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Chapter 9: Electromagnetic Waves Tsun-Hsu Chang
9.1 Waves in One Dimension 9.1.1 The Wave Equation

= 111 Hf? y
What is a “wave™ 2.0) fiz 1

f h
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A start: Awave Is a disturbance of a continuous medium that
propagates with a fixed shape at constant velocity.

Z

~ ® Inthe presence of absorption, the wave will diminish in
size as it moves;

® If the medium is dispersive, different frequencies travel at
< different speeds;

® Standing waves do not propagate;

_® Light wave can propagate in vacuum;...



The Wave Equation

How to represent such a “wave” mathematically?

Hint: The wave at different times, once at t =0, and again at
some later time t --- each point on the wave form simply shifts
to the right by an amount vt, where v is the velocity.

Initial shape f(z,0)=9g(2)
subsequent form f(z,t) =7

_ _ (capture (mathematically) the
Tz ) =1(z-vt,0)=9(z =V gssence of wave motion.)

The function f(z, t) depends on them only in the very special

combination z — vt
When that is true, the function f(z, t) represents a wave of

fixed shape traveling in the z direction at speed v.



The Wave Equation (Il)
f(z,t) = Ae (T’
f,(z,t) = Asin[b(z —vt)]

A
fa(z,1) =
- b(z —vt)2 +1

Examples: <

How about these functions?

2
f,(z,1) = Ae—b(z +vt)
fc(z,1) = Asin(bz) cos(bvt)

=EA[sin(b(z +v1)) +sin(b(z — vt))] < a standing wave



The Wave Equation of a String

From Newton’s second law we have
0° Y
ot

F[sin( 6+ AQ) —sin( 0)] = (uAx)
i .
the force on the segment T— the mass per unit length

Small angle approximation:

sin & ~tan @ = 8_)/

ox
0’y 0%y
Yyl F)2Z
ox’ (ulF) ot



The Wave Equation

Derive the wave equation that a disturbance propagates
without changing its shape.

f(z,t)=g(z—vt); Let u=z—vt

8f:df(9u__vd_g N sz:_ o )_2d2
ot du ot du ot* 8t du du’
of df ou dg o’f 0 dg_  d’g

R — = 7 ( )_ )
0z du oz du oz~ 0z du  du
d’ 1 o° o’ o’ 1 &°

%Z 2 { - ]: — J:_ 2 { =0 qged
du~ v~ ot (074 (04 \T/ ot

+V Oor —V

f(z,t) = g(z —vt) +h(z +vt) the wave equation is linear.
> €




0.1.2 Sinusoidal Waves

(1) Terminology

wave speed

f(z,t) = Acos[k(z —vt) + 0]

/

amplitude wave number

\

phase constant

f(z,t) = Acos[k(z —vt) + 0] = Acos(kz — at + 0)

K = 27n A: wave length
w=kv=27 %:271 f

. angular frequency
f: frequency

Central
maximum
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Sinusoidal Waves

(i) Complex notation

Euler's formula €'Y =cosé@ +isinéd
[oi-ler; German]

f (z,t) = Acos[k(z —vt) +6] = Re[ Aglkz-et+9]
= Re[Ae'%!(z-t)] = Re[ Aglkz-ct)]

f

f = Aelkz—at) complex wave function

A= Ae' complex amplitude; phasor
f(z,t) =Re[f(z,0)]  ~:tilde

The advantage of the complex notation is that exponentials
are much easier to manipulate than sines and cosines.



Example 9.1

The advantage of the complex notation.
Suppose we want to combine two sinusoidal waves:

f.=f +f, =Re[f,]+Re[f,]=Re[f, + f,]=Re[f.]

Simply add the corresponding complex wave functions, and
take the real part.

In particular, when they have the same frequency and wave
number

f’é _ Alei(kz—oot) 4 Agei(kz—(ot) _ Aséi(kz—cot)

where Ag = A€ = Agd+ A,ei02

Try doing this without using the complex notation.



Sinusoidal Waves (llI)

(i) Linear combinations of sinusoidal waves
f(z,1) = j_“’ AK)EC ) gk, where w=w(K)

A(k) can be obtained in terms of the initial conditions.
f (z,0) and f (z,0) from the theory of Fourier transforms.

Any wave can be written as a linear combination of
sinusoidal waves.

So from now on we shall confine our attention to sinusoidal
waves.



9.1.3 Boundary Conditions:
Reflection and Transmission

Incident wave: fr(z,0) = Ay’ Faz=)
Reflected wave:  fo(z,t) = Ape' 7

Transmitted wave: fy(z,¢) = Ape' %277
* All parts of the system are oscillating at the same requency o.

The wave velocities are different in two e 1
regimes, which means the wave lengths — = k2 =1
and wave numbers are also different. v, k4

The waves in the two regions:
r;éilei(klz_wl) + ﬁRei(_klz_wt) forz<0

jTei(kzz—wf) forz >0

f(Z,t) =

G

10



Boundary Conditions

Mathematically, f(z, t) is continuous at z = 0.
f(0,t) = f(0",1)

The derivative of f(z, t) must also be continuous at z =0.

df df
| =__ Why?
dz|, dz|,
£
== S
T Knot r Knot
(a) Discontinuous slope: force on knot (b) Continuous slope: no force on knot
The complex wave function obeys the same rules:
- - df| _df
f(0°,t) = f(0",1); —| ==
dz|  dz|,
0 0

11



Boundary Conditions Determine the Complex
Amplitudes

r~

FO,0)=F(00) = A +A,=4,

ﬂ :ﬂ = kl(zl_‘ZR):kzzT

dz , dz "
[ k—k, ~ V, =V, ~
a5 " A AR:( 1 Z)AIZ( . 1)A]
A +A4,=A4, }:>< k +k, v, +,
k(A —A4.)=k, A ~ 2k, ~ 2v, _~
1( 1 R) 25T AT:( 1 )A]:( 2 )A]
k +k, v, +V,

When v, > v; all three waves have the same phase angle.
When v, < v, the reflected wave is out of phase by 180°.

Consider two extreme cases, fixed end and open end.

12



The Fixed End and Open End

Superposition of the actual pulse and an imaginary pulse.
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9.1.4 Polarization

Transverse waves: the displacement of the wave Is
perpendicular to the direction of propagation, e.g., EM waves.

Longitudinal waves: the displacement of the wave is along
the direction of propagation, e.g., sound waves.

Transverse waves occur in two independent states of polarization:

fv(Z, t) _ ;lei(kz—a)t)ﬁ fk (Z, t) _ zei(kz—a)t)y
General form: f(z,7) = A¢'“ ™ n, where f = cos 6% +sin 6§
lm.\ dh ‘ i //

VA" AENY o o

(a) Vertical polarization (b) Horizontal polarization

(c) Polarization vector

14



Right and Left Hand Circular Polarizations

¥Yi ¥i

¥
=¥

4:-pagatiﬂn /Pmpagatinn

{a) (b)

Electric field polanzation for (a) RHCP and (b) LHCP plane waves.
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9.2 Electromagnetic Waves in Vacuum EM

. Tsun-Hsu Chang
9.2.1 The Wave Equation for E and B

In regions of space where there is no charge or current,
Maxwell’'s equations read

1) V-E=0 (111)V><E——8—B
Ot
(11) V B = O (IV) V xB = /JOgO aaE[:
2
VX(VXE):—é(VXB) — V(VE)—VzE —ﬂogoa—
ot?
vx(vXB)zyOgOa(WE) = V(V-B)- sz_—yOgoa—B
Ot ) ot>
0°E
V°E = ﬂogoa—
V-E=0 t
: %
since {V-B:O :> i 22
VB = ppe9 —-
k ot? 16




The Wave Equation for E and B
In vacuum, each Cartesian component of E and B satisfies
the three-dimensional wave equation

2
E
V’E = ﬂogoz L s
X r* = V2f= 5
vp o’B v O
= Hoéo—
k o1

Maxwell's equations imply that empty space supports the
propagation of electromagnetic waves, traveling at a speed

1

Hpéo

V= —3x10° m/s <« the speed of light

17



Hertz's Experiment

When Maxwell's work was published in 1867 it did not
receive immediate acceptance. It is Hertz who conclusively
demonstrated the existence of the electromagnetic wave.

18



9.2.2 Monochromatic Plane Waves

Since different frequencies in the visible range correspond to

different colors, such waves are called monochromatic.

This definition can be applied to the whole spectrum. A wave

of single frequency is called a monochromatic wave.

The Visible Range
Frequency (Hz) Color Wavelength (m)
1.0 x 100 near ultraviolet 3.0 x 1077
7.5 x 10" shortest visible blue 4.0 x 1077
6.5 x 10! blue 4.6 x 1077
5.6 x 10" green 54 x 1077
5.1 x 101 yellow 5.0 x 107
4.9 x 10" orange 6.1 x 1077
3.9 x 1014 longest visible red 7.6 x 1077
3.0 x 10 near infrared 1.0 x 107

TABLE 9.1

19



The Electromagnetic Spectrum

Electromagnetic waves span an immerse range of
frequencies, from very long wavelength to extremely high
energy with frequency 1023 Hz. There is no theoretical limit to

the high end.

F%’t 12 10 8 6 4 "
R = AR R e R A e i i el
2 A i 42
aome | mom = il
| I | | | | | I%M% |:§ﬁz| |
- - - . 5 ; A (10" m)
28 26 24 99 20 18 16
i R T e e e e T ) “
r BHR x B4R | KIME
| PR | G50t Bt o] et = b ) e A N )

—~20 - 18 —16 -14 ~12 -10 -8
20



Mainly Heating Effect in Micro/mm-Wave Spectrum

Il W T I b | il Y . T I b |
Cell
V. = phthe
Power M | Microwave Tanning

lines radio oven booth

®

Frequency, Hz

1014 106 108 1020
R A PR B e —— e e
Microwave Ultraviolet

Non-ionizing . lonizing
Low induced High induced Electronic Broken bonds
currvents currents excitation 1
No proven effect ‘ *
at environmental levels Heating Photochemical effects DNA damage
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Windows for Research and Application Opportunities

100
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a1
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Average Power (Walts)

Spectrum to Be Exploited
--- Significance of the Electron Cyclotron Maser

one photon multiple-photon  multiple photon
per excitation,  per electron, per electron,
large interaction large interaction interaction space
space space ~ wavelength

\ J J
N ECM Devices
1051
10°F  Lasers THz gap "Conventional”
Power
10"+ Tubes
1[:.-3 ﬂ]‘ 1{?1E

Wavelength (mm)
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Monochromatic Plane Waves

Consider a monochromatic wave of frequency o and the
wave is traveling in the z direction and has no x ory
dependence, called plane waves.

Plane waves: the fields are uniform over every plane
perpendicular to the direction of propagation.

Are these waves common? Yes, very common.

fE(z,t) _ Eoei(kz—a)t) 3 ) |
. o where E and B, are the complex amplitudes.
B(z,1) = Bye' =)




Transverse Electromagnetic Waves

Q: What is the relation between E and B?

V-E=0 aaEZ = (By).ike'®=) =0 = (E,). =0
Z
i . ]
V-B=0 582 = (By).iké® =0 = (By). =0
Z

That Is, electromagnetic waves are transverse: the electric
and magnetic fields are perpendicular to the direction of
propagation. Moreover, Faraday’s law v, g__ B

o, &, o8, ol

X > @ o = k(Eg)y =—(Bp)x
. 0B, 0E, 0By . .

; - =———— = K(Ep)y =0
Voo =T - (Eo)x =(Bo)y

aEy . @EX — _ aéz

— = 0=0
ox oy ot

ya

25



Transverse Electromagnetic Waves (ll)

Ampere’s law with Maxwell's correction: V xB = y& E;];:
. OB 5I§y oF i
at == = & = k(B = snW(E
oy oz 00y (Bo)y = Hogo@(Ep)
. 0B, OB ok, ~ ]
: —— = Hoso—— = Kk(By)y =—ppso@(E
Yi T, THfo (By)y = —HoEo(Ey),
0B, 0B :
i 2Dy ®e o 0-0
Ox 0y ot
4 1
In free space, the speed of lightis ¢=—=
ko Ho¢o

More compactly, Bj = k (2xEg) =
®

l2xE)) > ELB
C

amplitude relation: By ==E

26



Example 9.2

Prove: If E points in the x direction, 5 —
then B points in the y direction. A

: Joile 5 e S e s — S
Sol:  E(z,f)= Eoel(kz—a)t)& v B
B, = g(i xEg) = % Eyel® (3% %) = % Feitle—any

Take the real part:
E(z,t) = Ey cos(kz — ot + 5)X

B(z,1) = lEO cos(kz —wt +0)y
c

Q: Why not use sine function?

27



Plane Waves Traveling in an Arbitrary Direction

There Is nothing special about the z 7 A
direction---we can generalize to , /

monochromatic plane waves traveling in
an arbitrary direction.

The propagation (or wave) vector, k: pointing in the
direction of propagation.

Generalization of kz: using the scalar product k-r.
E(r,r) = Eye'¥T™ i « the polarization vector

B(r,?) = 1E0e"<k'f‘a’f> (k xn) = I ixE
C C

Q: Can you write down the real electric and magnetic fields?

28



9.2.3 Energy and Momentum in M

Tsun-Hsu Chang
Electromagnetic Waves
The energy per unit volume stored in the electromagnetic
field is | i
u=—(goE* +—B?)
2 Ho

: 1
Monochromatic plane wave: B® =—-E* = uysyE”
C

| | |
u= E(é‘oEz +—B2) :E(EOEz +50E2) = 6'0E2

Ho
Their contributions are equal.
U= gOE2 = gOEoz cos” (kz — wt +5)
As the wave travels, it carries this energy along with it.

Q: How about the momentum? See next slide.

29



Energy Transport and the Poynting Vector

Consider two planes, each of area A, a distance dx apat,
and normal to the direction of propagation of the wave. The

total energy in the volume between the planes is dU = uAdx.

The rate at which this energy passes through a unit area

normal to the direction of propagation is
S_ldU—luAdx—uc /A

Adt A dt
EB
S=uc=— \g
Ho /
ExB
S = (the vector form) N
/Llo ax

% ¢ ¢

30



Average Effect

In the case of light, the period is so brief, that any

macroscopic measurement will encompass many cycles.

All we want is the average value.

1
(u) = 5‘901*702

S 2168 E?7={u)cz
7 0+~0

1 | 9 n
<g> = C—2<S> = 2—050E0Z

The average power per unit area transported by an
electromagnetic wave is called the intensity:

31



Example

A radio station transmits a 10-kW signal at a frequency of 100
MHz. For simplicity, assume that it radiates as a point source.
At a distance of 1 km from the antenna, find: (a) the amplitude
of the electric and magnetic field strengths, and (b) the energy
iIncident normally on a square plate of side 10 cm in 5 min.

Solution:

Average power Eg

2

(a) S == =
“ 4rr 2

_, 19009 41077 x3x10% = B2

4710007
(Ey=0.775 V/m

E _
By=-"2=258x10" T
L C

(b) AU=S,,4At=24x10"> ]

32



Momentum and Radiation Pressure

An electromagnetic wave transports linear momentum.

The linear momentum carried by an electromagnetic wave is
related to the energy it transports according to

_U
P =

If surface Is perfectly reflecting, the momentum change of
the wave Is doubled, consequently, the momentum imparted
to the surface Is also doubled.

The force exerted by an electromagnetic wave on a surface

may be related to the Poynting vector
F_ Ap _ AU SA S
A AAt AcAt Ac ¢

u

33



Momentum and Radiation Pressure (lI)

The radiation pressure at normal incident is

F_S_
A C

U

Examples: (a) the tail of comet, (b) A “solar sail”

(a) (b)

34



Homework of Chap.9 (1)

Problem 9.2 Show that the standing wave f (z,t) = A sin(kz) cos(kvt) satisfies
the wave equation, and express it as the sum of a wave traveling to the left and a
wave traveling to the right (Eqg. 9.6).

Problem 9.6

(a) Formulate an appropriate boundary condition, to replace Eq. 9.27, for the case
of two strings under tension T joined by a knot of mass m.

(b) Find the amplitude and phase of the reflected and transmitted waves for the case
where the knot has a mass m and the second string is massless.

Problem 9.10 The intensity of sunlight hitting the earth is about 1300 W/m?. If
sunlight strikes a perfect absorber, what pressure does it exert? How about a perfect
reflector? What fraction of atmospheric pressure does this amount to?

35



Homework of Chap.9 (1)

Problem 9.8 Equation 9.36 describes the most general linearly polarized wave on
a string. Linear (or "plane™) polarization (so called because the displacement is par-
allel to a fixed vector n) results from the combination of horizontally and vertically
polarized waves of the same phase (Eqg. 9.39). If the two components are of equal

amplitude, but out of phase by 90° (say, 6, =0, &, =90°), the result is a circularly

polarized wave. In that case:

(a) At a fixed point z, show that the string moves in a circle about the z axis. Does it
go clockwise or counterclockwise, as you look down the axis toward the origin?
How would you construct a wave circling the other way? (In optics, the clock-
wise case is called right circular polarization, and the counterclockwise, left

circular polarization.)®
(b) Sketch the string at time t = 0.
(c) How would you shake the string in order to produce a circularly polarized wave?

Problem 9.12 In the complex notation there is a clever device for finding the
time average of a product. Suppose f (r,t)=A cos (k-r—wt+0,) and g (r, t)=

B cos (k-r—ot +3p). Show that { fg)=(1/2) Re(fg"), where the star denotes
complex conjugation. [Note that this only works if the two waves have the same k
and m, but they need not have the same amplitude or phase.] For example,

| a zp T .o = 1 . s
u)=-Re| g b-E'+—B-B"| and (S :—Re(ExB .
)=y B LB | (5) LR

36



EM
9.3 Electromagnetic Waves in Matter Tsun-Hsu Chang

9.3.1 Propagation in Linear Media

In regions where there is no free charge and free current,
Maxwell's equations become

V-D=0 VxE:—@
ot
V.B=0 vxH=2P
ot
If the medium is linear, D=¢E and H:lB
y7;
If the medium is linear and V-E=0 VxE :_E

homogeneous (¢ and p do
not vary from point to point), v.B=0 VxB= usE
ot

=3/



The Index of Refraction

Electromagnetic waves propagate through a linear
homogeneous medium at a speed

1 C
O’E V= =—
2
VE_IUE? 1 62f \ HE n
4 = Vf=—
V°B = OB v or n= |24
G T ) Voo

The index of refraction of the material

. . E
For most materials, x is very close to sy, SO n= |— =./¢,

E
Since ¢.is almost always greater than 1, light travels

more slowly through matter.

Q: What happens when g is less than 1 or negative?

38



Applications: low power

THz Meta-materials

Fa)2
Hoep(@)=1-
eff 0)2— 8+i1“co

=t () +ipt g ()

Frequency (THz)
pa 10 12 14 186 1.8

g

_5 i

== 2
o
20

25 30 35 40 45 50 55 60
Frequency {cm™)

T.J. Yen, et. al., “Terahertz magnetic response from artificial materials”, Science, 303, 1494 (2004).
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Energy Density, Poynting Vector, and Intensity in
Linear Media

All of our previous results carry over, with the simple

transcription
1 1 |

u=—(¢E>+—B’ =—Uuz
gy — & 2( ,U ) 2 )
Ho = H ExB 1
. sy §=—" 15<S>=5ng§

7

Q: What happens when a wave passes from one
transparent medium into another? Boundary conditions.

Di"-Dy =0y E/ -EY =0
Bi--By =0 Hj'-Hj =(Kxh)

40



0.3.2 Reflection and Transmission at Normal Incidence

A plane wave of frequency m, traveling in the z direction and
polarized in the x direction, approaches the interface from the
left. x

® &
Incident wave: I . )__vz
El (Z, t) _ EOl el(k]_Z—(Dt)f( 1 % 3

BI ////

P 1 o s k _ t A
B, (z,t) = = Eq elkiz—0ot) By
| ( ) V1 ol y v1<__I/ / ‘}nerface

Reflected wave: Transmitted wave:

: = e Y 2 _ 1 e ikoz-ot)g
Br(z,1) :_VilEOReu(—klz—cot)y B (z,1) = . E - eilkaz-0D)g

41



The Boundary Conditions

Normal incident: no components perpendicular to the surface.
Eoi +Eor = Eor
1

~Epr)=——Eqr |
HoV2

~
[Tl
9

=
=
Z |-

=

r

~ ~ ~ \
= (Eq; —Eor) =PEgr, wherep= L
HoV2

In terms of the incident amplitude:

Eor —( b )Eo) Eogr = (
1+ : Vi +V>
5 fu=p = y
E _(—)E Eqr = (—2)E
oT B 0l oT v1+v2) 0l

Vo —Vi\ =
)Eo

42



Comparison: The Complex Amplitudes of a String

Incident wave:
Reflected wave:

Transmitted wave:

Boundary
conditions:

12[ + IZR — ‘ZT
ki (A4

~

— Ap) =ky Ap

When v, > vy, all three waves have the same phase angle.

f[ (Z, t) — Ialei(klZ—a)t)
fR (Z, t) — IZRel.(—klZ—a)f)

f~T (Z, t) — IZTel'(kzZ—C()t)

7(N~— 70t df df
fO,0)=,0"1) | =
dz|  dz|,
0 0
—k Vo) —V
AR ( /\‘72)/11—(‘/2 VI)AI
Rt
V ~
Ar = ( VA = (—2-)4;
k2 Vy + V]

When v, < vy, the reflected wave is out of phase by 180°.

43



Reflection and Transmission Coefficients

The reflected wave Is in phase if v, > v,
and is out of phase if v, < v,

- Vo — Vi = M —No =
Eor = (:2—2)Eq =(=2—2)Ey

V1 +Vo N +No
~ 2V2 ~ 2n1 ~
Eor =( )Eqr =( )Eo
V1 +Vo N +No
The intensity (average power per unitarea)is: | = <S> — %VgE%
Reflection coefficient R = /R — (nl_ N2 )2
|| N +No
IT _ 52\/2( 2711 4n1n2

) =

Iy ev m+ny (N +ny)?

Transmission coefficient 7 =

44



9.3.2 Reflection and Transmission EM

_ _ Tsun-Hsu Chang
at Obligue Incidence
Suppose that a monochromatic plane wave of frequency o,
traveling in the Kk, direction

P
"~
‘d

\
: N
Incident wave: ke R .
- ” e N
EI (l‘,t) _ EO]el(k[ r a)t) IHR' z \IHT _
~ 1 s 2ad 9; §
B/(r.t)=—(k ¥xE N\ Plane of Incidence
I( b ) v ( ] ]) kl ) % .
I Q) S (2)
\
Reflected wave: Transmitted wave:
ER (r, t) — EORei(kR T—t) ET (r, t) _ EOTei(kT-r—a)t)
. | o ~ 1 ~ ~
B, (r,0)= —(k,xE,) B (r,t) =L (k. xE.)

Vi v,
45



Boundary Conditions

All three waves have the same frequency o.

w=kv, =Ky, =kv, or k =k, =2k =g

Vi N,

Using the boundary conditions

EEt—-¢ EF =0 E/ —E/ =0

1 1 2 2

L pl_ 1 1
B BZ_O Blll— B/Z/:O

) - -

thy )

A generic structure for the four boundary conditions.

(ol ei(k| r—ot) +( or ei(kR-r—a)t) ~()ot ei(kT T-ot) _ 0

o

' Vo

D @
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Laws of Reflection and Refraction
K, -r=Kg-r=Kk;-r
k. X+k z=k, X+k, z=k X+K 1z
atz=0 = Kk Xx=kg X=Xk X
.k, sin@, =Kk sinB, =k sind;

0,, 0, and O, are angles
of incidence, reflection,

p =#k momentum conservation

The law of reflection: 0, =0g
The law of refraction: sinb; _k _v, _n
(Snell’s law) sinB, kv, n,

Common properties of waves: These equations are
obtained from their generic form.

and refraction, respectively.

a7



Boundary Conditions (li)

v

h'd h'd

O, @

We have taken care of the exponential factors—they cancel.

The boundary conditions become:

(i) & (Eo; +Egr), = &2(Eor), Normal D
(11) (Bo; +Bor), =(Bor). Normal B
(i) (Eo; +Eor)y., = (Eor)s., Tangential E
. 1 - ~ | .
(1v) _(BOI +BOR>x,y = _(BOT)x,y Tangential H
H Hr

~ 1 ~ =~
where B(r,7) =—(kxE)
V

48



E-Parallel to the Plane of Incidence

Q: If the polarization of the incident wave Is parallel to the
plane of incidence, are the reflected and transmitted
waves also polarized in this plane? Yes.

By X
: N

Normal D (i) &(—Ey;sin@; + Eyp sinfp) = &,(~Eqy sin ;)
Tangential E (iii) (E,; cos@; + Eyp cosOg) = (Ey7 cos O;)
Normal B (11) 0=0

. . | R . 1
Tangential H (1v) ——(Ey; —Egr) =

HV| HrV)

(Eor)

49



E-Parallel to the Plane of Incidence (ii)

ooy ~ ~ cos &
(iii) (Eo; +Eor) =a(Eyy) a=—"=
cos &y
: ~ ~ ~ 1%
(V) (Eos ~Eop)=B(Eor) ="
MH2V3
~ a—pf. =~ ~ 2 = , .
= Eyp =( YEy;  Egr =(——)E,; Fresnel's equations
+ o+ [

How about the first boundary condition?
Does this condition contribute anything new?

"~ ~ ErSINOr  ~ £ SIn O V
(i) (Eor —Egg) =—2——(Eor) 2T _ A
g1 S1n 6, gsmol;  fHv
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Brewster’'s Angle

( N a _ -~
Egp = (a_l_ﬁ)EOI 08 0 .
, where o = QT and [ = =L
~ = COS Vv
Eor =(——)Eo; ' e
\ o+ [

When « = S, there is no reflected wave. E"OR =0

COSGr _ tav - then§ iscalled Brewster's angle, &
Cosl, tbVy

J— I 2
1-sin®6; — Fand sin 26; =((1)2sin26g (Snell's law)
1-sinfp 2

1- (2—21)28in26’5 = B> -B5in 205 = sin%0g = o ,Zg FE

ol



Brewster’'s Angle (ll)
If i, = 11, f=n,/n and sin® 6, = 5% /(1+ %)

n
= tanf, ==
n,
1.0
0.8
E E()'I' 7]
0.6 : E(), i
0.4+ -
0.2+ O
00 b———u 1 1 1 1 (IR Y U 7~ N Y TR N N > 9,
s 20° 40° 60° 30° |
9
2 L E{)R
04t Eo, -



1;
Ip =

I7

Transmission and Reflection
1

A 2
1 I a+p
—V151E0R cosOp = ( 'B) 1 ]/ 2
2 + [ =T = gf(—=)?
Vi o=
2 o +
1.0
08| T
06 | 3
04
b R
02}
0.0—"'1"' =

0° 10° 20° 30° 40° 50° 60> 70° 80° 90°
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E-Perpendicular to the Plane of Incidence

Q: If the polarization of the incident wave iIs perpendicular
to the plane of incidence, are the reflected and transmitted
waves also polarized in this plane? Yes.

M;E.l
Me

See Problem 9.16



9.4 Absorption and Dispersion .
_ _ sun-Hsu Chang
9.4.1 Electromagnetic Waves in Conductors

When wave propagates through vacuum or insulating
materials such as glass or teflon, assuming no free charge
and no free current is reasonable.

But in conductive media such as metal or plasma, the free
charge and free current are generally not zero.
The free current is proportional to the electric field: Ohm’s law
conductivity
3, =€

Maxwell's equations for linear media assume the form

g ot
V-B=0 VxB—,ug%—ItE:,uaE
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Electromagnetic Waves in Conductors (Il)

9,
The continuity equation for free charge: % =-V-J,
_ conductivity 4
J, =cE
f 9,
Ll e oV E)=—cL =T
p,=&V-E ot g &

_L
For a homogeneous linear medium:  ,, (;y=¢ 7 (0)

o where 7 =2
Classification of conductors: 2]

superconductor o =, 7=0 What’s the difference?
perfect conductoro =, 7=0 See Prob. 7.42
good conductor 7 << % 7 ~10%s for copper

poor conductor 7 >> L 7. ~10"s collision time

56



Electromagnetic Waves in Conductors (l1)
Omitting Transient Effect
Omit the transient behavior.
Assume no charges accumulation: Ps =0
oB

V-E=0 VxE+—=0
ot

V-B=0 VxB:,uea—E+,u0E

ot
—> Vx(VxE+_) Vx (VX E)+8(VXB)

ot ot
Vx(VxE) =V(V7\§)—VZE =-V’E

=0 5
8(V><B):luga E+,uO'a—E
ot ot? ot
O°E ok 0°B oB
VE=us——+ uo—, V°B=us——+ uo— (likewise
He o THO 5 He oz THo 5 ga7



Electromagnetic Waves in Conductors (IV)
Complex Wave Number

These equations still admit plane-wave solutions,
O°E OE

V2E — i T = o ] ]’Cv —l
pe— + uo = < E(z.1) —Eoel( z—l)

2 [ . P
V’B = ue 881123 + /10'88—]: B(z,1) = Boel(kz )

Note this time the "wave number" kK is complex:

k> = e’ +iuocw

( - ~1/2
k a),/“’—“ \/1+(i)2+1
- 2 EQ

k =k +ix, where - - )

—1/2
Kw%¢%w4
EQ

Il
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The Real Parts of The Fields

. e - ko _xz i(e-on
1D _F.e K‘Zel(kZ wt) SB(z. 1) =~ Fre Kzez( Z—t)
(2,2) 0 Faraday's law (z,1) = W 0

k=k+ix=Ke"

K = k2 +x2 —oo\/g,u\/1+(—)2 and ¢ = tan™(x/ k)

- - s Kel?
B(Z,t) — EE — BOGISB = EOel5E

Q 6))
&-dg=gand 20— =\/8u\¥+(6+2
_EO__S(D sklndepth
E(z,1) = Ege " cos(kz — ot + 5)% §d_ e

K o E? E

|
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9.4.2 Reflection at a Conducting Surface
& Ef —&,Ey =0 E/'—E5 =0
1 1 2
B -By =0  —B{-—Bj =K xi
| H
Where o; Is the free surface charge, K; Is the free surface

current, and N is a unit vector perpendicular to the surface,
pointing from medium (2) into medium (1).

Normal -
L E; O 2) Er
Incident P

)_’Vl ,/ "2

/
(1) nonconducting B V37 (2) conductor
linear medium B /;’f i ¢
v1<_I// Interface

y
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Reflection at a Conducting Surface (ll)

Incident wave:

. U I o
EI(Z’t):E()]el(klz a)t)X, B](Z,t)Z—EOIel(klz a)t)yoo
Vi
Reflected wave:
N o o P Lo o
ER(Z,t):EORel( kiz a)f)X, BR(z,t):__EORel( kiz a)t)y
Vi

Transmitted wave: ~

- - B . B ) _ k N B . ) A
E(Z,t) — EOTe K'Zel(k2Z G)I)X, B(Z,t) — _2E()Te K'Zel(kzz C()t)y
)

Normal components of the fields
glElL — ngzL =0y because electric field polarized ]

= o0,=0
s Ein X direction, so Ef = E2L =0
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Reflection at a Conducting Surface (lll)

Tangential components of the fields at z = 0:
—B//——B/z/:foﬁ —— (Lo —Eor)——
Ly L HV Hyw
Case (1) K, =0, the simplest case. ~ 1— 8 -
> ~ ! - Eor = (—'B)E()[
Lo +Eor = Eor —> I+p

- - - o = .
(Eo; —Eop) = BEor, where f="11E, Bor = (I—)EOI

o 4B

For a perfect conductor (6 = »), k,=0 = Egr =—Eq and Egr =0

Eor =Kj

That’s why excellent conductors make good mirrors.

Case (il) K; # 0, EM field manipulation (interesting subject.)
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EM
9.4.3 The Frequency Dependence of Permittivity Tsun-Hsu Chang

When the speed of a wave depends on its frequency, the
supporting medium is called dispersive.

I l | I l I | |

Orientation

Dielectric constant, e,

104 108 1042 106
Frequency (Hz)
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The Group Velocity and Phase Velocity

When two waves of slightly different frequencies are
superposed, the resulting disturbance varies periodically in
amplitude.

Asin((ky + Ak)z —(wy + Aw)t) + Asin((ky — Ak)z — (@, — Aw)t)
= Asin((kyz — wpt) + (Akz — Awt)) + Asin((kyz — wt) — (Akz — Awt))
=2 Acos[(Akz — Awt)]sin[(kyz — a)ot)] .

mwwmw e,

. Group velocity v, = —=—

// . \ //, f\ l“, ,1:1 [\ J"\‘\\ Ak dk
ATV L 1 - ko A
YV YL Phase delay 7,=|—dz=|—dz 2l
T et "V "y @y
il e dk d(A
Group delay 7,=| —dz = =z = a)
=V “do da
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Interference in Time: Beats

When two waves of slightly different frequencies are
superposed, the resulting disturbance varies periodically in
amplitude.

Yy=w+y,=AsmQ2x fit)+ Asm(27x f,t)

_ 2 dcos[2r(2. ;fz \]sin[27(L ;fz )]

Beat frequency (|f; —f,|): frequency of the amplitude
envelope , |
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Simplified Model for the Frequency Dependence of
Permittivity in Nonconductors

Electron
X
The electrons in a nonconductor are | E v kusis
bound to specific molecule or atom. W "
Z

— —ma)gx

The damping force on the electron: Faamping = —my@

dt
(rate of change of electron momentum due to collision)

The simplitied binding force: F,;pding = —KspringX

The driving force on the electron: Fyjyine = 9E = qE( cos(ax)

d2x
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Permittivity in Nonconductors
The equation of motion

d’ d
me— + Wl]/—x + ma)gx = qE cos(wr)

dt? dt

- 7. 5 A
d”x dx -
ReH m—+m7—+ma)gx: qLlye
2
dt dt

Let the system oscillates at the driving frequency @

—it

'

J

q/m

a)g — w? —1yw

~  ~ —lot ~
X=Xxpe  , whereXxy=

£y

The dipole moment is the real part of p = gx(¢)
2
- 1 _
p — q ; : . Eoe 1104
m wy —w~ —1yw
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Permittivity in Nonconductors (ll)

N molecules per unit volume; each molecule contains f;
electrons with frequency «; and damping y;.

The polarization P is given by the real part of:

2
P= Z 5 zj E=¢&y7.E
0O —0" =iy ;0
2
.~ N ' .
He = e Z > ];j <« the complex susceptibility

som| < w5 —w° —iy;
o\ 0f —o" —iy ;0

the complex permittivity ¢ = go(1+ 7,)
the complex dielectric constant

f,
g, =(1+7,)= 1+ Z —
70— —iy;©
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Waves in a Dispersive medium
The wave equation for a given frequency reads

_O°E . N /i
V’E = pe—  e=gg(l+ y,)=¢69g+—— q Z 2]

ot? m = ol — .
j 0] -0 =iy ;0

k=, ey =k +ix  E(z,f)= Eoe—’fzei(kz—wt)

1

(8)= ]Oe_zKZ , o =2k (absorption coefficient)

For gases, the second term of ¢ is small, i.e. 7, <1

~ — o L ) Ng? I
f=2JE =2 += 7)== 14 | Y

C G 2 C 2me T 0 -0 —iy ;0
\_/ B -

The binomial expansion
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Anomalous Dispersion

The index of refraction:

o 2m50 ~ (7 a)z)2 + 7 0
2 s a2
a =2k = o Z
meye \ 5 (0 — 0% ) +y;

In the immediate neighborhood of a resonance, the index of
refraction drops sharply (n<1). € called anomalous dispersion.

Faster Than Light (FTL):
Can we find cases where the waves propagate at a speed

faster than the speed of light (v/c=1/n)? Superluminal effect.
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9.5 Guided Waves - EM
: sun-Hsu Chang
0.5.1 Wave Guides

Can the electromagnetic waves propagate in a hollow metal
pipe? Yes, they can.

Waveguides generally made of good /
conductor, so that E=0 and B =0 inside %
the material.

A |

The boundary conditions at the inner wall
are. E’=0 and B* =0 ...

The generic form of the monochromatic waves:
E(x, V,z,t) = EO(X, y)ei(kz—a)l‘) _ (Exﬁ + Eyy n Ezi)ei(kz—a)t)

]~3(x, V,Z,t) = EO(X’ y)ei(kz—a)f) _ (éxi n Eyy n B“Zi)ei(kz—a)t)

The confined waves are not (in general) transverse.
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General Properties of Wave Guides

In the interior of the wave guide, the waves satisfy Maxwell’s

equations: oB

V-E=0 VXE-I_E:O Why p, =0and J, =07
1

V-B=0 VxB:i@ wherev=—

V2 ot Jeu

We obtain VxE+22 =0 vxB=-+LE
. B, i
02 9B i (i) BB o _1op
ox 0y oX oy C?
oB '
i) 2L _ % g () BBy - _0p
dy Oz oy oz c?
...OFk. OF . 0B, 0B, 10,
L —jwB, (Vi)=X-—=-—E
()= % @B M5 % "



TE, TM, and TEM Waves

Determining the longitudinal components £_and B_, we could

quickly calculate all the others.

) oF OB

E = k—=+w—=
¥ (a)/c)2—k2( Ox 8y)
E, = 12 2(k8EZ —a)GBZ)
(w/c)"—k= Oy Ox
i 0B, w OF
B = ;=5 ==
(w/c)” -k~ Ox = Oy
i OB, w OF,

. Z
‘We obtain By (@l -k k Oy " c* ox
0° 07 2 2
+—+——k" |E;=0 IfE,=0 = TE (transverse electric) waves;

- = If B, =0 = TM (transverse magnetic) waves;

+—+——k*|B.=0 IfE;=0andB,=0 = TEM waves.
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No TEM Waves in a Hollow Wave Guide

Proof. A hollow wave guide cannot support the TEM wave.

E.=0,Ampere’s law says V., xB=0 = B=-V, g,
B.=0, Faraday’s law says V. xE=0 = E=-V,¢

VE=0 = Vg, =0
V-B=0 = Vigg=0
The boundary condition on E requires that the surface be an
equal-potential. E” =0

Laplace’s equation admits no local maxima or minima.

=» the potential is constant throughout. E =0 — no wave at
all.

¢. and ¢, are potentials. {

Can a metal wire support a wave? Yes.
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A Diagram of the Optical Setup

Scanning optical

delay lin
y Femtosecond laser A\
Fibre
coupler /
THz transmitter
R
Input coupler ifl—' 2 Fibre
t/ coupler
. ]
Wa{reguide THz receiver
J e
Movable stage Movable stage

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave
guiding”, Nature, vol.432, No. 18, p.376, 2004.
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9.5.2 TE Waves in a Rectangular Wave Guide

E. =0, and B_(x, y) = X(x)Y (y) < separation of variables

) . ) Ay
10 X+l6 Y+(a) —k%)=0 L

X axz Y@yz V2 ]

) 2 d jl
————————————————————— —

10 )2(:_k’% and la—);:—ki b )
X ox Y oy \,

ith w—z—k2+k2+k2 |
\%\Y% vz — b s y

X(x)=Asink,x+ Bcosk, x
Y(y)=Csink,y+Dcosk,y
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TE Waves Iin a Rectangular Wave Guide (ll)
OB.

E.(@y=0)=0=C=0

E(@y=b)=0=smk,b=0,k —(n 0,1,2,...)
OB.

Ox
Ey(@x:O):O:A:O

E,(@x=a)=0=sink,a=0,k, =m7”(m -0,1,2,...)

B.(x,y)= By cos(mrmx/a)cos(nry/b) < the TE ,,, mode

k=\(@/v) =7[(m/a)’ +(n/b)']
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TE Waves in a Rectangular Wave Guide (l1)

B_(x,y)= Bycos(mrmx/a)cos(nrzy/b)

In vacuum, & =g, and u =y, v=c. the cutoff frequency

k= l\/a)z —a),gm , Where co,%m = 027r2[(m/a!)2 +(n/b)2]
@

If o<w

> the wave number is imaginary.

The lowest cutoff frequency of TE,, mode is: @, =c7/a

The wave velocities are:

% >c¢ phase velocity

_o e
"ok \/1—0),‘3‘,”1/&)2

Vg = cj{—z) = c\/ 1- a),%,m / w* <c group velocity
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Why the Phase Velocity Greater Than
The Speed of Light

; _ o C
Pk \/l—a),%m/a)z

Vg = do = c\/ 1- a),fm / w* <c group velocity
dk
2

VpVg =C

> ¢ phase velocity

PR

.-."~4T

AN

Wave fronts

79



The Field Profiles: Examples

TEy,

.E. ST .:.:. .h“"?. .E.
FE Akl A

.'.,.':-Z,'?;.,'f',::-:.‘;.
i dee nk

eI THE
A T2 Lfele 37T .

“in ,_.J oo ‘-{ e
wle 4o NSO LR wy vle
e t: ’:) J.xo ‘: :’ e
c'\o o0 T odele T3 o).

2

. - -
- - - - -
k -
r r
- -

0




9.5.3 The Coaxial Transmission Line

A hollow wave guide cannot support the TEM wave,

but a coaxial transmission line can.

~ OEy QF, .. 0By, 0B :
f— — y — — —=
©) ox Oy Mi @) ox oy 2 QZ
] — — / —7 =_l‘Q
(70) &5 lkEy iwB, (v) o szy 2 E,

(iii) ikE, —%: joBy  (vi) ikBy —%%:-%’Ey
C

b

'

Tl
f

V,xE = O} N {E =-V,¢9p, Vt2¢E =0 electrostatic

V., xB=0

B=-V,¢z, V,>¢p =0 magnetostatic

¢, and ¢, are potentials.
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The Coaxial Transmission Line (I1)
The problem is reduced to two dimensions.

Electrostatic: the infinite line charge;
Magnetostatic: an infinite straight current.

Eo<s,¢>=§§, Bo<s,¢>=§¢3

Taking the real part:

E(s. . 2.1) = Acos(l;z —t) :

Acos(kz —wt)

cS ¢

B(s,0,z,t) =
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Homework of Chap.9 (Il)

Problem 9.17 Analyze the case of polarization perpendicular to the plane of in-
cidence (i.e. electric fields in the y direction, in Fig. 9.15). Impose the boundary

conditions (Eq. 9.101), and obtain the Fresnel equations for £y, and £,. Sketch
(Eop! Eqy) and (Eyp/ Ey;) as functions of @;, for the case f =n, /n; =1.5. (Note

that for this /3 the reflected wave is always 180° out of phase.) Show that there is no

Brewster's angle for any n; and n, : Eyp is never zero (unless, of course, 7y = n,
and £4 = 11, in which case the two media are optically indistinguishable). Confirm
that your Fresnel equations reduce to the proper forms at normal incidence. Com-
pute the reflection and transmission coefficients, and check that they add up to 1.

Problem 9.20

(a) Show that the skin depth in a poor conductor (o <« we) is (2/0)\J& / 1 (inde-
pendent of frequency). Find the skin depth (in meters) for (pure) water. (Use the
static values of ¢, i, and o; your answers will be valid, then, only at relatively
low frequencies.)

(b) Show that the skin depth in a good conductor (o > we) is A/2x (where A is the
wavelength in the conductor). Find the skin depth (in nanometers) for a typical

metal (o = 107 (Qm)_l)in the visible range (@ = 10" / s). assuming & = &, and

u = uy. Why are metals opaque?

(¢) Show that in a good conductor the magnetic field lags the electric field by 457
and find the ratio of their amplitudes. For a numerical example, use the "typical

metal" in part (b).
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Homework of Chap.9 (II)

Problem 9.19
(a) Suppose you imbedded some free charge in a piece of glass. About how long

would it take for the charge to flow to the surface?
(b) Silver is an excellent conductor, but it's expensive. Suppose you were designing
a microwave experiment to operate at a frequency of 101°Hz. How thick would

you make the silver coatings?
(c) Find the wavelength and propagation speed in copper for radio waves at MHz.

Compare the corresponding values in air (or vacuum).

Problem 9.30 Confirm that the energy in the TE,,, mode travels at the group veloc-
ity. [Hint: Find the time averaged Poynting vector <S> and the energy density <u>
(use Prob. 9.12 if you wish). Integrate over the cross section of the wave guide to
get the energy per unit time and per unit length carried by the wave, and take their

ratio.]
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Homework of Chap.9 (II)

Problem 9.31 Work out the theory of TM modes for a rectangular wave guide. In
particular, find the longitudinal electric field, the cutoff frequencies, and the wave
and group velocities. Find the ratio of the lowest TM cutoff frequency to the lowest
TE cutoff frequency, for a given wave guide. [Caution: What is the lowest TM
mode?]

Problem 9.37 A microwave antenna radiating at 10 GHz is to be protected from
the environment by a plastic shield of dielectric constant 2.5. What is the minimum
thickness of this shielding that will allow perfect transmission (assuming normal
incidence)? [Hint: Use Eq. 9.199.]

Problem 9.40 Consider the resonant cavity produced by closing off the two ends
of a rectangular wave guide, at z = 0 and at z = d, making a perfectly conducting
empty box. Show that the resonant frequencies for both TE and TM modes are
given by

O =Cy(1/d)2 +(m/a)2 +(n/b)2, (9.204)
for integers I, m, and n. Find the associated electric and magnetic fields.
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