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Chapter 8: Conservation Laws Tsun-Hsu Chang
8.1 Charge and Energy 8.1.1 The Continuity Equation

( Charge < the paradigm
Conservation laws | Energy KK[ peers, daim]

in electrodynamics | Momentum
. Angular momentum

Global conservation of charge: the total charge in the universe
IS constant.

Local conservation of charge: If the total charge in some
volume changes, then exactly that amount of charge must
have passed in or out through the surface.

thotal

— 0= Wenc +§ J-da
dt ot S



The Continuity Equation

IV apg’t) dt = —jV (V-J)dz (invoking the divergence theorem)

— 9P _ -V.J <«—— the continuity equation
ot (in differential form)

This equation is a precise mathematical statement of the
local conservation of charge.
It can be derived from Maxwell's equations. since V-(VxB)=0

ap 1
=&n—(V-E V — V. ——J+ B
o, "0 ( )=&y( ) gV - ( - 750 3 VB)

aa_p -V.J (a consequence of the law of electrodynamics)
t

Q1: The energy and momentum density - analogous |
Q2: The energy and momentum “current” - analogo!



8.1.2 Poynting’s Theorem (1) in vacuum

The work necessary to assemble a static charge distribution

£
W, = 70J‘E2d2' (against the Coulomb repulsion of like charges)

The work required to get current going
W, = LJ-Bza’z'(against the back emf)
214

The total energy stored in the electromagnetic fields might be

U, =W, +W, = % [ (e0E? + L Byar— [uemdr

Ho
1 2, 1 2
where u... =—(&gE£~+—B
em 2( 0 1y )
Q: Can we derive this equation in a more general and more

persuasive way?



Poynting’s Theorem (ll)

Starting point: How much work, dW, is done by the
electromagnetic forces acting on these charges in the
interval df? (using the Lorentz force law)

dW = ZF dl ZqJ(E +v;xB;)-v dt—Zq]E] v ;dt
dW J
ZqJE v —j (E-v)pdr:jV(E-J)dr

(the work done per unit Iime, per unit volume,
l.e., the power delivered per unit volume)

Q: Can we express this quantity in terms of the fields alone?

Yes, use the Ampere-Maxwell law to eliminate J,

analogous to the proof of the continuity equation.

J——VXB 80@

Ho o



dW

Poynting’s Theorem (ll)

E-J=E- (—V><B goa—E)—LE (VXB)—¢g)E- aa—E

Ho o Mo ¢

E-(VxB)=B-(VXE)-V-(ExB) (product rule 6)
‘ (

Faraday’s law)

V><E_—§E
ot
E-J=—(gE- ok 1 B~aB)— 1 V-(ExB)

o Ho — 0t" Hg

=—12(50E2+LB7‘)—LV-(E><B)
2 ot ﬂo Ho
1 1
=[ (E- J)dr——— —(e E’+—B*dr-¢ —(ExB)-da
j 'f ’ Ho <ﬁsﬂo

(invoking the divergence theorem)
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Poynting’s Theorem and Poynting Vector
aw __4 l(eOE2 +i32)d7—<j> 1 (ExB)-da
dt dt °h 2 Ho %My r
-
(total energy stored in the field, U, )

(the rate at which energy is carried out of
V', across its boundary surface S, by the
electromagnetic fields.)

Poynting’s theorem: “work-energy theorem” of electrodynamics.

Poynting vector: the energy per unit time, per unit area,
transported by the fields.

S = L(E><B) (S: the energy flux density)
Ho



Differential Form of Poynting’s Theorem

aw  d 2 2
- VE(gOE +—B Az~ S -da
aw = d dr (u_...the mechanical energy density)
di i meet
d V_(80E2+—Bz)d2'——j U dT (U, the energy density
dt V2 Ho of the fields)
d d
So oy mecth__E uemdr—cﬁss-da
J 7 (divergence theorem)
| T == | - | (V-8)r
ai(umech +u_ )=-V-S (the differential form of Poynting’s theorem)
t

Q: What's the difference between -—d— and i ”?

dt ot 7



Example 8.1

When current flows down a wire, work is
done, which shows up as Joule heating of
the wire. Find the energy per unit time
delivered to the wire using Poynting vector?

- V .
Sol: 1 E=—z
E—(EXB) < L 7
/uO - B(l’ — CZ) — &é
2ra
I - .
So S = i(Kix‘uim =— 1 r (point radially inward)
Uy L  2rma 2ral

The energy per unit time passing through the surface of the
wire is:

~ S-da=S(2maL)=VI = aw AUer

dt dt

= ( (static fields)



8.2 Momentum

EM
Tsun-Hsu Chang

8.2.1 Newton’s Third Law in Electrodynamics

Suppose two charges, ¢, and ¢,, travel in
along x axis and y axis, respectively. They
can only slide on the axes with velocities
v, and v, as shown in the figure.

Q: Is Newton'’s third law valid?

q2

\'2‘

B, =-B2

B,

Vi
F, j
\ . > B2 = +BzZ
r ‘»\\\\\ ]?m

Ry /\
3 B: Ft‘

The electric force between them satisfies the third l[aw, but
the magnetic force does not hold (same magnitudes, but

their directions are not opposite).

The proof of conservation of the momentum, however, rests
on the cancellation of the internal forces, which follows from
the third law. In electrodynamics the third law does not hold.

Q: How to rescue the momentum conservation?
The fields themselves carry momentum. (Surprise!)



The Fields of a Moving Charge

/"N

_ = *»\
- ;N : V -
7 N —"99‘ P

The electric field of a The magnetic field of a moving
moving charge is not charge does not constitute a
given by Coulomb’s law. steady current. Thus it is not

given by Biot-Sarvart law.
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8.2.2 Maxwell's Stress Tensor

The total electromagnetic force on the charges in volume V.
F =ij(E+v><B)dr=jV(pE+J><B)df=ijdr
Where f denotes the force per unit volume.
f=pE+JxB
Eliminate p and J by using Maxwell's equations.

p = 30(V E)
J——VXB E'Oa—E

Ho ot

f = So(v E)E+(—VXB Soa—E)XB

ﬂo

= go(V-E)E+—(V><B)><B—80(—><B)
Ho o v



Maxwell's Stress Tensor (ll)

f = EO(V-E)E+L(V><B)><B—€O(8—E><B)
Ho o

v
i(E><B) :a—E><B+E><a—B
ot ot ot

v

(Faraday’s law) E)a_B =-VXE
t

f :gO(V-E)E+L(V><B)><B—80E><(V><E)—eo%(EXB)

Ho
s
/ Ex(VxE):EVE —(E-V)E
1

(VxB)xB =-Bx(VxB) :—EVBz +(B-V)B

'V(A-B)=AX(VXB)+Bx(VXA)+(A-V)B+(B-V)A! g
'V(B-B)=Bx(VxB)+Bx(VxB)+(B-V)B+(B-V)B %0~

' = VB2 =2Bx(VxB)+2(B-V)B Chap. 1p.23 118,




Maxwell's Stress Tensor (lll)

f=¢g5(V- E)E——V82+—(B V)B—gy— VE2+50(E V)E - 80—(E><B)
214 /UO 2(_ 0

go[(V-E)E+(E- V)E]+—,u—[(B V)B+(V-B)B]
0

__1 yp2_foyp2 —eoi(ExB)
It can be simplified by introducing the Maxwell stress tensor.

1o oh 1 1 . -
EngO(EiEj_Egsz )+ﬂ—0(BiBj—§5sz )

(the Kronecker delta, another example see Prob. 3.45)
1 ifi=j
5,]' = 1 l. J.
0 ifi#]j
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Maxwell's Stress Tensor (1V)
1 ifi=j

_ l = 3, 1 1o 2

E) 2 2 22 1 2 2 B2
(T, =70(Ex —E, —E.)+—(B; — B, —B)

: o
2 2 2 2 2 2
T, =—(E,—E; —E{)+—(B, —B; —B})
2 2 1y
Err® _ w3 3. L rpd 52wl
T, =—>(E; -E,—E.)+—(B; - B, - B})
< 2 2ty

1
Ty =Ty = €o(ELE,)+—(B,B . o
s yx 0(£x y) ﬂo( X y) Because Tl.j carries two indices,

T. =T, =¢y(E,E.)+—(B,B,) Itissometimes written with a
2 ey TR YT Gouble arrow T
\ 7,

1
zZX :sz :gO(EzEx)+Iu—(BZBx) Q
0 ,

Q: How does the tensor operate?
See, “Vector Analysis”, Chap.8, M. E. Spiegel, McGRAW-HILL.
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Maxwell's Stress Tensor (V)

On can form the dot product of tensor T with a vector a:

(row vector)

(aT),= 2 al,

I=Xx,y,Z

(A; Ay A5)=(A] Ay Ay)

(column vector)

(T-a),= > Ta,

J=x,y,2

o' ol ox!
x o oox: ox
o’ o o’
Xl oxZ o
I I o
Xl oxZ ox

The divergence of the Maxwell stress tensor is:

(V-T); =&[(V-E)E; +(E-V)E, —%VjEz]

My

+i[(B-V)Bj +(V-B)B; —%Vsz]
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Maxwell's Stress Tensor (VI)

The force per unit volume:

f=V'T_€O/ana—§

The total force on the charges in Vis:
- d
F = q‘)T'da—SOIUOjJ‘SdT
S g V
Physically, the Maxwell stress tensor is the force per unit area
acting on the surface.

e
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Example 8.2

A uniformly charged solid sphere of radius R
and charge Q is cut into two hemispheres.
Find the force required to prevent the
hemispheres from separating.

Sol: This is an electrostatics, no magnetic field involved.

] . =
E= Qgr qugT-da
drey R <

The boundary surface consists of two parts---bowl and disk.

The net force is obviously in the z direction.
dF, =(T-da), =T, da, +T,da,+T,_da,

Express the electric component in Cartesian coordinates.

17



Example 8.2 (ii)
On the bowl, r=R.

\

E= 9 5T I = sin @ cos ¢X + sin @'sin Py + cos 6z
47[80R
(T, =&E,Ey = 9 2
o =E0ELE, =&)( 5)” sinfcosfcos @
47[80R
g 9. :
{ Ty =&0EE), =&)( 5)” sin@cossin @
47eg R
€0 2 _p2 _ p2y_¢6 2 (2 . 2
TZZ=70(EZ — By —Ey )= 0 O 2) (cos”™ @—sin” 0)

2 4rmeyR

rdax =da-% = R? sin @sin Hcos ¢dOd ¢
da=R’sin0dOdgt {da,=da-§=R"sin@sinOsin pddg

da, =da-7 = R*sin@cosOdOdp
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Example 8.2 (iii)

The force on the bowl is:

dF, =T, da +szday+T da,

2sin? @sin 6 cos O cos” 1

~ 80 C 22| 25in? BsinfoosBsin> g |dOdg
2 4ﬂ€0R

+sin 6 cos tS’(cos2 6 —sin? 0)

80( O )zsin90089d9d¢

2 4ﬂ€0R
7ZJ/-2 2JZZ
Bl = > sin @ cos dOd ¢
=0 $=0 2 4ﬂzb
/2 2
- j f27 Q0 plairgag=—1 2
4ﬂ€0R 2 4ﬂEb:&R2

6=0

19



Example 8.2 (iv)
Contd.:

The force on the disk is:
R 2x

2
=0 ¢=0 471'80 TTEy 16R

The net force on the northern hemisphere is:

1 30" 4

F=
Amey 16R* =

Q: Can we solve this problem using a simpler approach?
Yes, we can use the potential energy to find the net force.

20



EM
8.2.3 Conservation of Momentum Tsun-Hsu Chang

Newton’s second law = the force on an object is equal to
the rate of change of its momentum.

dp h s d
F=—MCh —pT.-da—etin — | Sd7
d Cvf 070 dr!

where p,... IS the total (mechanical) momentum of the
particles contained in the volume V.

d d
pseCh = jgmGCth (an analogous interpretation,
t Ly, not a rigorous proof)
d
Pem _ d Eoldy J‘ Sdt, where p.y, = I(gOﬂOS)dT = Igede
dt dt % 124

/

(momentum stored in the (momentum density)

electromagnetic fields themselves)

21



Conservation of Momentum (Il)

cJ} (the momentum per unit time flowing in through the surface.

S

Conservation of momentum in electrodynamics:

Any increase in the total momentum (mechanical plus
electromagnetic) is equal to the momentum brought in
by the fields.

5 .
—(8mech T 8em) =—V - (=T) (in differential form)

(momentum flux density, playing the role of J in
continuity equation, or S in Poynting’s theorem)

22



Conservation of Momentum (lll)

The roles of Poynting’s vector:

the energy per unit area, per unit time, transported by
electromagnetic fields.

HoErS the momentum per unit volume stored in those fields.

The roles of momentum stress tensor:
T the electromagnetic stress acting on a surface.

—T the flow of momentum transported by the fields.

23



Example 8.3 (hidden momentum)

A long coaxial cable, of length /, consists of an inner conductor
(radius a) and an outer conductor (radius b). It is connected to
a battery at one end and a resistor at the other. The inner
conductor carries a uniform charge per unit length A, and a
steady current to the right; the outer conductor has the
opposite charge and current. What is the electromagnetic
momentum stored in the fields.

b

24



Sol: The fields are

el LA
;o s g pyp)- j] s
B— n I ~ Ho 47 oS
=——¢
\ 27T S
The momentum in the fields is: (an astonishing result!)
B . ﬂoﬂ] bi x ﬂoﬂ«]l é "
Pem —IﬂOSOSdT— 472 da 2 [27sdsz = ol ln(a)z

In fact, if the center of mass of a localized system is at rest,
its total momentum must be zero.

There is “hidden” mechanical momentum associated with the
flow of current, and this exactly cancels the momentum in the
fields. (This is a relativistic effect: See Example 12.12)

25



8.2.4 Angular Momentum

The electromagnetic fields carry energy and momentum, not
merely mediators of forces between charges.

1 5 1 5
=—(g)E* +—B
m 2(0 1y )
Sem — gO:uOS =& (ExB)

\.

»
Ue

How about the angular momentum?
lom =TXEg,,, =E[rx(ExB)] (again, not a rigorous proof)

Even perfectly static fields can harbor momentum and
angular momentum. See the following example.

26



Example 8.4

Imagine a very long solenoid with radius R, n
turns per unit length, and current /. Coaxial
with the solenoid are two long cylindrical
shells of length /---one, inside the solenoid at
radius a, carries a charge +0Q, uniformly
distributed over the surface; the other,
outside the solenoid at radius b, carries
charge —Q. When the current in the solenoid
Is gradually reduced, the cylinders begin to
rotate, as we found in Ex. 7.8. Where does
the angular momentum come from?

27




Sol: The fields are
(h = 1 O
271'80 [s

S (a<s<b)

 B=yynlz (s<R)

The momentum density is:

70 -
gem=y0£OS=goE><B=—ﬂ0n Q¢ (a<s<R)
27ls

The angular momentum density is:

_ HnlQ
27l

The total angular momentum in the fields is:

nl A
L :jfemdrz—’uoz Q(Rz —az)z

Comp =T X 8o = EgIr X (EXB)] = Z (a<s<R)

(an astonishing result!)

28



Conservation Laws

( Charge
Conservation laws | Energy

in electrodynamics | Momentum

. Angular momentum

9P __v.y

3 ot
g(umech + uem) = _V ) S

0 .
5, e T 8en) ==V (=T)

What is the conservation law for angular momentum ?
Extra bonus (send your answer to me).

Com =YX 8o = E[r X (EXB)]

29



Homework of Chap.8

Problem 8.1 Calculate the power (energy per unit time) transported down the
cables of Ex. 7.13 and Prob. 7.62, assuming the two conductors are held at potential
difference V', and carry current / (down one and back up the other).

Problem 8.4

(a) Consider two equal point charges ¢, separated by a distance 2a. Construct the
plane equidistant from the wo charges. By integrating Maxwell's stress tensor
over this plane, determine the force of one charge on the other.

(b) Do the same for charges that are opposite in sign.

Problem 8.6 A charged parallel-plate capacitor (with uniform electric field
E = EZ7) is placed in a uniform magnetic field B = BX, as shown in Fig.8.6.

(a) Find the electromagnetic momentum in the space between the plates.
(b) Now a resistive wire is connected between the plates, along the z axis, so that '
the capacitor slowly discharges. The current through the wire will experience
a magnetic force; what is the total impulse delivered to the system, during the

disch:curge?7

Problem 8.16'" A sphere of radius R carries a uniform polarization P and a uniform
magnetization M (not necessarily in the same direction). Find the electromagnetic

momentum of this configuration. [Answer: (4/ 9)71110R3 (MxP)]



Homework of Chap.8

Problem 8.19"° Suppose you had an electric charge q, and a magnetic monopole

q,,- The field of the electric charge is E= be 4,
4”80 Al,z
(of course), and the field of the magnetic monopole is B=f—0q+"2”/£.
7T 4,

Find the total angular momentum stored in the fields, if the two charges are sepa-

rated by a distance d. [ Answer : (1 / 47r)qeqm.]20

Problem 8.23
(a) Carry through the argument in Sect. 8.1.2, starting with Eq. 8.6, but using J » in

place of J. Show that the Poynting vector becomes
S =ExH, (8.46)
and the rate of change of the energy density in the fields is

a_u:Ea_D+Ha_B
ot ot ot

For linear media, show that>*
u =%(E-D+B-H). (8.47)

(b) In the same spirit, reproduce the argument in Sect. 8.2.2, starting with Eq. 8.15,
with p » and J  in place of p and J. Don't bother to construct the Maxwell stress

tensor, but do show that the momentum density s>

g =D XB. (8.48) 31



