Sinusoidal Waves

(ii) Complex notation

Euler’s formula ei = cos + i sin
[oi-ler; German]

f (z, t) = Acos[k(z − vt) +]= Re[Aei(kz−t+)]

= Re[Aeiei(kz−t) ] = Re[Aei(kz−t) ]

f  Aei(kz−t) complex wave function

A  Aei complex amplitude; phasor

f (z, t) = Re[ f (z, t)] : tilde

The advantage of the complex notation is that exponentials 

are much easier to manipulate than sines and cosines.
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Example 9.1
The advantage of the complex notation.

Suppose we want to combine two sinusoidal waves:

f3 = f1 + f2 = Re[ f1]+Re[ f2 ] = Re[ f1 + f2 ] = Re[ f3 ]

Simply add the corresponding complex wave functions, and 

take the real part.

In particular, when they have the same frequency and wave

number

f3 = A1e
i(kz−t) + A2ei(kz−t) = A3e

i(kz−t)

where A3 = A3e
i3 = A1e

i1+ A2ei2

Try doing this without using the complex notation.
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Sinusoidal Waves (III)

(iii) Linear combinations of sinusoidal waves

A(k)ei(kz−t) dk, where =(k)


−
f (z, t) = 

A(k) can be obtained in terms of the initial conditions.

f (z, 0) and f (z, 0) from the theory of Fourier transforms.

Any wave can be written as a linear combination of

sinusoidal waves.

9

So from now on we shall confine our attention to sinusoidal 

waves.



v1 =
k2 =

1

9.1.3 Boundary Conditions:
Reflection and Transmission

Incident wave: 

Reflected wave:

Transmitted wave:

fI (z, t) = AIe
i(k1z−t)

fR (z, t) = ARei(−k1z−t)

fT (z, t) = ATei(k2z−t)

 All parts of the system are oscillating at the same frequency .

The wave velocities are different in two 

regimes, which means the wave lengths 

and wave numbers are also different.

The waves in the two regions:

2v2 k1 

TA ei(k2z−t )

AIe
i(k1z−t) + ARei(−k1z−t) for z  0

f (z, t) = 
for z  0
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Boundary Conditions

The complex wave function obeys the same rules:

Mathematically, f(z, t) is continuous at z = 0.

f (0− ,t) = f (0+ ,t)

The derivative of f(z, t) must also be continuous at z = 0.

df
=

df 

dz 0− dz 0+

Why?

f (0− , t) = f (0+ , t);
dz − dz +

0 0

df
=

df



Boundary Conditions Determine the Complex 

Amplitudes

f (0− ,t) = f (0+ ,t)  A + A = A
I R T

dz dz
0− 0+

df
=

df
 k1(AI − AR) = k2 AT

2 2 1

1 2 2 1

R I I

T I I

1

2k1

− v1 )A
A = (

k1 − k2 )A = (
v2

k + k v + vAI + AR = AT 
 

k1(AI − AR) = k2 AT  A = ( )A = (
2v2 )A

 k + k v + v

When v2  v1, all three waves have the same phase angle.

When v2  v1 the reflected wave is out of phase by 180.

Consider two extreme cases, fixed end and open end.
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The Fixed End and Open End

Superposition of the actual pulse and an imaginary pulse.
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9.1.4 Polarization

Transverse waves: the displacement of the wave is 

perpendicular to the direction of propagation, e.g., EM waves.

Longitudinal waves: the displacement of the wave is along 

the direction of propagation, e.g., sound waves.

Transverse waves occur in two independent states of polarization:

General form: f (z, t) = Aei(kz−t ) n̂ , where n̂ = cos x̂ + sin ŷ

fv (z, t) = Aei(kz−t)x̂ fh (z, t) = Aei(kz−t)ŷ
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Right and Left Hand Circular Polarizations
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9.2 Electromagnetic Waves in Vacuum

9.2.1 The Wave Equation for E and B

In regions of space where there is no charge or current,

Maxwell’s equations read

(ii) B = 0

t
(i) E = 0 (iii) E = −

B

t
(iV) B = 00

E

2
0 0

(B)

t
(E) = −  (E) − E = −

t

2E

2
( B) = 00 0 0

2

2B
2

(E)

t
 (B) − B = −

t



E = 0
since 

B = 0

2E2

2

2B

t2

t






 E =00





2B = 00
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The Wave Equation for E and B
In vacuum, each Cartesian component of E and B satisfies 

the three-dimensional wave equation

2

2

v2

1 2 f
 2 f =

t2
2B

t2

t






2E
 E =00





2B = 00

Maxwell’s equations imply that empty space supports the

propagation of electromagnetic waves, traveling at a speed

= 3108 m/s
00

1
v = the speed of light
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Hertz’s Experiment

When Maxwell’s work was published in 1867 it did not 

receive immediate acceptance. It is Hertz who conclusively 

demonstrated the existence of the electromagnetic wave.
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9.2.2 Monochromatic Plane Waves

Since different frequencies in the visible range correspond to 

different colors, such waves are called monochromatic.

This definition can be applied to the whole spectrum. A wave 

of single frequency is called a monochromatic wave.
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The Electromagnetic Spectrum

Electromagnetic waves span an immerse range of 

frequencies, from very long wavelength to extremely high 

energy with frequency 1023 Hz. There is no theoretical limit to 

the high end.
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Mainly Heating Effect in Micro/mm-Wave Spectrum

21



Windows for Research and Application Opportunities
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one photon 
per excitation,

23

multiple-photon 
per electron,

multiple photon 
per electron,

large interaction large interaction interaction space
space space

 

~ wavelength



Spectrum to Be Exploited
--- Significance of the Electron Cyclotron Maser

THz gap



Monochromatic Plane Waves

Consider a monochromatic wave of frequency  and the 

wave is traveling in the z direction and has no x or y 

dependence, called plane waves.

Plane waves: the fields are uniform over every plane 

perpendicular to the direction of propagation.

Are these waves common? Yes, very common.

0
i(kz−t )




E(z,t) = E0ei(kz−t)

where E0 and B0 are the complex amplitudes.
B(z, t) = B e
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Transverse Electromagnetic Waves

Q: What is the relation between E and B?

That is, electromagnetic waves are transverse: the electric 

and magnetic fields are perpendicular to the direction of

propagation. Moreover, Faraday’s law

z

 (B0 )z = 0
z

E = 0
Ez = (E0 )z ikei(kz−t) = 0  (E0 )z = 0

B = 0
Bz = (B0 )z ikei(kz−t) = 0

t
E = −

B

x̂ :

ŷ :

ẑ :

Ey BxEz k(E0 ) y = −(B0)x
y

−
z

Ex −
Ez = −

By
 k(E0 )x =(B0) y

 0 = 0

z x t

Ey −
Ex = −

Bz

x y t

= −
t





Transverse Electromagnetic Waves (II)

Ampere’s law with Maxwell’s correction: B =00
E

0 0

0 0

x̂ :

ŷ :
yx z

x z

B EB
−

y 
= 00

x

t

 k(B0 ) y =00(E0)x
z

y z t

EB B
− =  k(B0 )x = −00 (E0 ) y

z x t

By B E
=

x y t
ẑ : −

In free space, the speed of light is
00

1

k

 0 = 0

c =

=

c

c
amplitude relation: B0 =

1
E0


More compactly, B0 =

k
(ẑE0 ) =

1
(ẑE0 )  E ⊥ B
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Example 9.2

Sol:

Take the real part:

E(z, t) = E0 cos(kz −t+)x̂

E(z, t) = E0ei(kz−t)x̂

c c
B0 =

k
(ẑE0 ) =

1
E0ei(kz−t) (ẑ x̂) =

1
E0ei(kz−t)ŷ

B(z, t) =
1

E0 cos(kz −t+)ŷ

27

c

Q: Why not use sine function?

Prove: If E points in the x direction, 

then B points in the y direction.



Plane Waves Traveling in an Arbitrary Direction

There is nothing special about the z 

direction---we can generalize to 

monochromatic plane waves traveling in 

an arbitrary direction.

The propagation (or wave) vector, k: pointing in the 

direction of propagation.

Generalization of kz: using the scalar product k·r.

E(r, t) = E0ei(kr−t)n̂  the polarization vector

B(r, t) =
1

E0ei(kr−t) (k̂ n̂) =
1

k̂E
c c

Q: Can you write down the real electric and magnetic fields?
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9.2.3 Energy and Momentum in 

Electromagnetic Waves
The energy per unit volume stored in the electromagnetic 

field is
2 2

0

1 1u = (0E + B )
2 

c2
Monochromatic plane wave: B2 =

1
E2 =00E2

2 0

u =
1

(0E
2 +

1
B2 ) =

1
(0E

2 +0E2 ) =0E
2

2

Their contributions are equal.

29

u =0E
2 =0E0

2 cos2 (kz −t+)

As the wave travels, it carries this energy along with it.

Q: How about the momentum? See next slide.

EM
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Energy Transport and the Poynting Vector

(the vector form)

Consider two planes, each of area A, a distance dx apart, 

and normal to the direction of propagation of the wave. The 

total energy in the volume between the planes is dU = uAdx.

The rate at which this energy passes through a unit area 

normal to the direction of propagation is

S =
1 dU

=
1

uA
dx

= uc 
A dt A dt

0

S = uc =
EB

0

S =
EB

c c
30

c2
g =

1
S =

1
uẑ =

1
0E0

2 cos2 (kz −t+)ẑ
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Average Effect

In the case of light, the period is so brief, that any 

macroscopic measurement will encompass many cycles.

All we want is the average value.

The average power per unit area transported by an 

electromagnetic wave is called the intensity:

0 0
2

S =
1

cE2ẑ = u cẑ

0 0
2cc2

g =
1

S =
1
E 2 ẑ

2
u =

1
0E0

2

21

2

E2

20c
I  S = c0E0 = 0

Sav



Example

E2

32

2 20c
= 0

02410−7 3108 = E2

410002



E0 = 0.775 V/m

(b) U = Sav At = 2.410−3 J

Average power
(a) Sav =

4r

10000

c


B0 =

E0 = 2.5810−9 T





A radio station transmits a 10-kW signal at a frequency of 100

MHz. For simplicity, assume that it radiates as a point source.

At a distance of 1 km from the antenna, find: (a) the amplitude

of the electric and magnetic field strengths, and (b) the energy

incident normally on a square plate of side 10 cm in 5 min.

Solution:



Momentum and Radiation Pressure

An electromagnetic wave transports linear momentum.

The linear momentum carried by an electromagnetic wave is

related to the energy it transports according to

p =
U

c
If surface is perfectly reflecting, the momentum change of

the wave is doubled, consequently, the momentum imparted

to the surface is also doubled.

The force exerted by an electromagnetic wave on a surface 

may be related to the Poynting vector

=
SA

=
S
= u 

Ac c

33

F
=

p
=

U 

A At Act



Momentum and Radiation Pressure (II)

The radiation pressure at normal incident is

F
=

S
= u 

A c

Examples: (a) the tail of comet, (b) A “solar sail”
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Homework of Chap.9 (I)
Problem 9.2 Show that the standing wave f (z, t) = A sin(kz) cos(kvt) satisfies 

the wave equation, and express it as the sum of a wave traveling to the left and a 

wave traveling to the right (Eq. 9.6).

Problem 9.6

(a) Formulate an appropriate boundary condition, to replace Eq. 9.27, for the case 

of two strings under tension T joined by a knot of mass m.

(b) Find the amplitude and phase of the reflected and transmitted waves for the case

where the knot has a mass m and the second string is massless.

Problem 9.10 The intensity of sunlight hitting the earth is about 1300 W/m2. If 

sunlight strikes a perfect absorber, what pressure does it exert? How about a perfect 

reflector? What fraction of atmospheric pressure does this amount to?
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Homework of Chap.9 (I)
Problem 9.8 Equation 9.36 describes the most general linearly polarized wave on

a string. Linear (or "plane") polarization (so called because the displacement is par-

allel to a fixed vector n̂) results from the combination of horizontally and vertically

polarized waves of the same phase (Eq. 9.39). If the two components are of equal

amplitude, but out of phase by 90 (say, v = 0, h = 90 ), the result is a circularly

polarized wave. In that case:

(a) At a fixed point z, show that the string moves in a circle about the z axis. Does it

go clockwise or counterclockwise, as you look down the axis toward the origin? 

How would you construct a wave circling the other way? (In optics, the clock-

wise case is called right circular polarization, and the counterclockwise, left

circular polarization.)3

(b) Sketch the string at time t = 0.

(c) How would you shake the string in order to produce a circularly polarized wave?

Problem 9.12 In the complex notation there is a clever device for finding the 

time average of a product. Suppose f (r,t) = A cos (k r −t +a ) and g (r, t)=

B cos (k r −t +b ). Show that

* *
0

fg = (1/ 2) Re( fg*), where the star denotes

1

4

1

0

 



complex conjugation. [Note that this only works if the two waves have the same k

and , but they need not have the same amplitude or phase.] For example,

u = Re  E E + B B
20




and S =
1

Re(EB*).



9.3 Electromagnetic Waves in Matter
9.3.1 Propagation in Linear Media

In regions where there is no free charge and free current,

Maxwell’s equations become

t
D = 0 E = −

B

t
B = 0 H =

D

If the medium is linear,


D = E and H =
1

B

If the medium is linear and 

homogeneous ( and  do 
not vary from point to point),

E = 0

37

B = 0

t

t
B = 

E

E = −
B

EM
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The Index of Refraction

The index of refraction of the material

Electromagnetic waves propagate through a linear 

homogeneous medium at a speed

0For most materials,  is very close to  , so n 

1 2 f 2 f =
v2 t2

t2




2E = 
t2

2B

 2E v =


2B = 

0 0

1
=

c

n

n 







0

38

r



=

Since r is almost always greater than 1, light travels
more slowly through matter.

Q: What happens when r is less than 1 or negative?



THz Meta-materials

T. J. Yen, et. al., “Terahertz magnetic response from artificial materials”, Science, 303, 1494 (2004).

Applications: low power

eff

39

eff eff

F2
 ()=1−

2−2+i0

=' () +i'' ()



Energy Density, Poynting Vector, and Intensity in 

Linear Media

Q: What happens when a wave passes from one 

transparent medium into another? Boundary conditions.

All of our previous results carry over, with the simple 

transcription

2 
u =

1
(E2 +

1
B2 )

EB


S =

 →0

0→

c → v

g =
1

uẑ
v

2

40

0
1

2
I  S = vE

E// −E// = 0
1 2

D⊥ − D⊥ =
1 2 f

H// −H// = (K  n̂)
1 2 f

B⊥ − B⊥ = 0
1 2



9.3.2 Reflection and Transmission at Normal Incidence

v1

BI (z, t) =
1

E0I ei(k1z−t)ŷ

R 0RE (z, t) = E ei(−k1z−t )x̂

R 0R
v1

B (z, t) = −
1

E ei(−k1z−t )ŷ
v2

BT (z, t) =
1

E0Tei(k2z−t)ŷ

A plane wave of frequency , traveling in the z direction and 

polarized in the x direction, approaches the interface from the 

left.

Incident wave:

EI (z, t) = E0I ei(k1z−t)x̂

Transmitted wave:

ET (z, t) = E0Tei(k2z−t)x̂

Reflected wave:

41



The Boundary Conditions

In terms of the incident amplitude:

Normal incident: no components perpendicular to the surface.

E0I + E0R = E0T

2v2

 (E0I − E0R ) =E0T , where=
1v1

2

0RE )E0I

)E0I

= (
1−

1+

E0T = (
1+

if 0 

0T 0I

)E0I

)E

v2 − v1E0R = (
v1+ v2

2v2E = (
v1+ v2

1 21 2 f

v

1 2



E// −E// = 0
1 2

H// −H// = (K  n̂)
1

B// −
1

B// = 0

B0 =
k

(ẑE0) =
1

(ẑE0 )

1 1
E0T

1v1 2v2

(E0I − E0R ) =

42
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Comparison: The Complex Amplitudes of a String

0 0
dz dz− +

df
=

df

2k 2v


AR = (

k1− k2 )AI = (
v2 − v1)AI

k1+ k2 v2 + v1AI + AR = AT 






k (A − A ) = k A


1 I R 2 T  AT = ( 1 )AI = ( 2 )AI
k1+ k2 v2 + v1

When v2  v1, all three waves have the same phase angle. 

When v2  v1, the reflected wave is out of phase by 180.

Incident wave: 

Reflected wave:

Transmitted wave:

fI (z, t) = AIe
i(k1z−t)

fR (z, t) = ARei(−k1z−t)

fT (z, t) = ATei(k2z−t)

f (0− , t) = f (0+ , t)
Boundary 

conditions:



Reflection and Transmission Coefficients

The reflected wave is in phase if v2  v1

and is out of phase if v2  v1

Reflection coefficient R 
IR = (

n1− n2 )2

II n1+ n2

Transmission coefficient T 
IT =

2v2 ( )2 =
2n1 4n1n2

(n1+ n2)2II 1v1 n1+ n2

E0R = (
v2 − v1)E0I = (

n1− n2 )E0I
v1+ v2

2v2

n1+ n2

2n1E0T = ( )E0I = ( )E0I
v1+ v2 n1+ n2

The intensity (average power per unit area) is: I  S 0
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9.3.2 Reflection and Transmission 

at Oblique Incidence

v1

BI (r, t) =
1

(k̂ I EI )

Suppose that a monochromatic plane wave of frequency , 
traveling in the kI direction

Incident wave:

EI (r, t) = E0I ei(k I r−t)

Reflected wave: Transmitted wave:

ei (k R r−t )
ER (r, t) = E0R

1

R R R
v

B (r, t) =
1

(k̂ E )

ei (kT r−t )
ET (r, t) = E0T

2

T T T
v

B (r, t) =
1

(k̂ E )

EM
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Boundary Conditions

Using the boundary conditions

All three waves have the same frequency .

 = kI v1 = kRv1 = kTv2

1 2

I R T T
v n

or k = k =
v2 k =

n1 k

 E⊥ − E⊥ = 0
1 1 2 2 1

E//

2
−E// = 0

B⊥ − B⊥ = 0
1 2 1 2

1 2

1
B//


−

1
B// = 0

A generic structure for the four boundary conditions.

( )0I ei(k I r−t) + ( )0R ei(kR r−t) − ( )0T ei(kT r−t) = 0

1 2
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Laws of Reflection and Refraction

The law of reflection:

k I r = kR r = kT r

Ix Iz Rx Rz Tx Tz
k x + k z = k x + k z = k x + k z

at z = 0  kIx x = kRx x = kTx x

kI sinI = kR sinR = kT sinT

are angles

of incidence, reflection,

and refraction, respectively.

I R T
 ,  , and 

I =R

The law of refraction:

(Snell’s law) kT v1 n2

sinT =
kI =

v2 =
n1

sinI

Common properties of waves: These equations are 

obtained from their generic form.

p = k momentum conservation
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Boundary Conditions (ii)

(i) 1(E0I +E0R )z =2(E0T )z

(ii) (B0I +B0R )z = (B0T )z

(iii) (E0I +E0R )x, y = (E0T )x, y

Normal D 

Normal B 

Tangential E

(iv) Tangential H
1

(B0I +B0R )x, y =
1

(B0T )x, y
1 2

v
where B0(r, t) =

1
(k̂E0)

( )0I ei(k I r−t) + ( )0R ei(kR r−t) − ( )0T ei(kT r−t) = 0

1 2

We have taken care of the exponential factors—they cancel. 

The boundary conditions become:
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(i) 1(−E0I sinI + E0R sinR) =2(−E0T sinT )

(E0I cosI + E0R cosR) = (E0T cosT )

0 = 0

Normal D

Tangential E (iii) 

Normal B (ii)

Tangential H (iv)
1 1

E-Parallel to the Plane of Incidence
Q: If the polarization of the incident wave is parallel to the 

plane of incidence, are the reflected and transmitted 

waves also polarized in this plane? Yes.

(E0I − E0R ) = (E0T )
1v1 2v2
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E-Parallel to the Plane of Incidence (ii)

0R 0I

cosI

2v2

(iii) (E0I + E0R ) =(E0T ) 
cosT

(iv) (E0I − E0R ) =(E0T ) 
1v1

)E
−

 E = (
+ +

E0T = (
2

)E0I Fresnel’s equations

1sinI

2sinT =
1v1 ?

1sinI 2v2

(i) (E0I − E0R ) =
2sinT (E0T )

How about the first boundary condition? 

Does this condition contribute anything new?
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Brewster’s Angle

2

0R 0I)E

)E0I
cosI 2v2

−
E = ( +

where
cosT and 

1v1

E0T = (

+

When  = , there is no reflected wave. E0R = 0
cosT =

1v1 , then I is called Brewster's angle, B.

2
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2 2

2

1−2
2 2 2 2 2 2

2 2
2 1 2

(Snell's law)

(n / n ) −

T

cosI 2v2

1− sin2T =2 and sin  B

n1

B1− sin2

B

n1
B= − sin  B sin 

n
= ( ) sin 

n
1− ( ) sin  =



Brewster’s Angle (II)
2   2 /(1+  2 )

1 2 2 1

1

B
If    ,   n / n and sin 


n2

B tan
n
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Transmission and Reflection

2

2
2 2 0T

2
1 1 0I III  S  ẑ =

1
v E2 cos

2

1

2

R 1 1 0R R ) II

T T Icos =(
2

)2 II = v  E

−
I =

1
v E2 cos = (

+

+

2

)2

)

2

RI −
= (

II +
R 

I

II

T  T =(
+
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E-Perpendicular to the Plane of Incidence

Q: If the polarization of the incident wave is perpendicular

to the plane of incidence, are the reflected and transmitted

waves also polarized in this plane? Yes.

See Problem 9.16
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9.4 Absorption and Dispersion

J f =E

E =
 f E+

B
= 0

 t

B = 0 B− 
E

= E

Maxwell’s equations for linear media assume the form

9.4.1 Electromagnetic Waves in Conductors

When wave propagates through vacuum or insulating 

materials such as glass or teflon, assuming no free charge 

and no free current is reasonable.

But in conductive media such as metal or plasma, the free 

charge and free current are generally not zero.

The free current is proportional to the electric field: Ohm’s law
conductivity

EM

Tsun-Hsu Chang
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Electromagnetic Waves in Conductors (II)

The continuity equation for free charge:

Classification of conductors:

 f

f
t

= − J

J f =E

f
 = E

 f

f
t 

= − (E) = −
 f


= −




For a homogeneous linear medium:
− t

 (t) = e   (0)
f f


where  =



 = ,  = 0superconductor

good conductor 

poor conductor

perfect conductor = ,  = 0

  
1

  
1

What’s the difference?

See Prob. 7.42

 10−19s for copper

 10−14 s collision time

conductivity

c
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Electromagnetic Waves in Conductors (III) 

Omitting Transient Effect

Omit the transient behavior.

Assume no charges accumulation:  f = 0

t
E = 0 E+

B
= 0

t
B = 0 B = 

E
+ E

(E+
B

) =  (E)+
(B)

t t

(E) = (E)−2E = −2E

(B)
= 

2E
+ 

E

2E
2 2

t2 t2
+  (likewise)

t t

t

2B

t2 t

B
E = 

E
+  ,  B = 

=0



Electromagnetic Waves in Conductors (IV) 

Complex Wave Number

These equations still admit plane-wave solutions,

2

t2

2B
2B = 

t

B

 E =  + 
2E E

+ 
t2 t

i(kz−t )

i(kz−t )


E(z, t) = E0e

B(z,t) = B0e

Note this time the "wave number" k is complex:

k 2 = 2 + i

)2

)2

+1

−1









  
1/2

 1+ (

k 
 2 

k = k + i, where 
 




1/2



2 
   1+ (

 
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The Real Parts of The Fields

Faraday's law 
E(z, t) = E0e−zei(kz−t) ⎯⎯⎯⎯⎯⎯→B(z, t) =

k
E0e−zei(kz−t)

K  k 2 + 2 =  1+ (


)2 and   tan−1( / k)

k = k + i = Kei

E0  
B−E = and

B0 =
K
=  1+ (


)2

E
k

E0e


Kei

i i

 
B =B(z, t) = E  B0e



E(z, t) = E0e− z cos(kz −t+E)x̂

B(z, t) =
K

E0e− z cos(kz −t+E +)ŷ

1 2 
=

2

    
d 

1

skin depth
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9.4.2 Reflection at a Conducting Surface

Where f is the free surface charge, Kf is the free surface

1 2 f
1 2

1E1
⊥−2E2

⊥ =f

B⊥ − B⊥ = 0
1 2

E// −E// = 0
1 2

1
B// −

1
B// = K  n̂

current, and n̂ is a unit vector perpendicular to the surface, 
pointing from medium (2) into medium (1).

Normal 

incident

60

(1) nonconducting 

linear medium
(2) conductor



Reflection at a Conducting Surface (II)

v1

EI (z, t) = E0I ei(k1z−t) x̂ , BI (z, t) =
1

E0Ie
i(k1z−t)yˆ

Incident wave:

v1

ER (z, t) = E0Rei(−k1z−t ) x̂ , BR (z, t) = −
1

E0Rei(−k1z−t )ŷ

Reflected wave:


E(z, t) = E0Te−zei(k2z−t) x̂ , B(z, t) =

k2 E0Te−zei(k2z−t)ŷ

Transmitted wave:

61

Normal components of the fields

1 1 2 2

1 2B⊥ − B⊥ = 0
⊥ ⊥

E⊥ − E⊥ = because electric field polarized f
f = 0  

in x direction, so E1 = E2 = 0. 



Reflection at a Conducting Surface (III)

E0 I + E0R = E0T

1v1 2
(E0I − E0R ) −

k2 E0T = K f
1

Tangential components of the fields at z = 0:

E// −E// = 0
1 2

1 2 f
1 2

1
B// −

1
B// = K  n̂

0T
2

2(E0I − E0R ) =E , where
1v1 k

Case (i) K f = 0, the simplest case.

E0I + E0R = E0T
2

0RE )E0I

)E0I

= (
1−

1+

E0T = (
1+

and E0T = 0For a perfect conductor ( = ), k2= ➔E0R = −E0I

That’s why excellent conductors make good mirrors.
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Case (ii) K f  0, EM field manipulation (interesting subject.)



9.4.3 The Frequency Dependence of Permittivity

When the speed of a wave depends on its frequency, the 

supporting medium is called dispersive.

EM

Tsun-Hsu Chang
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Asin((k0+k)z −(0+)t)+ Asin((k0 −k)z −(0−)t)

= Asin((k0z−0t)+ (kz−t))+ Asin((k0z−0t)−(kz−t))

= 2Acos[(kz −t)]sin[(k0z −0t)]

The Group Velocity and Phase Velocity 
When two waves of slightly different frequencies are 

superposed, the resulting disturbance varies periodically in 

amplitude.

k0

gGroup velocity v =


=
d

k dk


Phase velocity vp =

0

0

64

0

1

1

p

p

g

g

k

v

v

Phase delay  =
 

Group delay =
d d


dz = dz =

0

dk d()
dz = dz =











Interference in Time: Beats

When two waves of slightly different frequencies are 

superposed, the resulting disturbance varies periodically in 

amplitude.

y = y1 + y2 = Asin(2f1t) + Asin(2f2t)

= 2Acos[2(
f1 − f2 )t]sin[2(

f1 + f2 )t]
2 2

Beat frequency (|f1 − f2|): frequency of the amplitude 

envelope
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Simplified Model for the Frequency Dependence of 

Permittivity in Nonconductors

The electrons in a nonconductor are 

bound to specific molecule or atom.

0The simplified binding force: Fbinding = −kspringx = −m2x

The damping force on the electron: Fdamping = −m
dx

dt
(rate of change of electron momentum due to collision)

The driving force on the electron: Fdriving = qE = qE0 cos(t)

d 2x
Newton's law: m

2
= Ftot = Fbinding + Fdamping + Fdriving 

dt
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Permittivity in Nonconductors

The equation of motion

2 2
0

1q2

E0e
m

−itp =
 − − i

2
0

d 2x dx
0qE cos(t)

dt
m +m +mx =

dt2

2
0 02

d 2x dx
Re m

dtdt

 −it+m +m x = qE e 
 

0

The dipole moment is the real part of p = qx(t)

Let the system oscillates at the driving frequency

q / m
x = x0e

−it , where x0 = E0
2−2 − i
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Permittivity in Nonconductors (II)

N molecules per unit volume; each molecule contains fj
electrons with frequency j and damping j.

The polarization P is given by the real part of:

2 2

2 2

Nq2 

f jNq2 

f j



m 
j j − − ij 

P = E =0eE


e=  the complex susceptibility

0m 
j j − − ij 



the complex permittivity=0(1+e) 

the complex dielectric constant

2 2

Nq2  f j

r = (1+e) =1+

0m 
j j − − ij 


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Waves in a Dispersive medium

The wave equation for a given frequency reads

2 2

f j

j j


 

m   − − ij 


2

2t

2E Nq2 
 E =  =0(1+e) =0+

E(z, t) = E0e−zei(kz−t)

= I0e−2z ,  2(absorption coefficient)I  S

k  0= k + i

2 2

f j  1

c c 2

 Nq2  
k  r  (1+ e) = 1+

c  2m0  j j − − ij 



The binomial expansion

1.For gases, the second term of  is small, i.e. e
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Anomalous Dispersion

The index of refraction:

2 2

2 2
= 2

j j j

j j j

ck Nq2

f j2

n =
 f j (2−2)

1+
(2 −2)2 + 2m0  

Nq22  

m0c  (2 −2)2 +

 j


 j



In the immediate neighborhood of a resonance, the index of

refraction drops sharply (n<1). called anomalous dispersion.

Faster Than Light (FTL):

Can we find cases where the waves propagate at a speed 

faster than the speed of light (v/c=1/n)? Superluminal effect.
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9.5 Guided Waves

9.5.1 Wave Guides

Can the electromagnetic waves propagate in a hollow metal 

pipe? Yes, they can.

Waveguides generally made of good 

conductor, so that E = 0 and B = 0 inside 

the material.

The boundary conditions at the inner wall
are:

The generic form of the monochromatic waves:

E// = 0 and B⊥ = 0

ˆ ˆ ˆt) t)
0 x y z

i(kz− i(kz−


E(x, y, z, t) = E (x, y)e = (E x+ E y + E z)e

B(x, y, z, t) = B0(x, y)ei(kz−t) = (Bxx̂ + Byŷ + Bzz )̂ei(kz−t)

The confined waves are not (in general) transverse.

EM
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v2
t

B =
1 E

72

General Properties of Wave Guides

In the interior of the wave guide, the waves satisfy Maxwell’s

equations:
E = 0

B = 0

We obtain

v2

t
E+

B
= 0

t
B =

1 E 1
where v =

f f
Why  = 0 and J = 0?



(i)
Ey (iv)

By

(ii)
Ez (v)

Bz

(iii)
Ex (vi)

Bx

−
Ex

z Ez
c2

−
Bx

−
Ey −

By

x Ex
c2

−
Ez −

Bz

y Ey
c2

= −
i

= iB
x y x y

= −
i

= iB
y z y z

= −
i

= iB
z x z x

t
E+

B
= 0
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TE, TM, and TEM Waves

Determining the longitudinal components Ez and Bz, we could 

quickly calculate all the others.

We obtain

2 v2

2 +
2

− =
k  Ez 0

2

 2
+
2

v2

2 +
2

− =
k  Bz 0


x y2


 2
+
2




x y2
 

If Ez =0  TE (transverse electric) waves;

If Bz =0  TM (transverse magnetic) waves;

If Ez =0 and Bz =0  TEM waves.

(/c)2 − k 2

c2

c2

i
(k
Ez Bz )

Bz )

Bx =
i

(k
Bz −

Ez )

By =
i

(k
Bz +

Ez )

x

y

E =
x

+
y(/c)2 − k 2

i
(k
EzE =
y

−
x

x(/c)2 − k 2 y

y x(/c)2 − k 2



No TEM Waves in a Hollow Wave Guide

Proof: A hollow wave guide cannot support the TEM wave.

Ez= 0, Ampere’s law says t B = 0

Bz= 0, Faraday’s law says t E = 0

 B = −tB

 E = −tE

t E

t B2 = 0

E = 0  2 = 0

B = 0
E and B are potentials. 

The boundary condition on E requires that the surface be an 

equal-potential. E// = 0
Laplace’s equation admits no local maxima or minima.

➔ the potential is constant throughout. E = 0 — no wave at 

all.

Can a metal wire support a wave? Yes.
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A Diagram of the Optical Setup
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K. Wang and D. M. Mittleman, “Metal wires for terahertz wave 

guiding”, Nature, vol.432, No. 18, p.376, 2004.



9.5.2 TE Waves in a Rectangular Wave Guide

Ez = 0, and Bz (x, y) = X (x)Y (y)  separation of variables

21 2 X
+

1 2Y
+
2

X x2 Y y2
( − k ) = 0

v2

1 2Y2 2
y2

2 2 22

X x2

with = k + kx + ky

v2

kx and
1 2 X

= − = −k
Y y

X (x) = Asin kxx + B cos kxx 

Y (y) = C sin ky y + D cos ky y
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TE Waves in a Rectangular Wave Guide (II)

Ex 
Bz C cos ky y − D sin ky y
y

Ex (@ y = 0) = 0 C = 0

b
Ex (@ y = b) = 0 sin kyb = 0,ky =

n
(n = 0,1,2,...)

Ey 
Bz  Acos kxx − B sin kxx
x

Ey (@ x = 0) = 0 A = 0

Ey (@ x = a) = 0 sin kxa = 0,kx =
m

(m = 0,1,2,...)
a

Bz (x, y) = B0 cos(mx / a) cos(ny / b)  the TEmn mode

k = ( / v)2 − 2[(m / a)2 + (n / b)2 ]
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TE Waves in a Rectangular Wave Guide (III)

Bz (x, y) = B0 cos(mx / a) cos(ny / b)

In vacuum, =0 and=0, v = c.

c

k =
1

2−2 , where2 = c22[(m / a)2 + (n / b)2 ]
mn mn

the cutoff frequency

Ifmn, the wave number is imaginary.

The lowest cutoff frequency of TE10 mode is: 10 = c / a

The wave velocities are:

2
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phase velocity

group velocity

mn

g mn

k 2
vp =


=

c
 c

1−2

d
= c 1− 2  cv =

dk



Why the Phase Velocity Greater Than 

The Speed of Light

2

vpvg = c2

group velocity

mn

g mn

k 2
vp =


=

c
 c phase velocity

1−2

d
= c 1− 2  cv =

dk
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The Field Profiles: Examples

80



9.5.3 The Coaxial Transmission Line

A hollow wave guide cannot support the TEM wave, 

but a coaxial transmission line can.

2

2

= 0 electrostatict t E t E

t

 
 

 E = 0 E = −  ,  

 B = 0 B= −tB, t B = 0 magnetostatic

E and B are potentials.

(iv)
By −Bx =− iEz
x y c2

(i)
Ey −Ex = iBz
x y

(ii) Ez −ikEy =iBx
(v) Bz −ikBy =−

iEx
y c2

(iii) ikEx −
Ez =iBy (vi) ikBx−

Bz =− iEy
x c2

y

x
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The Coaxial Transmission Line (II)

The problem is reduced to two dimensions.

Electrostatic: the infinite line charge; 

Magnetostatic: an infinite straight current.

E0 (s,) =
A

ŝ, B0 (s,) =
A
̂

s cs

Taking the real part:

E(s,, z, t) =
Acos(kz −t)

ŝ
s

B(s,, z, t) =
Acos(kz −t)

̂
cs

(a) TEM
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(b) TE11



Homework of Chap.9 (II)
Problem 9.17 Analyze the case of polarization perpendicular to the plane of in-

cidence (i.e. electric fields in the y direction, in Fig. 9.15). Impose the boundary

conditions (Eq. 9.101), and obtain the Fresnel equations for E0R and E0r. Sketch

(E0R / E0I ) and (E0T / E0I ) as functions of I , for the case  = n2 / n1 = 1.5. (Note

that for this  the reflected wave is always 180 out of phase.) Show that there is no 

Brewster's angle for any n1 and n2 : E0R is never zero (unless, of course, n1 = n2

and 1 = 2, in which case the two media are optically indistinguishable). Confirm 

that your Fresnel equations reduce to the proper forms at normal incidence. Com-

pute the reflection and transmission coefficients, and check that they add up to 1.

Problem 9.20

(a) Show that the skin depth in a poor conductor (  ) is (2/ )  /  (inde-

pendent of frequency). Find the skin depth (in meters) for (pure) water. (Use the 

static values of  , , and ; your answers will be valid, then, only at relatively 

low frequencies.)

(b) Show that the skin depth in a good conductor (  ) is  /2 (where  is the 

wavelength in the conductor). Find the skin depth (in nanometers) for a typical

metal ( 107(m)−1)in the visible range ( 1015 / s). assuming   0 and

  0. Why are metals opaque?

(c) Show that in a good conductor the magnetic field lags the electric field by 45 , 

and find the ratio of their amplitudes. For a numerical example, use the "typical 

metal" in part (b).
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Homework of Chap.9 (II)

Problem 9.19

(a) Suppose you imbedded some free charge in a piece of glass. About how long 

would it take for the charge to flow to the surface?

(b) Silver is an excellent conductor, but it's expensive. Suppose you were designing

a microwave experiment to operate at a frequency of 1010Hz. How thick would 

you make the silver coatings?

(c) Find the wavelength and propagation speed in copper for radio waves at MHz. 

Compare the corresponding values in air (or vacuum).

Problem 9.30 Confirm that the energy in the TEmn mode travels at the group veloc-

ity. [Hint: Find the time averaged Poynting vector S and the energy density u 

(use Prob. 9.12 if you wish). Integrate over the cross section of the wave guide to

get the energy per unit time and per unit length carried by the wave, and take their 

ratio.]
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Homework of Chap.9 (II)

Problem 9.31 Work out the theory of TM modes for a rectangular wave guide. In 

particular, find the longitudinal electric field, the cutoff frequencies, and the wave 

and group velocities. Find the ratio of the lowest TM cutoff frequency to the lowest 

TE cutoff frequency, for a given wave guide. [Caution: What is the lowest TM 

mode?]

Problem 9.37 A microwave antenna radiating at 10 GHz is to be protected from

the environment by a plastic shield of dielectric constant 2.5. What is the minimum 

thickness of this shielding that will allow perfect transmission (assuming normal 

incidence)? [Hint: Use Eq. 9.199.]

Problem 9.40 Consider the resonant cavity produced by closing off the two ends 

of a rectangular wave guide, at z = 0 and at z = d , making a perfectly conducting 

empty box. Show that the resonant frequencies for both TE and TM modes are 

given by

lmn = c (l / d )2 + (m / a)2 + (n / b)2 ,
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(9.204)

for integers l, m, and n. Find the associated electric and magnetic fields.


