Chapter 7: Electrodynamics Tsun-Hi'l\fChang

7.1 Electromotive Force 7.1.1 Ohm’s Law

Pushing on the charges makes a current flow. How fast the
charges move depends on the nature of the materials and
the forces.

current density—J = ,?v <«—velocity of the charge

volume charge density

. : 1
Ohm'’s law (an empirical equation): J =cE=—E

conductivityp\resistivity
p . volume charge density or resistivity?
o . surface charge density or conductivity?
The Lorentz force drives the charges to produce current:

=(
J<F = J=0'(E+/Klv3)



Resistivities (ohm-meters)

Material Resistivity Material Resistivity

Conductors: Semiconductors:

Silver 1.59 x 107®  Sea water 0.2

Copper 1.68 x 1078  Germanium 0.46

onia . 2.21 > 107 D.ie.lmond sl https://hypertextbook.com/facts/
Aluminum  2.65 x 10~%  Silicon 2500  5p0ciamTetmashyill shtml
Iron 9.61 x 1078 Insulators:

Mercury 9.61 x 10~7  Water (pure) 85—+ 1.8 x10°
Nichrome 1.08 x 107  Glass 10° — 10

Manganese  1.44 x 107® Rubber 1013 — 101

Graphite 1.6 x 107> Teflon 10*? — 10*

Confusion 1: E =0 inside a conductor = J =07
2: For a perfect conductor c=0 = E =07

Question: Can we treat the connecting wires in eleciric

circuits as equal potentials?



Example 7.1

A cylindrical resistor of cross-sectional area 4 and length L is
made from material with conductivity o. If the potential is
constant over each end, and the potential difference between
the ends is V, what current flows?

Question: Is the electric field uniform within the wire?
To be proved in a moment, see Ex. 7.3.



Example 7.3

Prove that the electric field within the wire is uniform.

Sol: :
The potential V" with the cyIincfer obeys Laplace’s equation.
On the cylinder surface J-n=0 ..E-n=0, and hence 0V/dn=0

With ¥ or its normal derivate specified on all the surfaces, the
potential is uniquely determine (Prob. 3.4).

Guess: A potential obeys Laplace’s equation and fits the
boundary conditions.

V v, .
V(z)= %Z and E=-VV = —IOZ <—— the unique solution.



Example 7.2

Two long cylinders (radii a and b) are separated by material of

conductivity o. If they are maintained at a potential different 7,
what current flows from one to the other, in a length L?

I
Sol: J=1:0'E E= 1 = ! r
A OA o2xsL
b b I 1 i
V:j E-ds=[ ———ds= In(b/ a)
a a Qnol s 2no L




Ohm’s Law
L

EX. 7.1 = a[ (A more familiar
In(b/ ==> V' =IR \ersion of Ohm’s law.)
n(b/a)
Ex.7.2 V= I i
2oL resistance

The total current flowing from one electrode to the other is
proportional to the potential difference between them.

Resistance is measured in ohms (€2): an ohm is a volt per
ampere.

For a steady current and uniform conductivity,

p=eV-E=gV-(L)=5v.5=0
c O
Any unbalanced charge resides on the surface.



Ohm’s Law (rule of thumb)

Gauss’s law or Ampere’s law is really a true law, but Ohm’s
law is an empirical equation.

* Finding an exception won’t win a Nobel prize.
b f
DIAC

diode \// negative resistance

i il -

& Igr Ver v

Q1: Why the electric field does not accelerate the charge
particle to a very high speed?

Q2: Ohm’s law implies that a constant field produces a
constant current, which suggests a constant velocity. Isn't
that a contradiction of Newton’s law.




Ohm’s Law (a naive picture)

A naive picture: Electrons are frequently collided with ions
which slow down the acceleration.

Mean free path

/ | /2 E
A=—at’ =t= —/1, whereazq—
a

2 m

. ] AqE
average velocity: v, =—at = 2= o JE
2 2m

The velocity is proportional to the square root of the field.
That is no good!
Q1: How to explain it correctly?

The charges in practice are already moving quite fast
because of their thermal energy.



Ohm’s Law (Drude model)

The net drift velocity is a tiny extra bit. The time between
collisions is actually much shorter than we supposed.

collision time: ¢ =

Vthermal
. 1 al
average velocity: v, - =—at =
2 2vthermal
: K
acceleration: a=— =L E
m m
(f: free electrons per molecule)

A Aqg?
J=n(fg)v,. = nfg—2— TR = 2 )E
/ v, . m 2my

thermal

(n : molecules per unit volume)



The Joule Heating Law
nfAq’

2my

J=( nfAq”

2my

JE =0E, where o=

thermal thermal

This equation correctly predicts that conductivity is
proportional to the density of the moving charges and
ordinarily decreases with increasing temperature.

The Joule heating law:

(] : amperes
, V' R : ohms
P=IV=]I"R=— where <
R V' :volts
| P : watts

10



7.1.2 Electromotive Force (emf) Tsun-HE,Il\f Chang

An emf is the work per unit charge done by the source of emf
In moving the charge around a closed loop.

Whe
q

The subscript "'ne” emphasizes that the work is done by some

nonelectrostatic agent, such as a battery or an electrical
generator. % e

S =
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(b)

What is the difference between emf and potential dif X



Electromotive Force: Production of a Current

What is the function of the acid solution in the voltaic pile?

e

(

Pb+S03~ — PbSO, +2¢”
PbO, +4H" +SO5~ +2¢~ — PbSO, +2H,0

Note that for every electron that leaves the Pb plate, another
enters the PbO, plate.

12



Electromotive Force: Terminal Potential Difference

| Voa J
A real source of emf, such as a g 5
battery, has internal resistance r. b \\I'E_' r /e
YI A
V Vb V ((DD Ir WA

The change in potential is called the terminal potential
difference.

Unlike the emf, which is a fixed property of the source, the
terminal potential difference depends on the current flowing
through it.

As a battery ages its internal resistance increases, and so,
for a given output current, the terminal potential difference
falls.

13



Electromotive Force Drives the Electrons

N7 Example: A battery is hooked
up to a light bulb.

The battery generates the
force which drives the

Snail's pace: the charges in a wire move slowly
(~0.1 mm/s @@=1mm, 1A, see Prob. 5.19(b)).

Q1: Why does the bulb response so fast when turning it on
or off?

Q2: How do all the charges know to start moving at the
same instant?

electrons move along the loop.

14



Example: The Snail's Pace

Calculate the average electron drift velocity in a copper wire
1mm in diameter, carrying a current of 1 A.

Sol: ;- ! S= PV DV, = ]2 (p: volume charge density)
TS TS”p
_ mobile charges  charge atom mole gram
P= volume ~ atom mole gram volume
=(2x1.6x107°)(6x10*)(1/64)(9) =2.7x10*C / cm’
o=t ! —4.7%10° (cm/s)

T xs’p  wx0.052x2.7x10"

@ 1A, ¢o=1 mm = v, =0.047 (mm/s)
@I10A, ¢=1 mm = v, =0.47 (mm/s) Snail's pace

1 9 3 3kT
Emevthermal =—kT = Vihermal =

2

~1.2x10° (m/s) @T =300 K |

e 15




Will the Charge Piling Up Somewhere?

If a current is not the same all the way around, then the
charge is piling up somewhere, and the electric field of this
accumulating charge is in such a direction as to even out the
flow.

Charge piling up at the "knee” produces
a field aiming away from the kink.

It self-corrects the current flow.

L

mn

Kirchhoff's current law (KCL): The algebraic sum of currents
iIn a network of conductors meeting at a point is zero.



Forces Involved in Driving Currents
Around a Circuit

Two forces involved in driving currents around a circuit.
f,. ordinarily confined to one portion of the loop (a battery, say).
E: the electrostatic force: smooth out the flow and communicate
the influence of the source to distant parts of the circuit.

f=f,+E Force per unit charge.

What is the physical agency responsible for f,?

‘Battery = a chemical force

Piezoelectric crystal - mechanical pressure
Thermal couple - temperature gradient
Photoelectric cell - light

17



The Electromotive Force E# %

The net effect of the electromotive force is determined by the
line integral of f around the circuit:
= ( for electrostatics

c‘%z(j}f-dlz(ﬁfs-dlﬂﬁ}/c}lzcj.)fs-dl

(the electromotive force, emf)
(very bad g #6)

Emfis a Iodsy term, since it is not a force at all --- it is the
integral of a force per unit charge.
((QD — Wne
q

An emf is the work per unit charge done by the source of emf

In moving the charge around a closed loop.
18



EM
7.1.3 Motional emf Tsun-Hsu Chang

The most common source of the emf: the generator

Generators exploit motional emf’s, which arise when you move
a wire through a magnetic field.

A primitive model for a generator

Shaded region: uniform B-field

b c T pointing into the page.
Vv
L EE—= h Rz —  p-whateveritis, we are trying
‘L to drive current through.
a d

& = Plag - dl = P(vXB)-dl =vBh

19



Magnetic Force Does No Work

A person exerts a force per unit charge
on the wire by pulling it. The force
counteracts the force generated by the f “laks

) | mag 0 (the resultant velocity)
magnetic force qub. vB : 90°—8

———————— -
f;)ull — UB HB fpull

This force is transmitted to the charge by the structure of the
wire.

The work done per unit charge is:

|, dl = WB)(h tan 6) = u tan OBh = vBh =&
The work done per unit charge is exactly equal to the emf.

20



Motional emf (another example)

When the magnetic field is constant in time, there is no
induced electric field.

b
When a metal rod moving perpendicular to } }‘f‘ Fr= —eEg
magnetic field lines, there is a separation of .. A
charge and an associated electrostatic |
potential difference sets up. " 1 Jrrawe
E

The potential difference associated with this | ; ’ e

1 oty A g=-=g ¥

electrostatic field is given by V,—V = E,L = BLv. .

&=¢(vxB)-dl

Since there is no current flowing, the “terminal potential
difference” is equal to the motional emf.

21



Instantaneous emf
& =vBh = Bhv(t) = &5(t)

&: carried out at one instant of time — take a “snapshot” of
the loop, if you like, and work from that.

The magnetic force is responsible for establishing the emf
and the emf seems to heat the resistor (i.e., do work), but
magnetic fields never do work.

Who is supplying the energy that heats the resistor.

The person who's pulling on the loop!

22



Magnetic Force Does No Work (ll)

In the previous viewgraph, we find a source of emf converts
some form of energy into electrostatic energy and does work
on charges. Can magnetic forces do work? No.

B (in)
@..
Vd
evyB @

J> Frod

S

The magnetic field acts, in a sense, as an intermediary in the
transfer of the energy from the external agent to the rod.

23



The Flux Rule

There is a particular nice way of expressing the emf
generated in a moving loop = the flux rule.

let @= jB -da the flux of B through the loop

The flux of a rectangular loop  ® = Bhx

dd dx
The flux change rate ——=Bh—=—-Bhv
. a O di
The minus sign accounts for the fact that dx/dt is negative.
dd
The flux rule for the motional emf: T =Bhv=0C

4

Next step proves: S=_""
dt

24



The Flux Rule (Generalized)

The flux rule can be applied to non-rectangular loop
through non-uniform magnetic field.

Surface &

Proof:

Loopat  Loop at
time ¢t time (¢ + di)

Enlargement of da

Compute the flux at time ¢ using surface S, and the flux at
time t+dt, using the surface consisting of S plus the “ribbon”
that connects the new position of the loop to the old.

25



The Flux Rule (Generalized Il)

The change in flux is
d® = (i +d) - D(t) =Dy, = | B-da

ribbon

The infinitesimal element of area on the ribbon

da = vdtxdl =(vxdl)dt
ribbon ribbon i = —(BX A) -C

________________________

— = (j) B- (V X d]) — (J) (V X B) jmagnetlc force per unit charge

=—g|5[(v+u)xB =—<j‘>(W><B)

IV velocity of the wire. |
Iu velocity of a charge down the wire.

d¢ _________________ e TR T
— = _¢ fmag ’ dl — _éo qed BT R 3#E: “quod erat demonstrandum 25 8 57 .
or % #%“quite easily done”




Example 7.4

In a homopolar generator a conducting disk of radius R
rotates at angular velocity wrad/s. Its plane is perpendicular
to a uniform and constant magnetic field B. What is the emf
generated between the center and the rim?

Solution:

& zch(VXB)-dl :jORder

R 1 .
- j wrBdr = — @BR
0 2

Hint1. How to choose a proper closed loop?

Hint2: The total magnetic flux passing through the disk is
constant in time. Where is the induced emf coming from?

(Ref. Benson & Feyman)
27



Eddy Currents (I)

What happens when a bar magnet approaches or moves
parallel to a conducting plate? It induces eddy current.

S

N

A\

S

N

/I

4

#

<O

4

-

The eddy current is distributed throughout the plate.

28



Eddy Currents (ll)

Applications of the eddy current:
1. The braking system of a train.

2. Eddy current generated in copper
pots can also be used for “inductive
cooking”. (a)

3. Project a metal ring. The ring gets
very hot when projected.

(b)

(a) (b)

U




Example

A metal rod of length L slides at constant velocity v on
conducting rails that terminate in a resistor R. There is a
uniform and constant magnetic field perpendicular to the plane
of the rails. Find: (a) the current in the resistor; (b) the power

dissipated in the resistor; (c) the mechanical power needed to
pull the rod.

Solution: do dA
a) (V. =————=B—=Blv

o @) Veme|=—-=B—

[ o ST I ’Vemf| _Blv

‘ ' R R

R L —U Blv)?
(b) PeleczlzR:( )

, X R
| t (BIv)’

o e (C) mech — ext V=3

X R

30



More Examples

m

31



Homework of Chap. 7 (part I)

Problem 7.2 A capacitor C has been charged up to potential V}y; at time = 0, it 1s

connected to a resistor R, and begins to discharge (Fig. 7.5a).

(a) Determine the charge on the capacitor as a function of time, Q(¢). What is the
current through the resistor, 1 (¢)?

(b) What was the original energy stored in the capacitor (Eq. 2.55)? By integrating
Eq. 7.7, confirm that the heat delivered to the resistor is equal to the energy lost
by the capacitor.

Now imagine charging up the capacitor, by connecting it (and the resistor) to
a battery of voltage ¥, at time ¢ =0 (Fig. 7.5b).
(c) Again, determine Q(¢) and /(¢).
(d) Find the total energy output of the battery ( J. Vol dt). Determine the heat delivered

to the resistor. What 1s the final energy stored in the capacitor? What
fraction of the work done by the battery shows up as energy in the capacitor?
[Notice that the answer 1s independent of R!]

s

.
C_L_'_Q
T D) s T D ;

(a) (b)

FIGURE 7.5 32



Homework of Chap. 7 (part I)

Problem 7.6 A rectangular loop of wire is situated so that one end (height /) 1s
between the plates of a parallel-plate capacitor (Fig. 7.9), oriented parallel to the
field E. The other end is way outside, where the field is essentially zero. What

is the emf in this loop? If the total resistance is R, what current flows? Explain.

[ Warning: This 1s a trick question, so be careful; if you have invented a perpetual
motion machine, there's probably something wrong with it. ] / /%

+c  E}

FIGURE 7.9

A;
M

Problem 7.8 A square loop of wire (side ) lies on a table, a distance s

from a very long straight wire, which carries a current / , as shown in

Fig. 7.18.

(a) Find the flux of B through the loop.

(b) If someone now pulls the loop directly away from the wire, at speed
v, what emf is generated? In what direction (clockwise or counterclockwise
does the current flow? T

(c) What if the loop is pulled to the right at speed v? + !

FIGURE 7.18

a

33



Homework of Chap. 7 (part I)

Problem 7.11 A square loop is cut out of a thick sheet of aluminum. It is then placed
so that the top portion is in a uniform magnetic field B, and is allowed to fall under
gravity (Fig. 7.20). (In the diagram, shading indicates the field region; B points into
the page.) If the magnetic field is 1 T (a pretty standard laboratory field), find the
terminal velocity of the loop (in m/s). Find the velocity of the loop as a function of
time. How long does it take (in seconds) to reach, say, 90% of the terminal velocity?
What would happen if you cut a tiny slit in the ring, breaking the circuit? [Note:

The dimensions of the loop cancel out; determine the actual numbers, in the units
indicated.]

FIGURE 7.20



EM

7.2 Electromagnetic Induction Teun-Hau CHan
7.2.1 Faraday’s Law °

Faraday reported on a series of experiments, including three
that can be characterized as follows:

circuit moves magnet moves field changes

v v
D e w<1—

B (in)

(a)

motional emf

§=-2=
dt

Faraday’s law

B (in)

DL 03

B

(b) /‘J (©)

changing
magnetic field

Q: Since a stationary charge
experiences no magnetic force,
what is responsible?

35



Faraday's Law (at rest)

What sort of field exerts a force on charges at rest?
=>» Electric field and
a changing magnetic field (Faraday found empirically).

A changing magnetic field induces an electric field.

The emf is equal to the rate of change of flux, when f,=0.

£:gﬁfs.d1+<j>E-d1=<JSE-d1=—d—®=—i B.da FElectro-
dr dt dynamics

— @E dl = _%J'B .da «<——Faraday’s law in integral form

_--Stokes’ theorem

PE-d1=[(VXE)-da ) iy

d B . => VXE=——
_4 B.dazj'(__).da ot

dt\/ ot ) Faraday’s law in

differential form =

Why? See next page.



Faraday’s Law (moving at constant velocity)

What sort of field exerts a force on charges moving at
constant velocity? Hint: Lorentz force

8= <j‘>f dl+<ﬁ E+(vxB)): dl———jB da

N

Left: gS(E+(v><B) ~j(V><E) a’a+ W})) da

Right: ——jB-da:

— Also see “The Feymann Lectures
XE=——
=V E)t on Physics II,” Chap.17

37,



Universal Flux Rule

One can subsume all three cases into a kind of universal

flux rule:
Whenever the magnetic flux through a loop changes, an emf
will appear in the loop.

R R [

B (in) B (in) B

(a) (b) ¥ (c)
changing

magnetic field

These three experiments yield the same formula for the
emf.

Electric field is induced by changing magnetic field.

This “coincidence” led Einstein to the special theory of relativity.

Chap.12
38



Lenz’s Law ()

Lenz’s law is a handy rule, whose sole purpose is to help
you get the direction right.

Maxwell restated Lenz's rule in a more general way:

The effect of the induced emf is such as to oppose the
change in flux that produces it.

X
vy N
@ ©
S ‘*
I
Bing

ext
Bind

(a) v 39



Lenz’s Law (II)

A sign convention for the induced emf. First we choose the
direction of the vector area to make the initial flux positive.
The right-hand rule, with the thumb along B and the fingers
curled around the loop, tells us whether clockwise or
counterclockwise is the positive sense.

B mE Gt

How about superconducting magnet?

40



Example 7.5

A long cylindrical magnet of length L and radius a, carries a
uniform magnetization M parallel to its axis. It passes at
constant velocity v through a circular ring of slightly larger
diameter. Graph the emf induced in the ring, as a function of

time. 04
LWoMma? |
Sol: / \
Liv | ¢
M T“ ¢t
U — - { l/\
k ’ 7

; T
(b)

Nature abhors a change in flux. Ex. Rogowski coils.

41



Example 7.6

The “jumping ring” demonstration. If you wind a solenoidal
coil around an iron core (the iron is there to beef up the
magnetic field), place a metal ring on the top, and plug it in,
the ring will jJump several feet in the air. Why?

Sol: Also see Chap.6 p.5.

Vs

Y

q E
q D
~— ] .
:D: q b solenoid
q D
D

A




EM

7.2.2 The Induced Electric Field Tsun-Hsu Chang

Two distinct kinds of electric fields:

" E (in static case): attributed to electric charges, using
Coulomb’s law.

E (in nonsteady case): associated with changing
_ magnetic field, using Faraday’s law.

oB (the curl alone is not enough to

VXE = —§<— determine a field)

V.E=0 (charge free; then, the electric
field is due exclusively to a
changing B)

43



The Magnetostatic Field

Two distinct kinds of magnetic fields:

" B (in static case): attributed to electric currents, using
Ampere’s law.

B (in nonsteady case): associated with changing electric
_ field, using?

(Faraday-induced electric fields are
VXB=Ud 7 getermined by —(0B/d?) in exactly the
V.-B=0 same way as magnetostatic fields B
are determined by x4 J)

Zel



Example 7.7

The current in an ideal solenoid of radius R varies as a
function of time. Find the induced electric field at points (a)
inside, and (b) outside the solenoid. Express the results in
terms of dB/dt.

Sol: & a1=EQzr)

(a) EQ27r) = —(mz)‘;—f

E=-19 <R
2 dt

(b) EQrr) = —(;sz)fZ—lf -

|
z s
E:_R_d_B (r>R) l/i\
2r dt ' ' L

R 2R 3R

The electric field is due exclusively to a changing B.
45



Example 7.8

A line charge A is glued onto the rim of a wheel of radius b,
which is then suspended horizontally as shown in the figure,
so that it is free to rotate. In the central region, out to radius a,
there is a uniform magnetic field B, pointing up. Now

someone turns the field off. What happens? BO)

Sol: Faraday’s law says

(JSE-dlz—d—(Dz—ﬂazd—B <ﬁ/\\\>1@

dt dt

b a
The torque on a segment of length dl Rovion
IS rxdF or bZEdI direction |
: , dB
The total torque on the wheel is N =bAQE-dl=—biza -

The angular momentum [ = j; Ndt = j " _bAza’dB =bAna’B,

By
No matter how fast or slow you turn off the field, the ultimate
angular velocity of the wheel is the same regardless. 46



Example 7.8 Quasistatic

—hALE - dl = -bAra> » dB<——Ampere’s law
/‘ dt (magnetostatics)

Faraday’s law (nonsteady)
KK:[r1'3im]
This regime, in which magnetostatic rules can be used to
calculate the magnetic field on the right hand side of the

Faraday’s law, is called quasistatic.

0B <— Biot-Sarvart or
VXE =——
ot Ampere’s laws

e

provided the field fluctuation
IS not extremely rapid

47



EM
/.2.3 Inductance Tsun-Hsu Chang

—Loop2

Suppose we have two loops of wire at rest.
A steady current /, around loop 1= B, B, B,
Some B, passes through loop 2 = @,

,—Loop 1
I, ¢ dl x4 S
U X A,
D, = jBl -da and B, = 407[1 (ﬁ 1,2 "
@ Loop 2
U dl, X 4 '
(I)2 :[ﬁj‘q.) ibz 'da]ll :M21]1 Loop 1

dl,

The constant of proportionality:
mutual inductance of the two loops.

48



Neumann Formula for the Mutual Inductance

®,=[B,-da=[(VxA))-da=A,dl,

U1, ¢ dl
A= 4072' Cj} A

0, <1

M., = Ho dl, -l & Neumann formula
Sy h

It involves a double line integral ---
one integration around loop 1, the
other around loop 2.

49



Important Things about Mutual Inductance

a4l It is not very useful for practical
M, = ﬂgﬁgﬁ 1'% calculation, but it reveals two
4 s important features.

1. M,, is purely geometrical quantity, having to do with the
size, shape, and relative position.

2. M,, = M,,, so we can drop the subscripts and call them M.

Whatever the shapes and positions of the loops, the flux
through 2 when we run current / around 1 is identical to the
flux through 1 when we send the same current 7 around 2.

Advantage of M,, = M,,, see the following examples.

50



Example (or Ex. 7.10)

A circular coil with a cross-sectional area of 4 cm? has 10 turns.
It is placed at the center of a long solenoid that has 15
turns/cm and a cross-sectional area of 10 cm?, as shown
below. The axis of the coil coincides with the axis of the
solenoid. What is their mutual inductance?

Solution:
® =84 = ﬂonzlel

N,®
M = % = Hony N 4,

2

= (47rx1077)(1500)(10)(0.0004)
=7.54 uH

O-

Notice that although M., = M,,, it would have been much
difficult to find @, because the field due to the coll is quite

nonuniform. =



Self-Inductance
It is convenient to express the induced emf in
terms of a current rather than the magnetic flux
through it.

The magnetic flux is directly proportional to the
current flowing through it.

A\
N®, =L 1,

where L, is a constant of proportionality called the self-
iInductance of coil 1. The Sl unit of self-inductance is the
henry (H). The self-inductance of a circuit depends on its size
and its shape.

The self-induced emf in coil 1 due to changes in /, takes the
form a1

=L



Example 7.11 (toroidal)

Find the self-inductance of a toroidal coil with rectangular
cross section (inner radius a, outer radius b, height %), which
carries a total N turns.

Sol:  magnetic field B o NI

inside a toroidal 275 TF
L = Yy and : W
I, j =
D, zhj‘b,uoN]ldS:;uohNL ln(é) — N :s h
a 27Ts 27 a :

2
A _H g/ iY ln(é)
27 a

53



Example (coaxial, also see Ex. 7.13)

A coaxial cable consists of an inner wire of radius «a that
carries a current / upward, and an outer cylindrical
conductor of radius b that carries the same current
downward. Find the self-inductance of a coaxial cable of
length /. Ignore the magnetic flux within the inner wire.

Solution:

p=tol = paa=Hol g,
27X 27X
I ’uolfdx—‘uolfln— Ll
a 2;wx a

L:‘uoglné
2T a

Hint1: The direction of the magnetic field.

Hint2: What happens when considers the inner flux? 5



Example: LR Circuits

How does the current rise and fall as a function of time in a
circuit containing an inductor and a resistor in series?

Rise »_pp 1% _y s
dt 1 VWA
Let] = Ioe_m + ﬂ —> ﬂ = —a]oe_m i YI
dt :

30 S—RA=0= = — (@)
I
t:OZ ]0:— :—é o — A
R 0.63Iy|-———
s X |
[=—((1—-e L |
(et ] t

(b)

The quantity 7= L/R is called the time constant.
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Example: LR Circuits

Decay t <08, closed and S, open
dI t> 0S5, open and S, closed
—]R — L E — O ", . ’\/\R/\,—-
— d[ _ ‘é—J— S l y
Let/ =1, =" =-ale” ] f 5
! L
i R 000 %
e_m o = z .%’L
<
((QD | (a)
t=0: [O = E €IR
R t
R R R :

(5)
The quantity 7= L/R is called the time constant.
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EM

7.2.4 Energy in Magnetic Field Tsun-Hsu Chang

Inductance (like capacitance) is an intrinsically positive
quantity. Lenz’s law dictates that the emf is in such a

direction as to oppose any change in current. = back emf.

It takes a certain amount of energy to start a current flowing
In a circuit.

What we are concerned with are the work you must do
against the back emf to get the current going.

Is this a fixed amount? Is it recoverable?
Yes, you get it back when the current is turned off.

It represents energy latent in the circuit or it can be regard as
energy stored in the magnetic field.



Energy Stored in an Inductor

The battery that establishes the current in an inductor has to
do work against the opposing induced emf. The energy
supplied by the battery is stored in the inductor.

In Kirchhoff’'s voltage law (KVL), we obtain

&=IR+ Lﬂ
dt
16 = ]R+L[£
dt

, where U, —lL]2

RN

power supplied power dissipated energy change rate
by the battery in the resistor in the inductor
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The Power

The work done on a unit charge, against the back emf, in
one trip around the circuit is —¢.

\ the work done by you
against the emf.

The total work done per unit time is

aW _d(-6Q) _ o ppd
dt dt dt

The total work is W = IOIO Lidl :lLlo2

2/
Depends only on the geometry of the

loop (in the form of L) and the fina!
current /,.

o9



Energy Density of the Magnetic Field

We have expressed the total energy stored in the inductor in
terms of the current and we know the magnetic field is
proportional to the current. Can we express the total
magnetic energy in terms of the B-field? Yes.

Let’'s consider the case of solenoid.

N

nlpgnId=LI = L= pgn” Al

1 5 1 . B
U ==—LI"=——ugnl) " Al=——Al
2 2 g 2y
BZ
Uup = ﬂ (The energy density of a magnetic field in free space)
0

Although this relation has been obtained from a special case,

the expression is valid for any magnetic field.
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Generalized Total Energy
There is a nicer way to write the total magnetic energy .

©=[B-da=[(VxA)-da=A-dl=LI
S P

S

7 N
S: surface bounded by P P: perimeter of the loop

W=1L12=lc1>1—1

1
. : _ElcfA-dl:E?E(A-I)dl

generalize to the volume current

/4 :lcﬁ(A-I)dl :lI(A-J)dT, where J :LVXB
2% 2y Hy

1 1
W—E_V[(A-J)dr—z—%i[A-(VxB)]dz'
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Generalized Total Energy ||
Productrule 6, V- (AxB)=B:-(VxXA)—A-(VXxB)
A-(VXB)=B-(VXA)-V-(AXB)
B
W= [[A-(VxB)Jd7 = : [[B-B-V-(AxB)ldr

24, 5, 24y 5
| 1 divergence theorem

CJS(AXB)-da
24y 5 2y

$(AXB)-da—0

0 S

V' — all space
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Electric and Magnetic Field Energy

Electric field energy energy density

1 E0 [ 2 £) ;-2
Wo.=—|(Vpe)dr="2|E dr, up=—=%F
elec 2j( ,0) 7 _[ E 7

Magnetic field energy

1 1 1
Wmag ZEJ(A.J)dT:EJ‘Bsz’ UBIJBZ
0 0

Magnetic fields themselves do no work. Where does the
energy come from?

A changing magnetic field induces an electric field which can
do work.



Example

The breakdown electric field strength of air is 3x10° V/m. A
very large magnetic field strength is 20 T. Compare the energy
densities of the field.

Solution: 1
U, :EgoEz =(0.5)(8.85x10™")(3x10°)’
=40 J/m’
2
- 1o 20

24, 2x4wx107
=3.2x10° J/m’

Magnetic fields are an effective means of storing energy
without breakdown of the air. However, it is difficult to produce
such large fields over large regions.
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Example (toroidal, Ex. 7.11)

Use the expression for the energy density of the magnetic field
to calculate the self-inductance of a toroid with a rectangular

Cross section.

Solution: B
B _ ﬂoN[ :{
27y N ‘
2 2 2 '
dU p —B—dT—B—h(Zﬂrdr) _ Hoh(NT) dr ! ‘
2#0 2/10 4ﬂ7" 5
b ugh(NIY?  pghN*I1* . b 1. 5 ' ,
U dr = In(=)==LI
B j 47r T 47 (a) 2 | = _’l,,lf—
2 r b it
f TN A iy
27 a

Can we use the concept of magnetic flux to derive the self-
inductance? See Ex. 7.11.
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Example 7.13 (coaxial)

A long coaxial cable carries current 7 (the current flows down
the surface of the inner cylinder, radius a, and back along the
outer cylinder, radius b) as shown in the figure. Find the
magnetic energy stored in a section of length ¢.

Sol: ol ~d
: v, LR

magnetic field B =

27TS
] N &
energy density u, = B* =120
gy y Up u 372

2
magnetic energy W, .[qu j’uol f27rsds—'L3) fln(é)
T a

J
1 ¢ b

self-inductance W, =~ LI* = L=""1n?)
2 27T a
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Homework of Chap.7 (part Il)

Problem 7.18 A square loop, side a, resistance R, lies a distance s from an infinite
straight wire that carries current / (Fig. 7.29). Now someone cuts the wire, so /
drops to zero. In what direction does the induced current in the square loop flow,
and what total charge passes a given point in the loop during the time this current
flows? If you don't like the scissors model, turn the current down gradually:

_J(A-at)l, for0<t<l/e,
]([)_{O, for t <1/

Problem 7.24 Find the self-inductance per unit length of a long solenoid, of radius

S
R, carrying n turns per unit length. "o
Problem 7.27 A capacitor C is charged up to a voltage V' and connected to an L —C
inductor L, as shown schematically in Fig. 7.39. At time ¢ =0, the switch § is
closed. Find the current in the circuit as a function of time. How does your answer
change if a resistor R is included in series with C and L? FIGURE 7.39

Problem 7.28 Find the energy stored in a section of length / of a long solenoid
(radius R, current /, n turns per unit length), (a) using Eq. 7.30 (you found L in
Prob. 7.24); (b) using Eq. 7.31 (we worked out A in Ex. 5.12); (c¢) using Eq. 7.35;
(d) using Eq. 7.34 (take as your volume the cylindrical tube from radius a < R out

to radius b > R).
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7.3 Maxwell’s Equations Fsun-Fey Chang
7.3.1 Electrodynamics before Maxwell

rV-E= 1 o (Gauss's law)
£

0

V.-B=0 (no name) electromagnetic theory
B over a century ago
VXE = v (Faraday's law)

. VxB=uJ (Ampere's law)
A fatal inconsistency in Ampere’s law

V- (VxB)=puV-J

=0 #0
Ampere’s law is incorrect for the nonsteady current.
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The Electric and Magnetic Fields

Two distinct kinds of electric fields:

" E (in static case): attributed to electric charges, using
Coulomb’s law.

E (in nonsteady case): associated with changing
_ magnetic field, using Faraday’s law.

Two distinct kinds of magnetic fields:

" B (in static case): attributed to electric currents, using
Ampere’s law.

B (in nonsteady case): associated with changing electric
_ field, using?
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Another Inconsistency of Ampere’s Law

How do we determine the enclosed current /. .7

Amperian loop

rd
<J§B -dl =y, 1 - P& e—

Capacitor 11

Battery

[ * The simplest surface---the wire puncture this surface
so I . =1 € Ampere’s law is ok.

* A balloon-shaped surface---no current passes through
(. this surface. so [,,, =0 € Ampere’s law is not valid!

For nonsteady current, “the current enclosed by a loop”
is ill-defined.
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How Maxwell Fixed Ampere’'s Law

Applying the continuity equation and Gauss’s law,
the offending term can be rewritten:

V.J:_a_p:_a(SOV-E) :V-(—EOB—E)
ot ot - ot
A new current J'=J+¢, 5 © kills off the extra divergence

, oE
V-(VXB)=,UO(V-J)=,L10V-(J+80—a7):0

When E is constant (electrostatic+tmagnetostatic), we
will have VxB=uJ .

goaa—]f plays a crucial role in the EM wave propagation.



Electric Analogy of Faraday’s Law

Maxwell's term cures the defect in Ampere’s law,
and moreover, it has a certain aesthetic appeal.

Faraday's law <

A changing magnetic field induces an electric field.

A changing electric field induces a magnetic field.

Maxwell called this extra term “the displacement current”.

A

J ¢ JE a misleading name,
=

" ot nothing to do with current
(2



The Displacement Current

How the displacement current resolves the paradox of the

charging capacitor. S/A"‘p“i‘“‘ oor
The electric field between | S |,
. . Capacitor
the two capacitor plates is p
[

o0 _ 1 O «  the charge on the plate .\,
g &, A<— the area of the plate

LOE_100_ 1 _,
"ot Aot A

J|=1J, |J | =0 at the flat surface

Jou =I+d, {|J| =0, |J | =J at the balloon-shaped surface
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7.3.3 Maxwell's Equations

Maxwell’'s equations in the traditional way.
1

4 V-E = — Yo, (Gauss's law)
V-B :00 (no name)
< VXE =— aa—l: (Faraday's law)
oE (Ampere's law with

VxB=uJ+ = '
L. Hod T H& ot Maxwell's correction)

Lorentz force law F=g(E+vXxB)

Continuity equation V-J= _%_p
t

EM
Tsun-Hsu Chang
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Maxwell’'s Equations (Il)

Another expression of the Maxwell equations.

vE=L  vxE+2 -0
£, ot
JE
V-B=0 VxB—,uogoaz,u,oJ

The fields (E and B) on the left
and the sources (p and J) on the right.

Maxwell’'s equations tell you how sources produce
fields; reciprocally, the Lorentz force law tells you how
fields affect sources. € A nonlinear feedback
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Optional

7.3.4 Magnetic Charge

If there is a magnetic “charge” p, and the corresponding
current of the magnetic “current” J , the Maxwell’s
equations read

JWh ?
V.E:’Oe VXE+8—B=—ﬂOJm ASymmetriC
& ot between E and B
JE E-2>B
V-B=up, VXB-ug, B = Hd, B2>—1,&E

Both charges would be conserved:

V'Je=—ape, and V-J _ 9P
ot ot

Q: Has anyone ever found the magnetic charge?
No.
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7.3.5 Maxwell's Equations in Matter

When working with materials that are subject to electric and
magnetic polarization, there is a more convenient way to
write the Maxwell equations.

Static case:
An electric polarization produces a bound charge: £» =—V P
A magnetic polarization results in a bound current; J, =VxM

Nonstatic case:

Any change in the electric polarization involves a flow of
bound charge.

80‘b BP
al = da, =—da, where 0, =P n
o ot o T 2

oP P polarization current
P o (nothing to do with the bound current).
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Polarization and Bound Currents

Bound current J,: magnetization of the material involving
the spin and orbital motion of electrons.

Polarization current J : the linear motion of charge when
the electric polarization changes.

Now p=p,+p,=p;,—V-P
oP

J=Jf+Jb+Jp:Jf+V><M+§

Gauss’s law: V-E:i(pf—V-P) = V- (gE+P)=p,

0

Ampere’s law:  VxB =y, (J, +VxM +%—l;) + UoE, %—];:

:VX(LB—M):Jf+%(8OE+P)
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Maxwell's Equations in Matter

In terms of free charges and currents, Maxwell’'s equations

read

at
V -B=0 VXH —a—D Jf
ot
The constitutive relations: P=¢£yx.E
M=y, H
SO D:80E+P280(1+ZQ)E:8E

H:LB—M = B=yy(+y,)H=

M



EM

7.3.6 Boundary Conditions (l) Tsun-Hsu Chang
Differential form Integral form
V-D=p, @ ?D-dazqf\
V.B=0 CJ.DB e > over any enclosed surface S.
S J

@ b The edge of the wafer contributes nothing
@ in the limit as the thickness goes to zero.

@ ©,

D-a-D,-a=0,a = D -D; =0, #

wafer thin

Gaussian pillbox @ @

B1°a—B2-a=O — BIL—B;:O ﬂ:
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Boundary Conditions (lI)

Differential form Integral form
a A
VxE+a—B—0 @E’dl:—g_[ﬂda for any surface S
ot @ d . 5 . bounded by the
VxH—a—D:J ngH-dl=If+—fD-da closed loop P.
ot d P ot S

The side of the very thin Amperian loop contributes nothing.
f The flux vanishes in the limit as the area of the loop goes

2) to zero. @ a j G)
= o _
x a @

d
] = = — . // /N 7
very thin Amperian H;-1=H; 1 ]fenc +a;£D da = (H; _H2)'l_]fm,

loop straddling the . . /) . T
surface Ifenc :Kf(lle):(Kf ><n)-l :>H1 ——H2 :(K.f/ f'\_",l‘ ﬂ

(6) e -




Boundary Conditions in Linear Media
Di--Dy =0y E/ —E5 =0
B -By =0 Hj'-Hj =(K xi)

In case of linear media, D and H can be expressed in terms
of E and B.

&Ef —&Ey =0 E/ —E) =0
1 1 .
B -By=0 —B{-—Bj =K xh
H H

If there is no free charge or free current at the interface,

then
gEi—eEy =0  E/-EY =0
1 1
Bf-By=0 —B/-—B) =0 =
H H)

82



Homework of Chap.7 (part Ill)

Problem 7.31 Suppose the circuit in Fig. 7.41 has been connected for a long
time when suddenly, at time # =0, switch S is thrown from 4 to B, bypassing
the battery.

(a) What 1s the current at any subsequent time ¢ ? £, =
(b) What is the total energy delivered to the resistor?

(c) Show that this is equal to the energy originally stored in the inductor.

Problem 7.40 Sea water at frequency v = 4 X 10% Hz has permittivity £ = 81¢,,
permeability # = 4, and resistivity p = 0.23Q2- m. What is the ratio of conduc-
tion current to displacement current? [Hint: Consider a parallel-plate capacitor

immersed 1n sea water and driven by a voltage V|, cos(27vi).]

FIGURE 7.41

Problem 7.42 A rare case in which the electrostatic field E for a circuit can

actually be calculated is the following 28 Imagine an infinitely long y N
cylindrical sheet, of uniform resistivity and radius a. A slot (corresponding Ly /
to the battery) 1s maintained at = V,, /2, at ¢ ==+, and a steady current . S

flows over the surface, as indicated in Fig.7.51. According to Ohm's law, then,

V(a, ¢>—L¢, (-7 < p<+m).

FIGURE 7.51

(a) Use separation of Varlables in cylindrical coordinates to determine V(s,¢) in-
side and outside the cylinder. [Answer: (V,y / ) tan_l[(s sin @)/(a+s cos @)],

(s <a); (Vy / m)tan " [(a sin @)/(s+a cos @)],(s <a)]
(b) Find the surface charge density on the cylinder:[Answer: (&,V, / za)tan[(¢/2)] 83



Homework of Chap.7 (part lll)

Problem 7.53 The current in a long solenoid is increasing linearly with B

time, so the flux is proportional to ¢ : @ = a¢t. Two voltmeters are
connected to diametrically opposite points (4 and B), together with ”@ R E r, C@”

resistors (R; and R,),as shown in Fig. 7.55.What is the reading on each ¢
voltmeter? Assume that these are ideal voltmeters that draw negligible
current (they have huge internal resistance), and that a voltmeter registers -
FIGURE 7.55

b
J. E - dl between the terminals and through the meter. [Answer:Vi=oR,/
a

(RitRy); Vo=—0aR, /(R +R,). Notice that V| #V,,even though they are

connected to the same points P2 ]

Problem 7.57 Two coils are wrapped around a cylindrical form in such a way that

the same flux passes through every turn of both coils. (In practice this is achieved by
inscrting an iron core through the cylinder; this has he effect of coneentrating the
flux.) The primary coil has N; turns and the secondary the N, (Fig.7.57). If the
current / in the primary 1s changing, show that the emf in the secondary is given by

f_Ny (7.67)

& N
where & 1s the (back) emf of the primary. [This 1s a primitive transformer-a
device for raising or lowering the emf of an alternating current source. By chossing
the appropriate number of turns, any desired secondary emf can be obtained. If you
think this violates the conservation of energy, study Prob. 7.58]
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Various Systems of Electromagnetic Units.

Table 2 Definitions of €, uo, D, H, Macroscopic Maxwell Equations, and Lorentz Force Equation in Various Systems of Units

Where necessary the dimensions of quantities are given in parentheses. The symbol ¢ stands for the velocity of light in vacuum with dimensions (It™1).

Lorentz
Force per
System € Mo D, H Macroscopic Maxwell Equations Unit Charge
: - oD B
Electrostatic 1 c D =E + 44P V-D=4np VXH=47TJ+6— VXE+6_=0 *B=0|E+vXxB
(esu) (2% |H=cB - 4aM ! g
; 5 1 oD oB
Electromagnetic (e 1 D==E+47P |V-D =4mp VXH:47TJ+E- VxE+E-=O ‘B=0|E+vXxB
L4 C
(emu) (1) H=B - 47M
___________ R N R = S ) ) S 1 : S B2
:Gaussian 1 1 D=E+4mP |V:D=4mp VxH="2}) oS VXE+-— = ‘B=0|E+-xB
H=B - 47M ¢ &Y ¢ £
b i i ] i i i ot i, il e e sy i i, el o o o o s s o i 4
1 oD 1B
Heaviside— 1 1 D=E+P V:-D=p VXH:~_<J+—5~> VXE+—5—t—= ‘B=0 E+X><B
Lorentz H=B-M ¢ é ¢ £
________ A N Y . e
ISI 5 47 X107 | D =¢E + P V-D=p VXH=J+— VXE+—=0 ‘B=0|E+vxB
| 4arc 1 ot ot
I Pr'm™ 173 | (mll™*) | H=—B - M
Mo
|
|

Jackson: Appendix on Units and Dimensions
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