
Chapter 7: Electrodynamics
7.1 Electromotive Force   7.1.1 Ohm’s Law

1

current density

Pushing on the charges makes a current flow. How fast the 
charges move depends on the nature of the materials and 
the forces.

velocity of the charge

Ohm’s law (an empirical equation): 

ρ : volume charge density or resistivity?
σ : surface charge density or conductivity?

ρ=J v

volume charge density
1σ
ρ

= =J E E

resistivityconductivity

The Lorentz force drives the charges to produce current:

 ( )σ∝  = + ×J F J E v B
≈ 0
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Resistivities (ohm-meters)

2

Question: Can we treat the connecting wires in electric 
circuits as equal potentials?

Confusion 1: E = 0 inside a conductor  J = 0?
2: For a perfect conductor σ = ∞  E = 0?

https://hypertextbook.com/facts/
2006/SamTetruashvili.shtml

1.8 × 105



Example 7.1 

3

A cylindrical resistor of cross-sectional area A and length L is 
made from material with conductivity σ. If the potential is 
constant over each end, and the potential difference between 
the ends is V, what current flows?

Sol: AI EA V
L

σσ= ⋅ = =J A

Question: Is the electric field uniform within the wire? 
To be proved in a moment, see Ex. 7.3.



Example 7.3 
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Prove that the electric field within the wire is uniform.

Sol:

0  0,  and hence / 0V n⋅ = ∴ ⋅ = ∂ ∂ =J n E n

0 0 ˆ( )  and V z VV z V
L L

= = −∇ = −E z

V=0 V=V0

The potential V with the cylinder obeys Laplace’s equation.
On the cylinder surface 
With V or its normal derivate specified on all the surfaces, the 
potential is uniquely determine (Prob. 3.4). 
Guess: A potential obeys Laplace’s equation and fits the 
boundary conditions.

the unique solution.



Example 7.2 
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Two long cylinders (radii a and b) are separated by material of 
conductivity σ. If they are maintained at a potential different V, 
what current flows from one to the other, in a length L?

Sol:
A

σ= =IJ E ˆ
2
I

A sLσ σ π
= =IE r

1 ln( / )
2 2

b b
a a

I IV d ds b a
L s Lπσ πσ

= ⋅ = = E s

2
ln( / )

LI V
b a

πσ=



Ohm’s Law
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Ex. 7.1 

The total current flowing from one electrode to the other is 
proportional to the potential difference between them. 

(A more familiar 
version of Ohm’s law.)

For a steady current and uniform conductivity,
0

0 0 ( ) 0ερ ε ε
σ σ

= ∇ ⋅ = ∇ ⋅ = ∇ ⋅ =JE J

LV I
Aσ

=

Ex. 7.2 
ln( / )
2

b aV I
Lπσ

=
V IR=

resistance

Resistance is measured in ohms (Ω): an ohm is a volt per 
ampere.

Any unbalanced charge resides on the surface.



Ohm’s Law (rule of thumb)
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Gauss’s law or Ampere’s law is really a true law, but Ohm’s 
law is an empirical equation. 
* Finding an exception won’t win a Nobel prize.

negative resistance

Q1: Why the electric field does not accelerate the charge 
particle to a very high speed?
Q2: Ohm’s law implies that a constant field produces a 
constant current, which suggests a constant velocity. Isn’t 
that a contradiction of Newton’s law.



Ohm’s Law (a naive picture)
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A naive picture: Electrons are frequently collided with ions 
which slow down the acceleration.

The velocity is proportional to the square root of the field.  
That is no good!

Q1: How to explain it correctly?

2

ave

1 2 ,  where 
2

1average velocity: 
2 2

qEat t a
a m

qEv at E
m

λλ

λ

=  = =

= = ∝

The charges in practice are already moving quite fast 
because of their thermal energy.

Mean free path



Ohm’s Law (Drude model)
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The net drift velocity is a tiny extra bit. The time between 
collisions is actually much shorter than we supposed.

thermal

ave
thermal

collision time: 

1average velocity: 
2 2

acceleration: 

t
v

t
v

q
m m

λ

λ

=

= =

= =

av a

Fa E

2

ave
thermal thermal

( ) ( )
2 2

q nf qn fq nfq
v m mv

λ λ= = =J v E E

(n : molecules per unit volume)

(f : free electrons per molecule)



The Joule Heating Law
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The Joule heating law:

2 2

thermal thermal

( ) ,   where 
2 2
nf q nf q
mv mv

λ λσ σ= = =J E E

This equation correctly predicts that conductivity is 
proportional to the density of the moving charges and 
ordinarily decreases with increasing temperature.

2
2

: amperes
: ohms

where 
: volts
: watts

I
RVP IV I R
VR
P



= = = 





7.1.2 Electromotive Force (emf)

neW
q

=E

An emf is the work per unit charge done by the source of emf 
in moving the charge around a closed loop.

The subscript ”ne” emphasizes that the work is done by some 
nonelectrostatic agent, such as a battery or an electrical 
generator.

What is the difference between emf and potential difference?
11
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Electromotive Force: Production of a Current

2
4 4

2
2 4 4 2

Pb SO PbSO 2e
PbO 4H SO 2e PbSO 2H O

− −

+ − −
+ → +

+ + + → +

12

What is the function of the acid solution in the voltaic pile?

Note that for every electron that leaves the Pb plate, another 
enters the PbO2 plate.



Electromotive Force: Terminal Potential Difference

ba b aV V V Ir= − = −E

13

A real source of emf, such as a 
battery, has internal resistance r.

The change in potential is called the terminal potential 
difference.
Unlike the emf, which is a fixed property of the source, the 
terminal potential difference depends on the current flowing 
through it.
As a battery ages its internal resistance increases, and so, 
for a given output current, the terminal potential difference 
falls.



Electromotive Force Drives the Electrons
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Example: A battery is hooked 
up to a light bulb.

The battery generates the 
force which drives the 
electrons move along the loop.

Snail’s pace: the charges in a wire move slowly 
(~0.1 mm/s @φ =1mm, 1A, see Prob. 5.19(b)).

Q1: Why does the bulb response so fast when turning it on 
or off?
Q2: How do all the charges know to start moving at the 
same instant?



Example: The Snail’s Pace 
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Calculate the average electron drift velocity in a copper wire 
1mm in diameter, carrying a current of 1 A.

Sol:
d d2 2   ( : volume charge density)I IJ v v

s s
ρ ρ

π π ρ
= =  =

19 23 4 3

mobile charges charge atom mole gram
volume atom mole gram volume

(2 1.6 10 )(6 10 )(1 64)(9) 2.7 10 C / cm

ρ

−

= =

= × × × = ×
-3

d 2 2 4
1=  =4.7 10  (cm/s)

0.05 2.7 10
Iv
sπ ρ π

= ×
× × ×

d

d

@  1A,  =1 mm  0.047 (mm/s)
@10A,  =1 mm  0.47 (mm/s)  Snail's pace

v
v

φ
φ

 =
 =

2 51 3 3 1.2 10  (m/s) @ 300 K
2 2e thermal thermal

e

kTm v kT v T
m

=  = ≈ × =



Will the Charge Piling Up Somewhere?
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If a current is not the same all the way around, then the 
charge is piling up somewhere, and the electric field of this 
accumulating charge is in such a direction as to even out the 
flow.

Charge piling up at the “knee” produces 
a field aiming away from the kink.

It self-corrects the current flow.

Kirchhoff's current law (KCL): The algebraic sum of currents 
in a network of conductors meeting at a point is zero.



Forces Involved in Driving Currents 
Around a Circuit

17

Two forces involved in driving currents around a circuit.
fs: ordinarily confined to one portion of the loop (a battery, say).
E: the electrostatic force: smooth out the flow and communicate 
the influence of the source to distant parts of the circuit. 

Battery  a chemical force
Piezoelectric crystal  mechanical pressure
Thermal couple  temperature gradient
Photoelectric cell  light

s= +f f E

What is the physical agency responsible for fs?

Force per unit charge.



The Electromotive Force
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The net effect of the electromotive force is determined by the 
line integral of f around the circuit:

Emf is a lousy term, since it is not a force at all --- it is the 
integral of a force per unit charge.

s s+d d d d≡ ⋅ = ⋅ ⋅ = ⋅   f l f l E l f l   E

(the electromotive force, emf)

= 0 for electrostatics

neW
q

=E

An emf is the work per unit charge done by the source of emf 
in moving the charge around a closed loop.

電動勢

(very bad 糟糕的)



7.1.3 Motional emf
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The most common source of the emf: the generator

Shaded region: uniform B-field 
pointing into the page.

R: whatever it is, we are trying 
to drive current through. 

mag ( )d d vBh= ⋅ = × ⋅ = f l v B l E

A primitive model for a generator

Generators exploit motional emf’s, which arise when you move 
a wire through a magnetic field.

u
v
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Magnetic Force Does No Work

pullf uB=

20

A person exerts a force per unit charge 
on the wire by pulling it. The force 
counteracts the force generated by the 
magnetic force quB.

The work done per unit charge is:

This force is transmitted to the charge by the structure of the 
wire.

pull ( )( tan ) tand uB h u Bh vBhθ θ⋅ = = = = f l E

The work done per unit charge is exactly equal to the emf.

(the resultant velocity)

90° − θ



Motional emf (another example)

( ) d= × ⋅ v B lE
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When the magnetic field is constant in time, there is no 
induced electric field.

When a metal rod moving perpendicular to 
magnetic field lines, there is a separation of 
charge and an associated electrostatic 
potential difference sets up. 
The potential difference associated with this 
electrostatic field is given by Vb−Va = E0L = BLv.

Since there is no current flowing, the “terminal potential 
difference” is equal to the motional emf.

L



Instantaneous emf
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The person who’s pulling on the loop!

E: carried out at one instant of time – take a “snapshot” of 
the loop, if you like, and work from that.

The magnetic force is responsible for establishing the emf 
and the emf seems to heat the resistor (i.e., do work), but 
magnetic fields never do work.

Who is supplying the energy that heats the resistor.

( ) ( )vBh Bhv t t= = =E E



Magnetic Force Does No Work (II)
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In the previous viewgraph, we find a source of emf converts 
some form of energy into electrostatic energy and does work 
on charges. Can magnetic forces do work? No.

The magnetic field acts, in a sense, as an intermediary in the 
transfer of the energy from the external agent to the rod. 

中介



The Flux Rule
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There is a particular nice way of expressing the emf 
generated in a moving loop  the flux rule.

Let

The minus sign accounts for the fact that dx/dt is negative.

Next step proves:

the flux of B through the loopdΦ ≡ ⋅B a

The flux of a rectangular loop BhxΦ =

The flux change rate
d dxBh Bhv
dt dt
Φ = = −

d Bhv
dt
Φ− = =E

d
dt
Φ= −E

The flux rule for the motional emf:



The Flux Rule (Generalized)
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Compute the flux at time t using surface S, and the flux at 
time t+dt, using the surface consisting of S plus the “ribbon” 
that connects the new position of the loop to the old.

The flux rule can be applied to non-rectangular loop 
through non-uniform magnetic field.

Proof:



The Flux Rule (Generalized II)
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The change in flux is

ribbon
ribbon

( ) ( )d t dt t dΦ = Φ + − Φ = Φ = ⋅ B a

The infinitesimal element of area on the ribbon

( )d dt d d dt= × = ×a v l v l

ribbon ribbon

( )d d d dtΦ = ⋅ = ⋅ × B a B v l ( ) ( )
( )

⋅ × = ⋅ ×
= − × ⋅

A B C C A B
B A C

( ) ( )

[( ) ] ( )

d d d
dt

d d

Φ = ⋅ × = − × ⋅

= − + × ⋅ = − × ⋅

 
 

B v l v B l

v u B l W B l
 
 

mag     qedd d
dt
Φ = − ⋅ = − f l E 拉丁片語: “quod erat demonstrandum”證明完畢

or 戲稱“quite easily done”

magnetic force per unit charge

:  velocity of the wire.
:  velocity of a charge down the wire.

v
u



Example 7.4

( )
0

2

0

1
2

R

R

d vBdr

rBdr BRω ω

= × ⋅ =

= =

 


v B lE

27

In a homopolar generator a conducting disk of radius R
rotates at angular velocity ω rad/s. Its plane is perpendicular 
to a uniform and constant magnetic field B. What is the emf 
generated between the center and the rim?

Solution:

Hint1: How to choose a proper closed loop?
Hint2: The total magnetic flux passing through the disk is 
constant in time. Where is the induced emf coming from? 
(Ref. Benson & Feyman)



Eddy Currents (I)
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What happens when a bar magnet approaches or moves 
parallel to a conducting plate? It induces eddy current.

The eddy current is distributed throughout the plate. 



Eddy Currents (II)

29

Applications of the eddy current:
1. The braking system of a train.
2. Eddy current generated in copper 

pots can also be used for “inductive 
cooking”.

3. Project a metal ring. The ring gets 
very hot when projected.



Example

emf

emf

2
2

2

(a)  

              

( )(b)  

( )(c)  

elec

mech ext

d dAV B Blv
dt dt
V BlvI

R R
BlvP I R

R
BlvP

R

Φ= = =

= =

= =

= ⋅ =F v

30

A metal rod of length L slides at constant velocity v on 
conducting rails that terminate in a resistor R. There is a 
uniform and constant magnetic field perpendicular to the plane 
of the rails. Find: (a) the current in the resistor; (b) the power 
dissipated in the resistor; (c) the mechanical power needed to 
pull the rod.

Solution:

L



More Examples

31
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0 A capacitor  has been charged up to potential ; at time  0, it is
connected to a resistor , and begins to discharge (Fig. 7.5a).
(a) Determine the charge on the capacitor as a function

C V t
R

=Problem 7.2

 of time, ( ). What is the
      current through the resistor,  ( )?
(b) What was the original energy stored in the capacitor (Eq. 2.55)? By integrating
      Eq. 7.7, confirm that the heat delivered t

Q t
I t

0

o the resistor is equal to the energy lost
      by the capacitor.
         Now imagine   the capacitor, by connecting it (and the resistor) to
      a battery of voltage , at time 0 (Fig. 

charging up
V t =

0

7.5b).
(c) Again, determine ( ) and ( ).
(d) Find the total energy output of the battery (  ). Determine the heat delivered
      to the resistor. What is the final energy stored in the capacitor?

Q t I t
V I dt

 What
      fraction of the work done by the battery shows up as energy in the capacitor?
      [Notice that the answer is independent of !]R

Homework of Chap. 7 (part I)
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 A rectangular loop of wire is situated so that one end (height ) is
between the plates of a parallel-plate capacitor (Fig. 7.9), oriented parallel to the
field . The other end is way outsi

hProblem 7.6

E de, where the field is essentially zero. What
is the emf in this loop? If the total resistance is , what current flows? Explain.
[ : This is a trick question, so be careful; if you have invented 

R
Warning a perpetual

motion machine, there's probably something wrong with it.]

 A square loop of wire (side ) lies on a table, a distance 
from a very long straight wire, which carries a current  , as shown in
Fig. 7.18.
(a) Find the flux of  through the loop.
(b) If 

a s
I

Problem 7.8

B
someone now pulls the loop directly away from the wire, at speed

      , what emf is generated? In what direction (clockwise or counterclockwise)
      does the current flow?
(c) What if the loop is pul

v

led to the  at speed ?right v

Homework of Chap. 7 (part I)
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A square loop is cut out of a thick sheet of aluminum. It is then placed
so that the top portion is in a uniform magnetic field , and is allowed to fall under
gravity (Fig. 7.20). (In the 

Problem 7.11
B

diagram, shading indicates the field region;  points into
the page.) If the magnetic field is 1 T (a pretty standard laboratory field), find the
terminal velocity of the loop (in m/s). Find the velocit

B

y of the loop as a function of
time. How long does it take (in seconds) to reach, say, 90% of the terminal velocity?
What would happen if you cut a tiny slit in the ring, breaking the circuit? [ :
The

Note
 dimensions of the loop cancel out; determine the actual , in the units

indicated.]
numbers

Homework of Chap. 7 (part I)



7.2 Electromagnetic Induction
7.2.1 Faraday’s Law

35

Faraday reported on a series of experiments, including three 
that can be characterized as follows:

motional emf Q: Since a stationary charge 
experiences no magnetic force, 
what is responsible?

Faraday’s law

d
dt
Φ= −E

circuit moves field changesmagnet moves

EM
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Faraday’s Law (at rest)

36

A changing magnetic field induces an electric field.

Stokes’ theorem 

What sort of field exerts a force on charges at rest?
Electric field and 

a changing magnetic field (Faraday found empirically).

Faraday’s law in integral form

The emf is equal to the rate of change of flux, when fs = 0.

s + d dd d d d
dt dt

dd d
dt

Φ= ⋅ ⋅ = ⋅ = − = − ⋅

 ⋅ = − ⋅

   

 

f l E l E l B a

E l B a

  


E

Faraday’s law in 
differential form

( )
      

( )

d d

d td d
dt t

⋅ = ∇× ⋅
∂

 ∇× = −∂ ∂− ⋅ = − ⋅
∂

 

 

E l E a
BEBB a a



Why? See next page.

Electro-
dynamics



Faraday’s Law (moving at constant velocity)

37

What sort of field exerts a force on charges moving at 
constant velocity? Hint: Lorentz force

( )
( )

s + ( )

Left :   ( ) ( ) ( ( ))

Right: [ ( )] [ ( ) ]

dd d d
dt

d d d
d d d d d
dt t t

= ⋅ + × ⋅ = − ⋅

+ × ⋅ = ∇× ⋅ + ∇× × ⋅
∂ ∂− ⋅ = − + ⋅∇ ⋅ = − ⋅ + ⋅∇ ⋅
∂ ∂

  
  

   

f l E v B l B a

E v B l E a v B a
BB a v B a a v B a

 


E

  
t

∂
 ∇× = −

∂
BE Also see “The Feymann Lectures 

on Physics II,”  Chap.17

( ) ( ) ( ) ( ) ( )∇× × = ⋅∇ − ⋅∇ + ∇ ⋅ − ∇ ⋅A B B A A B A B B A

Right: ( ( ))

                                  (( ) ( ) ( ))

d d d d
dt t

d

∂− ⋅ = − ⋅ + ∇ × × ⋅
∂

 − ⋅∇ + ∇ ⋅ − ∇ ⋅ ⋅ 

  


BB a a v B a

B v v B B v a =0



Universal Flux Rule
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One can subsume all three cases into a kind of universal 
flux rule:
Whenever the magnetic flux through a loop changes, an emf 
will appear in the loop.

These three experiments yield the same formula for the 
emf.

This “coincidence” led Einstein to the special theory of relativity. 
Chap.12

Electric field is induced by changing magnetic field. 



Lenz’s Law (I)
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Maxwell restated Lenz’s rule in a more general way:

The effect of the induced emf is such as to oppose the 
change in flux that produces it.

Lenz’s law is a handy rule, whose sole purpose is to help 
you get the direction right.



Lenz’s Law (II)

40

A sign convention for the induced emf. First we choose the
direction of the vector area to make the initial flux positive.
The right-hand rule, with the thumb along B and the fingers
curled around the loop, tells us whether clockwise or
counterclockwise is the positive sense.

How about superconducting magnet?



Example 7.5 
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A long cylindrical magnet of length L and radius a, carries a
uniform magnetization M parallel to its axis. It passes at
constant velocity v through a circular ring of slightly larger
diameter. Graph the emf induced in the ring, as a function of
time.

Sol:

Ex. Rogowski coils.Nature abhors a change in flux. 



Example 7.6
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The “jumping ring” demonstration. If you wind a solenoidal
coil around an iron core (the iron is there to beef up the
magnetic field), place a metal ring on the top, and plug it in,
the ring will jump several feet in the air. Why?

Sol: Also see Chap.6 p.5.



7.2.2 The Induced Electric Field

43

Two distinct kinds of electric fields: 

(the curl alone is not enough to 
determine a field)

E (in static case): attributed to electric charges, using 
Coulomb’s law. 
E (in nonsteady case): associated with changing 
magnetic field, using Faraday’s law.

t
∂∇× = −
∂
BE

0∇ ⋅ =E (charge free; then, the electric 
field is due exclusively to a 
changing B)

EM
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The Magnetostatic Field

44

Two distinct kinds of magnetic fields: 

B (in static case): attributed to electric currents, using 
Ampere’s law. 
B (in nonsteady case): associated with changing electric 
field, using?

0μ∇× =B J

0∇ ⋅ =B

(Faraday-induced electric fields are 
determined by –(∂B/∂t) in exactly the 
same way as magnetostatic fields B 
are determined by μ0J)



Example 7.7

2

2

2

(2 )

(a)  (2 ) ( )

         ( )
2

(b)  (2 ) ( )

         ( )
2

d E r
dBE r r
dt

r dBE r R
dt

dBE r R
dt

R dBE r R
r dt

π

π π

π π

⋅ =

= −

= − <

= −

= − >

 E l

45

The current in an ideal solenoid of radius R varies as a
function of time. Find the induced electric field at points (a)
inside, and (b) outside the solenoid. Express the results in
terms of dB/dt.
Sol:

The electric field is due exclusively to a changing B.



Example 7.8

2d dBd a
dt dt

πΦ⋅ = − = − E l

A line charge λ is glued onto the rim of a wheel of radius b,
which is then suspended horizontally as shown in the figure,
so that it is free to rotate. In the central region, out to radius a,
there is a uniform magnetic field B0, pointing up. Now
someone turns the field off. What happens?
Sol: Faraday’s law says

2 dBN b d b a
dt

λ λπ= ⋅ = − E l

The torque on a segment of length dl
is r×dF or bλEdl

The total torque on the wheel is 

The angular momentum  0

0

0 2 2
00

t

B
L Ndt b a dB b a Bλπ λπ= = − = 

No matter how fast or slow you turn off the field, the ultimate 
angular velocity of the wheel is the same regardless. 46



Example 7.8 Quasistatic

47

Faraday’s law (nonsteady) 

2 dBN b d b a
dt

λ λπ= ⋅ = − E l

This regime, in which magnetostatic rules can be used to 
calculate the magnetic field on the right hand side of the 
Faraday’s law, is called quasistatic.

provided the field fluctuation 
is not extremely rapid

Biot-Sarvart or 
Ampere’s laws 

Ampere’s law 
(magnetostatics)

t
∂∇× = −
∂
BE

KK:[rɪˈʒim]



7.2.3 Inductance

48

Suppose we have two loops of wire at rest.
A steady current I1 around loop 1 B1
Some B1 passes through loop 2  Φ2

0 1 1
2 1 1 2

ˆ
  and 

4
I dd μ

π
×Φ = ⋅ = 

lB a B  r
r

0 1
2 1 21 12

ˆ
[ ]
4

d d I M Iμ
π

×Φ = ⋅ = 
l a r
r

The constant of proportionality: 
mutual inductance of the two loops.

EM
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Neumann Formula for the Mutual Inductance

49

2 1 1 1 2

0 1 1
1

( )  

4

d d d
I dμ

π

Φ = ⋅ = ∇× ⋅ = ⋅

=

  


B a A a A l
lA
r




It involves a double line integral ---
one integration around loop 1, the 
other around loop 2.

0 1 1 2
2

0 1 2
21

 
4

  Neumann formula
4

I d d

d dM

μ
π
μ
π

⋅Φ =

⋅= ⇐

 

 

l l

l l
 
 

r

r



Important Things about Mutual Inductance

50

1. M21 is purely geometrical quantity, having to do with the 
size, shape, and relative position.

2. M21 = M12, so we can drop the subscripts and call them M.

0 1 2
21 4

d dM μ
π

⋅=  
l l  r

It is not very useful for practical 
calculation, but it reveals two 
important features.

Whatever the shapes and positions of the loops, the flux 
through 2 when we run current I around 1 is identical to the 
flux through 1 when we send the same current I around 2.

Advantage of M21 = M12, see the following examples.



Example (or Ex. 7.10)

1 2 1 0 2 2 1

1 1
0 2 1 1

2
7(4 10 )(1500)(10)(0.0004)

7.54 H

B A n I A
NM n N A

I

μ

μ

π
μ

−

Φ = =
Φ= =

= ×
=
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A circular coil with a cross-sectional area of 4 cm2 has 10 turns. 
It is placed at the center of a long solenoid that has 15 
turns/cm and a cross-sectional area of 10 cm2, as shown 
below. The axis of the coil coincides with the axis of the 
solenoid. What is their mutual inductance?
Solution:

Notice that although M12 = M21, it would have  been much 
difficult to find Φ2 because the field due to the coil is quite 
nonuniform.



Self-Inductance

1
1L

dIL
dt

= −E

1 1 1 1N L IΦ =

52

It is convenient to express the induced emf in 
terms of a current rather than the magnetic flux 
through it. 
The magnetic flux is directly proportional to the 
current flowing through it. 

where L1 is a constant of proportionality called the self-
inductance of coil 1. The SI unit of self-inductance is the 
henry (H). The self-inductance of a circuit depends on its size 
and its shape.
The self-induced emf in coil 1 due to changes in I1 takes the 
form



Example 7.11 (toroidal) 
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Find the self-inductance of a toroidal coil with rectangular 
cross section (inner radius a, outer radius b, height h), which 
carries a total N turns.

Sol: 0

2
NIB
s

μ
π

=magnetic field 
inside a toroidal

1
1

1

0 1 0 1
1

  and  

ln( )
2 2

b

a

NL
I

NI hNI bh ds
s a

μ μ
π π

Φ=

Φ = =
2

0
1 ln( )

2
hN bL

a
μ

π
∴ =



Example (coaxial, also see Ex. 7.13)

0 0

0 0

0

,     
2 2

ln
2 2

ln
2

b
a

I IB d BdA dx
x x

I I bdx LI
x a
bL
a

μ μ
π π

μ μ
π π

μ
π

= Φ = =

Φ = = =

=








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Solution:

Hint1: The direction of the magnetic field.
Hint2: What happens when considers the inner flux? 

A coaxial cable consists of an inner wire of radius a that
carries a current I upward, and an outer cylindrical
conductor of radius b that carries the same current
downward. Find the self-inductance of a coaxial cable of
length . Ignore the magnetic flux within the inner wire.



Example: LR Circuits
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0

0
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   :   

0      :   0  
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t

R t
L

dIIR L
dt

dII I e I e
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Re
L

R
R
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R

I e
R

α α

α

β α

α

β β

β

− −

−

−

− − =

= +  = −

 =
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
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How does the current rise and fall as a function of time in a 
circuit containing an inductor and a resistor in series?
Rise

The quantity τ ≡ L/R is called the time constant.



Example: LR Circuits

0 0

0

0

Let 

   :   

0 :   

t t

t

tR t
L

dIIR L
dt

dII I e I e
dt

Re
L

t I
R

I e e
R R

α α

α

τ

α

α

− −

−

−−

− − =

=  = −

 =

 = =


∴ = =

E

E E
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Decay

The quantity τ ≡ L/R is called the time constant.

t ≤ 0 S1 closed and S2 open
t > 0 S1 open and S2 closed



7.2.4 Energy in Magnetic Field
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Inductance (like capacitance) is an intrinsically positive
quantity. Lenz’s law dictates that the emf is in such a 
direction as to oppose any change in current.  back emf.
It takes a certain amount of energy to start a current flowing 
in a circuit.
What we are concerned with are the work you must do 
against the back emf to get the current going.

Is this a fixed amount? Is it recoverable?
Yes, you get it back when the current is turned off.
It represents energy latent in the circuit or it can be regard as 
energy stored in the magnetic field.

EM
Tsun-Hsu Chang



Energy Stored in an Inductor

2

2 21,    where 
2

L
L

dIIR L
dt

dII I R LI
dt

dUI I R U LI
dt

= +

= +

= + =

E

E

E
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The battery that establishes the current in an inductor has to 
do work against the opposing induced emf. The energy 
supplied by the battery is stored in the inductor. 
In Kirchhoff’s voltage law (KVL), we obtain

power supplied 
by the battery

power dissipated
in the resistor

energy change rate
in the inductor



The Power

( )dW d Q dII LI
dt dt dt

−= = − =E E
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The work done on a unit charge, against the back emf, in 
one trip around the circuit is −E.

the work done by you 
against the emf.

Depends only on the geometry of the 
loop (in the form of L) and the final 
current I0. 

The total work done per unit time is

The total work is 0 2
00

1
2

I
W LIdI LI= =



Energy Density of the Magnetic Field


2

0 0
2

2 2
0

0 0
2

0

       

1 1 ( )
2 2 2

(The energy density of a magnetic field in free space)
2

N

L

B

n nIA LI L n A

BU LI nI A A

Bu

μ μ

μ
μ μ

μ

Φ

=  =

= = =

=


 

 
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We have expressed the total energy stored in the inductor in 
terms of the current and we know the magnetic field is 
proportional to the current. Can we express the total 
magnetic energy in terms of the B-field? Yes.
Let’s consider the case of solenoid.

Although this relation has been obtained from a special case, 
the expression is valid for any magnetic field.



Generalized Total Energy

21 1 1 1 ( )
2 2 2 2P P

W LI I I d dl= = Φ = ⋅ = ⋅ A l A I 
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There is a nicer way to write the total magnetic energy W.

( )
S S P

d d d LIΦ = ⋅ = ∇× ⋅ = ⋅ =  B a A a A l
S: surface bounded by P P: perimeter of the loop

generalize to the volume current

0

1 1 1( ) ( ) ,   where 
2 2P V

W dl dτ
μ

= ⋅ = ⋅ = ∇× A I A J J B

0

1 1( ) [ ( )]
2 2V V

W d dτ τ
μ

= ⋅ = ⋅ ∇× A J A B



Generalized Total Energy II
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Product rule 6,  ( ) ( ) ( )∇ ⋅ × = ⋅ ∇× − ⋅ ∇×A B B A A B

( ) ( ) ( )⋅ ∇× = ⋅ ∇× − ∇ ⋅ ×A B B A A B
B



0 0

2

0 0

1 1[ ( )] [ ( )]
2 2
1 1 ( )

2 2

V V

V S

W d d

B d d

τ τ
μ μ

τ
μ μ

= ⋅ ∇× = ⋅ − ∇ ⋅ ×

= − × ⋅

 

 

A B B B A B

A B a
divergence theorem

0

2

0 all space

1all space ( ) 0
2

1
2

S

V d

W B d

μ

τ
μ

→ × ⋅ →

=





A B a



Electric and Magnetic Field Energy
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Electric field energy

Magnetic fields themselves do no work. Where does the 
energy come from?

2 20 0
elec

1 ( ) ,         
2 2 2EW V d E d u Eε ερ τ τ= = = 

energy density

Magnetic field energy
2 2

mag
0 0

1 1 1( ) ,     
2 2 2BW d B d u Bτ τ

μ μ
= ⋅ = = A J

A changing magnetic field induces an electric field which can 
do work.



Example

2 -12 6 2
0
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2
2
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2
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E

B

u E

u B

ε

μ π

= = × ×

=

= =
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The breakdown electric field strength of air is 3x106 V/m. A 
very large magnetic field strength is 20 T. Compare the energy 
densities of the field.

Solution:

Magnetic fields are an effective means of storing energy 
without breakdown of the air. However, it is difficult to produce 
such large fields over large regions.



Example (toroidal, Ex. 7.11)
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22 2
0

0 0
2 2 2

20 0

2
0

2
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( ) 1ln( )
4 4 2
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2

B

b
B a

NIB
r

h NIB BdU d h rdr dr
μ μ r

h NI hN I bU dr LI
r a

N h bL
a

μ
π

μτ π
π

μ μ
π π

μ
π

=

= = =

= = =

=


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Use the expression for the energy density of the magnetic field 
to calculate the self-inductance of a toroid with a rectangular 
cross section.
Solution:

Can we use the concept of magnetic flux to derive the self-
inductance? See Ex. 7.11.



Example 7.13 (coaxial)
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Sol:
0 ˆ

2
I
s

μ
π

=B φ

energy density

magnetic field
2

2 0
2 2

0

1
2 8B

Iu B
s

μ
μ π

= =

magnetic energy
2 2

0 0
2 2

2 0

2 ln( )
8 4

1      ln( )
2 2

B B
V V

B

I I bW u d sds
s a

bW LI L
a

μ μτ π
π π

μ
π

= = =

=  =

   


self-inductance

A long coaxial cable carries current I (the current flows down 
the surface of the inner cylinder, radius a, and back along the 
outer cylinder, radius b) as shown in the figure. Find the 
magnetic energy stored in a section of length   .



Homework of Chap.7 (part II)
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A square loop, side ,  resistance , lies a distance  from an infinite
straight wire that carries current  (Fig. 7.29). Now someone cuts the wire, so 
drops to zero. In what direction do

a R s
I I

Problem 7.18 

es the induced current in the square loop flow,
and what total charge passes a given point in the loop during the time this current
flows? If you don't like the scissors model, turn the current down  gr

{(1 ) ,     for 0    1/ ,
0,                for    1/ .

:

                              ( ) t I t
t

adually

I t α α
α

− ≤ ≤
≤=

Find the self-inductance per unit length of a long solenoid, of radius
,  carrying  turns per unit length.R n

Problem 7.24 

A capacitor  is charged up to a voltage and connected to an
inductor , as shown schematically in Fig. 7.39. At time 0,  the switch  is
closed. Find the current in the circuit as a fun

C V
L t S=

Problem 7.27 

ction of time. How does your answer
change if a resistor  is included in series with  and ?R C L

Find the energy stored in a section of length  of a long solenoid
(radius ,  current ,  turns per unit length), (a) using Eq. 7.30 (you found  in
Prob. 7.24); (b) using Eq. 7.31 (we wor

l
R I n L

Problem 7.28 

ked out  in Ex. 5.12); (c) using Eq. 7.35;
(d) using Eq. 7.34 (take as your volume the cylindrical tube from radius  out
to radius  > ).

a R
b R

<
A



7.3 Maxwell’s Equations
7.3.1 Electrodynamics before Maxwell

68

Ampere’s law is incorrect for the nonsteady current.

electromagnetic theory 
over a century ago

A fatal inconsistency in Ampere’s law

0

0

1 (Gauss's law)

0 (no name)

(Faraday's law)

(Ampere's law)
t

ρ
ε

μ

∇ ⋅ =

∇ ⋅ =
∂∇× = −
∂

∇× =

E

B
BE

B J

0( ) μ∇ ⋅ ∇× = ∇ ⋅B J

=0 ≠0

EM
Tsun-Hsu Chang



The Electric and Magnetic Fields
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Two distinct kinds of magnetic fields: 

B (in static case): attributed to electric currents, using 
Ampere’s law. 
B (in nonsteady case): associated with changing electric 
field, using?

Two distinct kinds of electric fields: 

E (in static case): attributed to electric charges, using 
Coulomb’s law. 
E (in nonsteady case): associated with changing 
magnetic field, using Faraday’s law.



Another Inconsistency of Ampere’s Law
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* The simplest surface---the wire puncture this surface 
so Ienc = I Ampere’s law is ok.

How do we determine the enclosed current Ienc?

0 encd Iμ⋅ = B l

* A balloon-shaped surface---no current passes through 
this surface. so Ienc = 0  Ampere’s law is not valid!

For nonsteady current, “the current enclosed by a loop” 
is ill-defined.



How Maxwell Fixed Ampere’s Law
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Applying the continuity equation and Gauss’s law, 
the offending term can be rewritten:

0 0 0( ) ( ) ( ) 0
t

μ μ ε ∂′∇ ⋅ ∇× = ∇ ⋅ = ∇ ⋅ + =
∂
EB J J

0
0

( ) ( )
t t t

ερ ε∂ ∇ ⋅∂ ∂∇ ⋅ = − = − = ∇ ⋅ −
∂ ∂ ∂

E EJ

0A new current    kills off the extra divergence
t

ε ∂′ = + ←
∂
EJ J

When E is constant (electrostatic+magnetostatic), we 
will have                     . 0μ∇× =B J

plays a crucial role in the EM wave propagation.0 t
ε ∂

∂
E



Electric Analogy of Faraday’s Law
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Maxwell’s term cures the defect in Ampere’s law, 
and moreover, it has a certain aesthetic appeal.

Maxwell called this extra term “the displacement current”.

0d t
ε ∂≡

∂
EJ a misleading name, 

nothing to do with current

A changing electric field induces a magnetic field.

A changing magnetic field induces an electric field.
Faraday’s law



The Displacement Current
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How the displacement current resolves the paradox of the 
charging capacitor.

0 0

1 QE
A

σ
ε ε

= =

|J| = J, |Jd| = 0 at the flat surface
|J| = 0, |Jd| = J at the balloon-shaped surface

The electric field between 
the two capacitor plates is

0
1E Q I J

t A t A
ε ∂ ∂= = =

∂ ∂

the charge on the plate
the area of the plate

tot d= +J J J



7.3.3 Maxwell’s Equations
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Continuity equation

Lorentz force law

0

0 0 0

1 (Gauss's law)

0 (no name)

(Faraday's law)

(Ampere's law with 
Maxwell's correction)

t

t

ρ
ε

μ μ ε

∇ ⋅ =

∇ ⋅ =
∂∇× = −
∂

∂∇× = +
∂

E

B
BE

EB J

Maxwell’s equations in the traditional way.

t
ρ∂∇ ⋅ = −

∂
J

( )q= + ×F E v B

EM
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Maxwell’s Equations (II)
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The fields (E and B) on the left 
and the sources (ρ and J) on the right.

0

0 0 0

0

0

t

t

ρ
ε

μ ε μ

∂∇ ⋅ = ∇× + =
∂
∂∇ ⋅ = ∇× − =
∂

BE E

EB B J

Another expression of the Maxwell equations.

Maxwell’s equations tell you how sources produce 
fields; reciprocally, the Lorentz force law tells you how 
fields affect sources.   A nonlinear feedback



7.3.4 Magnetic Charge
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Both charges would be conserved:

If there is a magnetic “charge” ρm and the corresponding 
current of the magnetic “current” Jm, the Maxwell’s 
equations read

,  and  e m
e mt t

ρ ρ∂ ∂∇ ⋅ = − ∇ ⋅ = −
∂ ∂

J J

0
0

0 0 0 0

e
m

m e

t

t

ρ μ
ε

μ ρ μ ε μ

∂∇ ⋅ = ∇ × + = −
∂

∂∇ ⋅ = ∇ × − =
∂

BE E J

EB B J

A symmetric 
between E and B
EB
B−μ0ε0E

Q: Has anyone ever found the magnetic charge?
No. 

Why?

Optional



7.3.5 Maxwell’s Equations in Matter
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When working with materials that are subject to electric and 
magnetic polarization, there is a more convenient way to 
write the Maxwell equations.

b
b

ρ = −∇ ⋅
= ∇×

P
J M

An electric polarization produces a bound charge:
A magnetic polarization results in a bound current: 

polarization current 
(nothing to do with the bound current). 

Any change in the electric polarization involves a flow of 
bound charge. 

ˆ   where b
b

PdI da da
t t

σ σ⊥ ⊥
∂ ∂= = = ⋅
∂ ∂

P n

Static case:

Nonstatic case: 

p t
∂=
∂
PJ



Polarization and Bound Currents
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Bound current Jb: magnetization of the material involving 
the spin and orbital motion of electrons.

f b f

f b p f t

ρ ρ ρ ρ= + = − ∇ ⋅
∂= + + = + ∇ × +
∂

P
PJ J J J J M

Gauss’s law:

Now 

Polarization current Jp: the linear motion of charge when 
the electric polarization changes.

0
0

1 ( )    ( )f fρ ε ρ
ε

∇ ⋅ = − ∇ ⋅  ∇ ⋅ + =E P E P

Ampere’s law: 0 0 0

0
0

( )

1( ) ( )

f

f

t t

t

μ μ ε

ε
μ

∂ ∂∇ × = + ∇ × + +
∂ ∂
∂

 ∇ × − = + +
∂

P EB J M

B M J E P



Maxwell’s Equations in Matter

79

In terms of free charges and currents, Maxwell’s equations 
read

The constitutive relations:

0 0(1 )eε ε χ ε= + = + =D E P E ESo

0
0

1       (1 )mμ χ μ
μ

= −  = + =H B M B H H

0

0

f

f

t

t

ρ ∂∇ ⋅ = ∇× + =
∂

∂∇ ⋅ = ∇× − =
∂

BD E

DB H J

0 eε χ=P E

mχ=M H



7.3.6 Boundary Conditions (I)
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Differential form Integral form

0
fρ∇ ⋅ =

∇ ⋅ =

D
B over any enclosed surface .

0

f
S

S

d q
S

d

⋅ =



⋅ = 






D a

B a




1 2

1 2 0 

f aσ⋅ − ⋅ =

⋅ − ⋅ =

D a D a

B a B a

wafer thin 
Gaussian pillbox

♯

♯

The edge of the wafer contributes nothing 
in the limit as the thickness goes to zero.

1

2 3

4 5

4 5

1 2

1 2

  

 0

fD D

B B

σ⊥ ⊥

⊥ ⊥

 − =

 − =

EM
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1 2
S

d
t

∂⋅ − ⋅ = − ⋅
∂ E l E l B a

Boundary Conditions (II)

81

Differential form Integral form

0

f

t

t

∂∇ × + =
∂
∂∇ × − =
∂

BE

DH J
 P S

f
P S

d d
t

d I d
t

∂ ⋅ = − ⋅ ∂ 
∂ ⋅ = + ⋅

∂ 

 

 

E l B a

H l D a





for any surface 
bounded by the 
closed loop .

S

P

enc1 2 f
S

I d
t

∂⋅ − ⋅ = + ⋅
∂ H l H l D avery thin Amperian 

loop straddling the 
surface

♯

♯

1

2

The side of the very thin Amperian loop contributes nothing.
The flux vanishes in the limit as the area of the loop goes 
to zero.

3

4

6 7

4
// //
1 2 0 − =E E

5

enc
// //
1 2( ) fI − ⋅ =H H l

enc
ˆ ˆ( ) ( )   f f fI = ⋅ × = × ⋅K n l K n l // //

1 2 ˆ( )f − = ×H H K n

5



Boundary Conditions in Linear Media
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// //
1 2 1 2

// //
1 2 1 2

0

ˆ0 ( )

f

f

D D

B B

σ⊥ ⊥

⊥ ⊥

− = − =

− = − = ×

E E

H H K n
In case of linear media, D and H can be expressed in terms 
of E and B.

// //
1 1 2 2 1 2

// //
1 2 1 2

1 2

0

1 1 ˆ0

f

f

E E

B B

ε ε σ

μ μ

⊥ ⊥

⊥ ⊥

− = − =

− = − = ×

E E

B B K n

If there is no free charge or free current at the interface, 
then // //

1 1 2 2 1 2

// //
1 2 1 2

1 2

0 0
1 10 0

E E

B B

ε ε

μ μ

⊥ ⊥

⊥ ⊥

− = − =

− = − =

E E

B B



Homework of Chap.7 (part III)
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Suppose the circuit in Fig. 7.41 has been connected for a long
time when suddenly, at time 0,  switch  is thrown from  to , bypassing
the battery.
(a) What is the current at any subseque

t S A B=
Problem 7.31 

nt time  ?
(b) What is the total energy delivered to the resistor?
(c) Show that this is equal to the energy originally stored in the inductor.  

t

8
0

0

Sea water at frequency  4 10  Hz has permittivity  = 81 ,
permeability ,  and resistivity 0.23  m. What is the ratio of conduc-
tion current to displacement current? [ : ConsidHint

ν ε ε
μ μ ρ

= ×
= = Ω ⋅

Problem 7.40 

0

er a parallel-plate capacitor
immersed in sea water and driven by a voltage cos(2 ).]V tπν

28
A rare case in which the electrostatic field  for a circuit can

actually be  is the following :  Imagine an infinitely long 
cylindrical sheet, of uniform resistivity and radius 

calculated
Problem 7.42 E

0

. A slot (corresponding
to the battery) is maintained at  V / 2,   , and a steady current 
flows over the surface, as indicated in Fig.7.51. According to Ohm's law, then,

                          

a
at φ π± = ±

0

1
0

      ( , ) ,    (  <  < + ).
2

(a) Use separation of  variables in cylindrical coordinates to determine V( , ) in-
     side and outside the cylinder. [Answer: (V / ) tan [(  sin )/( +  cos )],
 

VV a

s
s a s

φφ π φ π
π

φ
π φ φ−

= −

1
0

0 0

    (  < ); ( / ) tan [(  sin )/( +  cos )], (  < )]
(b) Find the surface charge density on the cylinder:[Answer: ( V / ) tan[( / 2)]

s a V a s a s a
a

π φ φ
ε π φ

−



Homework of Chap.7 (part III)
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 Two coils are wrapped around a cylindrical form in such a way that
the         . (In practice this is achieved by 
inscrting an iron core through th

same flux passes through every turn of both coils
Problem 7.57

1 2

e cylinder; this has he effect of coneentrating the
flux.) The primary coil has  turns and the  the (Fig.7.57). If the
current  in the primary is changing, show that the  emf in the second

N N
I

secondary

2 2

1 1
1

ary is given by

                                                         ,                                               (7.67)

where  is the (back) emf of the primary. [This is a primitive 
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device for raising or lowering the emf of an alternating current source. By chossing
the appropriate number of turns, any desired secondary emf can be obtained. If you
think this violates the

ansformer

 conservation of energy, study Prob. 7.58]
  

 The current in a long solenoid is increasing linearly with
time, so the flux is proportional to : . Two voltmeters are 
connected to diametrically opposite points (  and ), together wit
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resistors (  and ),as shown in Fig. 7.55.What is the reading on each
voltmeter? Assume that these are  voltmeters that draw negligible
current (they have huge internal resistance), and that a v
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oltmeter registers

  between the terminals and through the meter. [ : = /
( + );  = /( + ). Notice that , even though they are 
connected to the same points! ]
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Jackson: Appendix on Units and Dimensions


