Chapter 7: Electrodynamics
/.1 Electromotive Force 7.1.1 Ohm’s Law

Pushing on the charges makes a current flow. How fast the
charges move depends on the nature of the materials and
the forces.

current density—J = /T)V <—Vvelocity of the charge
volume charge density

. . 1
Ohm’s law (an empirical equation): J=cE=—E

conductivityp\resistivity
o volume charge density or resistivity?
o . surface charge density or conductivity?
The Lorentz force drives the charges to produce current:

=~ ()
J<F = J:a(EVds)

EM
Tsun-Hsu Chang



Resistivities (ohm-meters)

Material Resistivity Material Resistivity

Conductors: Semiconductors:

Silver 1.59 x 1078  Sea water 0.2

Copper 1.68 x 107®  Germanium 0.46

Gold . 2.21 x 107 D.i{:.lmond i https://hypertextbook.com/facts/
Aluminum  2.65 x 107® Silicon 2500 5006 SamTetruashyil <htm]
Iron 9.61 x 1078 Insulators:

Mercury 9.61 x 107  Water (pure) §3—=1+02 1.8 x10°
Nichrome 1.08 x 107° Glass 10° — 10"

Manganese  1.44 x 107® Rubber [ — 10

Graphite 1.6 x 10> Teflon 10%% — 10*

Confusion 1: E = 0 inside a conductor = J =07
2. For a perfect conductor =0 = E =07

Question: Can we treat the connecting wires in electric
circuits as equal potentials?



Example 7.1

A cylindrical resistor of cross-sectional area 4 and length L is
made from material with conductivity o. If the potential is
constant over each end, and the potential difference between
the ends is V, what current flows?

Sol:
1=J-A=0'EA:GLAV

Question: Is the electric field uniform within the wire?
To be proved in a moment, see Ex. 7.3.



Example 7.3

Prove that the electric field within the wire is uniform.

Sol:
The potential V" with the Cylin&er obeys Laplace’s equation.
On the cylinder surface J-n=0 ..E-n=0, and hence dV/on =20

With V' or its normal derivate specified on all the surfaces, the
potential is uniquely determine (Prob. 3.4).

Guess: A potential obeys Laplace’'s equation and fits the
boundary conditions.

V Vi,
V(z) :%Z and E=-VV = LO Z < the unique solution.




Example 7.2

Two long cylinders (radii a and b) are separated by material of
conductivity o. If they are maintained at a potential different 7,
what current flows from one to the other, in a length L?

b ___________________________ /
Y
L
I | I .
Sol: J=—=0E E = — r
A OA oO27rsL
b b I 1 1
V=I E-d :j ds = In(b/ a)
a a 2nol s 2oL
7 2mo L v



Ohm’s Law

y=— 1
=X 7.1 oA (A more familiar
o > V = IR . ,
In(b/ a) version of Ohm's law.)
Ex. 7.2 V= ] T
270L resistance

The total current flowing from one electrode to the other is
proportional to the potential difference between them.

Resistance is measured in ohms (Q2): an ohm is a volt per
ampere.

For a steady current and uniform conductivity,

p=eV -E=£V-(1)=2V.J=0
O O

Any unbalanced charge resides on the surface.



Ohm’s Law (rule of thumb)

Gauss’s law or Ampere’s law is really a true law, but Ohm’s

law I1s an empirical equation.

* Finding an exception won't win a Nobel prize.
§ !
DIAC

- negative resistance

Q1: Why the electric field does not accelerate the charge
particle to a very high speed?

Q2: Ohm’s law implies that a constant field produces a
constant current, which suggests a constant velocity. Isn't
that a contradiction of Newton's law.



Ohm’s Law (a naive picture)

A naive picture: Electrons are frequently collided with ions
which slow down the acceleration.

Mean }‘ree path
I
/’t:lazt2 =1 = 2, WhGI‘GCZ:ﬂ
2 \ «a

m
. 1 E

average velocity: v =—at = Aq o<\ E
2 \ 2m

The velocity is proportional to the square root of the field.
That is no good!
Q1: How to explain it correctly?

The charges in practice are already moving quite fast
because of their thermal energy.



Ohm’s Law (Drude model)

The net drift velocity is a tiny extra bit. The time between
collisions iIs actually much shorter than we supposed.

collision time: ¢ =

Vthermal
. | al
average velocity: v, =—af =
2 2 Vthermal
. F
acceleration: a =— = 9 | )
m m

(/. free electrons per molecule)

| :
3 =n(fg)vy, =nfg——LE= (L2

/ 2Vthermal m 2my

thermal

(n : molecules per unit volume)



The Joule Heating Law
nfAq’

2my

J=( nfAq”

2my

JE =0E, where 0=

thermal thermal

This equation correctly predicts that conductivity is
proportional to the density of the moving charges and
ordinarily decreases with increasing temperature.

The Joule heating law:

[ : amperes
N R :ohms
P=1IV=]"R=— where -
R V :volts
P watts

10



. EM
7.1.2 Electromotive Force (emf) Tsun-Hsu Chang
An emf is the work per unit charge done by the source of emf
IN moving the charge around a closed loop.

Wne
q
The subscript "'ne” emphasizes that the work is done by some

nonelectrostatic agent such as a battery or an electrical
generator.

& =

(b)

What is the difference between emf and potential difference? y



Electromotive Force: Production of a Current

What is the function of the acid solution in the voltaic pile?

e

(

Pb+S0O3~ — PbSO, +2¢”
PbO, +4H" +S0O3™ +2e~ — PbSO, + 2H,0

Note that for every electron that leaves the Pb plate, another
enters the PbO, plate.

12



Electromotive Force: Terminal Potential Difference

A real source of emf, such as a | {{"l" "
battery, has internal resistance r. R A
Y! A
V _Vb V C(DD Ir AN

The change in potential is called the terminal potential
difference.

Unlike the emf, which is a fixed property of the source, the
terminal potential difference depends on the current flowing
through It.

As a battery ages its internal resistance increases, and so,
for a given output current, the terminal potential difference

falls.
13



Electromotive Force Drives the Electrons

\\ U /// Example: A battery is hooked
up to a light bulb.

The battery generates the
force which drives the

Snail’'s pace: the Chérges iIn a wire move slowly
(~0.1 mm/s @@=1mm, 1A, see Prob. 5.19(b)).

Q1: Why does the bulb response so fast when turning it on
or off?

Q2: How do all the charges know to start moving at the
same instant?

— electrons move along the loop.

14



Example: The Snail's Pace

Calculate the average electron drift velocity in a copper wire
1Tmm Iin diameter, carrying a current of 1 A.

Sol: -y ]2 = PV, =V, = ]2 (o: volume charge density)
TTS TTS” P
- mobile charges charge atom mole gram
p= volume ~ atom mole gram volume
=(2x1.6x107"7)(6x107)(1/64)(9)=2.7x10*C/ cm’
N : =4.7x10° (cms)

Czs’p wx0.052%2.7x10*

@ 1A, ¢=1 mm = v, =0.047 (mm/s)
@10A, ¢=1 mm = v, =0.47 (mm/s) Snail's pace @

L, 3 3kT .
Emevthe,,mal = EkT = Vihermal = ~1.2%10 (m/s) @T =300 K
\ m, 15




Will the Charge Piling Up Somewhere?

If a current is not the same all the way around, then the
charge is piling up somewhere, and the electric field of this
accumulating charge is in such a direction as to even out the
flow.

Charge piling up at the "knee” produces
a field aiming away from the kink.

It self-corrects the current flow.

[

n

Kirchhoff's current law (KCL): The algebraic sum of currents
iIn a network of conductors meeting at a point is zero.

16



Forces Involved in Driving Currents
Around a Circuit

Two forces involved in driving currents around a circuit.
f.. ordinarily confined to one portion of the loop (a battery, say).
E: the electrostatic force: smooth out the flow and communicate
the influence of the source to distant parts of the circuit.

f=f +E Force per unit charge.

What is the physical agency responsible for £,

‘Battery - a chemical force

Piezoelectric crystal 2 mechanical pressure
‘ Thermal couple = temperature gradient
Photoelectric cell = light

17



The Electromotive Force 7 # %

The net effect of the electromotive force is determined by the
line integral of f around the circuit:
= (0 for electrostatics

%zcﬁf-dlzcﬁfs-dhwlzcﬁfs-dl

(the electromotive force, emf)

(very bad #g #x =)

Emfis a IoJLsy term, since it is not a force at all --- it is the
integral of a force per unit charge.
C(DD — Wne
q

An emf is the work per unit charge done by the source of emf

IN moving the charge around a closed loop.
18



EM
7.1.3 Motional emf Tsun-Hsu Chang

The most common source of the emf: the generator

Generators exploit motional emf’'s, which arise when you move
a wire through a magnetic field.

A primitive model for a generator

Shaded region: uniform B-field

b C T pointing into the page.
V
S h RT — R: whatever it Is, we are trying
¢ to drive current through.
a d

£ = Plipg - dl =P (vXB)-dl = vB:

19



Magnetic Force Does No Work

A person exerts a force per unit charge
on the wire by pulling it. The force

counteracts the force generated by the
magnetic force quB.

ﬂ)ull — UB

This force is transmitted to the charge by the structure of the
wire.

The work done per unit charge is:

j f ,-dl=(uB)(htan6) = utan OBh =vBh =&
The work done per unit charge is exactly equal to the emf.

20



Motional emf (another example)

When the magnetic field is constant in time, there is no

iInduced electric field.
b

When a metal rod moving perpendicular to ) @ Few —g E;
magnetic field lines, there is a separation of .. A o
charge and an associated electrostatic T

potential difference sets up. L

The potential difference associated with this
electrostatic field is given by V, -V = E,L = BLv.

A

€= (vxB)-dl

Since there is no current flowing, the “terminal potential
difference” is equal to the motional emf.

21



Instantaneous emtf
& =vBh = Bhv(t) = &(t)

& carried out at one instant of time — take a “snapshot” of
the loop, if you like, and work from that.

The magnetic force is responsible for establishing the emf
and the emf seems to heat the resistor (i.e., do work), but
magnetic fields never do work.

Who is supplying the energy that heats the resistor.

\

The person who's pulling on the loop!

22



Magnetic Force Does No Work (lI)

In the previous viewgraph, we find a source of emf converts
some form of energy into electrostatic energy and does work
on charges. Can magnetic forces do work? No.

B (in) -

oA

The magnetic field acts, in a sense, as an intermediary in the
transfer of the energy from the external agent to the rod.

23



The Flux Rule

There is a particular nice way of expressing the emf
generated in a moving loop =» the flux rule.

Let D= IB-da the flux of B through the loop

The flux of a rectangular loop  ® = Bhx

dP dx
The flux change rate = Bh—=—Bhv
WX CTang di di

The minus sign accounts for the fact that dx/dt is negative.

dP

The flux rule for the motional emf: ” =Bhv=45

dP
dt

Next step proves: & =

24



The Flux Rule (Generalized)

The flux rule can be applied to non-rectangular loop
through non-uniform magnetic field.

Surface S

Proof:

Ribbon

Loopat Loop at
time r time (7 + df)

Enlargement of da

Compute the flux at time ¢ using surface S, and the flux at
time r+dt, using the surface consisting of S plus the “ribbon”
that connects the new position of the loop to the old.

25



The Flux Rule (Generalized Il)

The change in flux is
AP =D +dt)—DP(t)=D_

ribbon

j B-da

ribbon

The Iinfinitesimal element of area on the ribbon

da=vdtxdl =(vXxdl)dt

————————————————————————

dd= | B-da= [ B-(vxdhar A (BXxEO=C-(AxB)
ribbon ribbon : — _(B X A) ) C

dCD

— 4)]} (V X d]) — (j} (V X B) - dl / magnetic force per unit charge

:—95[(v+u)xB]-d1=—<j>(W><B)-d1

A velocity of the wire. ,
Iu velocity of a charge down the wire.,

dD
— —¢ fmag y dl — —C(DD qed 7 %3 “quod erat demonstrandum™:E f? = £

d l or k% fi“quite easily done”

26



Example 7.4

In a homopolar generator a conducting disk of radius R

rotates at angular velocity wrad/s. Its plane is perpendicular
to a uniform and constant magnetic field B. What is the emf

generated between the center and the rim?

Solution:

¢ =§(vxB)-dl = vBdr

R | )
= J wrBdr = — wBR
0 2

Hint1: How to choose a proper closed loop?

Hint2: The total magnetic flux passing through the disk is
constant in time. Where is the induced emf coming from?

(Ref. Benson & Feyman)

27



Eddy Currents (I)

What happens when a bar magnet approaches or moves
parallel to a conducting plate? It induces eddy current.

o
JJI\

The eddy current is distributed throughout the plate.

28



Eddy Currents (Il

Applications of the eddy current:
1. The braking system of a train.

2. Eddy current generated in copper
pots can also be used for “inductive
cooking’.

3. Project a metal ring. The ring gets
very hot when projected.

(a)

(b)

(b)

29



Example

A metal rod of length L slides at constant velocity v on
conducting rails that terminate in a resistor R. There is a
uniform and constant magnetic field perpendicular to the plane
of the rails. Find: (a) the current in the resistor; (b) the power

dissipated in the resistor; (c) the mechanical power needed to
pull the rod.

Solution: (a) ‘me‘ _do Bd—A— Blv
7 dt dt
[ - I ‘ mf‘ Blv
| R
R L — U Blv)?
l (b) PeleczlzR:( )
R
- (BIv)?
2 (C) mech — ext V=

X R

30



More Examples

31



Homework of Chap. 7 (part I)

Problem 7.2 A capacitor C has been charged up to potential V}y; at time £ = 0, 1t 1s

connected to a resistor R, and begins to discharge (Fig. 7.5a).

(a) De

termine the charge on the capacitor as a function of time, Q(¢). What 1s the

current through the resistor, 1 (¢)?

(b) W

nat was the original energy stored in the capacitor (Eq. 2.55)? By integrating

Ec

. 7.7, confirm that the heat delivered to the resistor 1s equal to the energy lost

by the capacitor.
Now 1magine charging up the capacitor, by connecting it (and the resistor) to
a battery of voltage V), at time ¢ =0 (Fig. 7.5b).
(c) Again, determine Q(¢) and /(¢).
(d) Find the total energy output of the battery ( I Vol dt). Determine the heat delivered

to

the resistor. What 1s the final energy stored in the capacitor? What

fraction of the work done by the battery shows up as energy in the capacitor?
'Notice that the answer 1s independent of R!]

/. 0
+Q ~ 0T N -
— I ) =R |

(a) (b)

FIGURE 7.5

32



Homework of Chap. 7 (part 1)

Problem 7.6 A rectangular loop of wire 1s situated so that one end (height #) 1s
between the plates of a parallel-plate capacitor (Fig. 7.9), oriented parallel to the
field E. The other end 1s way outside, where the field 1s essentially zero. What

1s the emf 1n this loop? If the total resistance 1s R, what current flows? Explain.

| Warning: This 1s a trick question, so be careful; 1f you have invented a perpetual

motion machine, there's probably something wrong with it. | / /éig
hl =R
o EY T

FIGURE 7.9

Problem 7.8 A square loop of wire (side a) lies on a table, a distance s
from a very long straight wire, which carries a current / , as shown 1n
Fig. 7.18.
(a) Find the flux of B through the loop.
(b) If someone now pulls the loop directly away from the wire, at speed
v, what emf 1s generated? In what direction (clockwise or counterclockwise

al

(

does the current flow? g
(c) What 1f the loop 1s pulled to the right at speed v?

Py

FIGURE 7.18

33



Homework of Chap. 7 (part I)

Problem 7.11 A square loop 1s cut out of a thick sheet of aluminum. It 1s then placed
so that the top portion 1s 1n a uniform magnetic field B, and 1s allowed to fall under
gravity (Fig. 7.20). (In the diagram, shading indicates the field region; B points into
the page.) If the magnetic field 1s 1 T (a pretty standard laboratory field), find the
terminal velocity of the loop (in m/s). Find the velocity of the loop as a function of
time. How long does 1t take (1in seconds) to reach, say, 90% of the terminal velocity?
What would happen 1f you cut a tiny slit in the ring, breaking the circuit? [ Note:

The dimensions of the loop cancel out; determine the actual numbers, in the units
indicated. |

FIGURE 7.20

34



7.2 Electromagnetic Induction e
, sun-Hsu Chang
/.2.1 Faraday's Law

Faraday reported on a series of experiments, including three
that can be characterized as follows:

circuit moves magnet moves field changes

B (in) B

(a) (b) (c)

changing
magnetic field

motional emt Q: Since a stationary charge
o _ dd experiences no magnetic force,
dt what is responsible?

Faraday's law
35



Faraday's Law (at rest)

What sort of field exerts a force on charges aft rest?
=» Electric field and
a changing magnetic field (Faraday found empirically).

A changing magnetic field induces an electric field.

The emf is equal to the rate of change of flux, when f, = 0.

dP
dt

— <I>E.d1 — j IB.da< Faraday's law in integral form
[

_ d IB-da Electro-
dt

=Pt -dItE-dl=JE-dl = o

_______________________________________________________________

_--Stokes’ theorem

PE-dl=[(VXE)-da <~ o
jB-dazj( )-da .
dt\/at Faraday’s law in

differential form 25

Why? See next page.



Faraday's Law (moving at constant velocity)

What sort of field exerts a force on charges moving at
constant velocity? Hint: Lorentz force

€=t - dl+$(E+(vXB))-dl = jB da

— =
f—

Left: §(E+(vxB))- j(VxE) da+j va)) da

Right: . (v-V)] j B- da—— - 98 da+ j (v-V)B-da]

I Il I I S O S S - ____________—________________

D D
V: = I . o L1E _O

Also see “The Feymann Lectures
on Physics Il,” Chap.17

37



flux rule:

Universal Flux Rule
One can subsume all three cases into a kind of universal

Whenever the magnetic flux through a loop changes, an emf
will appear in the loop.

B (in)

v U
D = -1—

B (in)

D& 03

B

/\_) ()

changing
magnetic field

These three experiments yield the same formula for the

emf.

Electric field is induced by changing magnetic field.

This “coincidence” led Einstein to the special theory of relativity.

Chap.12

38



Lenz's Law ()

Lenz's law is a handy rule, whose sole purpose is to help
you get the direction right.

Maxwell restated Lenz's rule in a more general way:

The effect of the induced emf is such as to oppose the
change in flux that produces it.

39



Lenz's Law (ll)

A sign convention for the induced emf. First we choose the
direction of the vector area to make the initial flux positive.
The right-hand rule, with the thumb along B and the fingers

curled around the loop, tells us whether clockwise or
counterclockwise is the positive sense.

- B ug@E B g B s

_h.ﬁ.

I|“|
i q .

| L. 8.8 1 '- | | 4 £ i‘
I . ] { i ' § 1 i

How about superconducting magnet?

40



Example 7.5

A long cylindrical magnet of length L and radius a, carries a
uniform magnetization M parallel to its axis. It passes at
constant velocity v through a circular ring of slightly larger

diameter. Graph the emf induced in the ring, as a function of

time. 54
I.L[}Mﬂ:az

Sol: / \
/\ | L/v | ]

(R
' t
L
(b)

E

v

Nature abhors a change in flux. Ex. Rogowski coils.

41



Example 7.6

The “jumping ring” demonstration. If you wind a solenoidal
coil around an iron core (the iron is there to beef up the
magnetic field), place a metal ring on the top, and plug it in,
the ring will jJump several feet in the air. Why?

Sol: Also see Chap.6 p.5.

T
ot

D
D
> solenoid
D
D

42



EM

[.2.2 The Induced Electric Field Tsun-Hsu Chang

Two distinct kinds of electric fields:

" E (in static case): attributed to electric charges, using
Coulomb’s law.

E (in nonsteady case): associated with changing
_ magnetic field, using Faraday’s law.

oB (the curl alone is not enough to

VXE = 3, determine a field)

(charge free; then, the electric
field is due exclusively to a
changing B)

V.- E=0 <

43



The Magnetostatic Field

Two distinct kinds of magnetic fields:

" B (in static case): attributed to electric currents, using
Ampere’s law.

B (in nonsteady case): associated with changing electric
_ field, using?

(Faraday-induced electric fields are
VXB = tyd determined by —(dB/0dt¢) in exactly the
V-B=0 same way as magnetostatic fields B
are determined by u,J)

44



Example 7.7

The current iIn an ideal solenoid of radius R varies as a
function of time. Find the induced electric field at points (a)

inside, and (b) outside the solenoid. Express the results in
terms of dB/dt.

SOl $E-a1= EQ7r)

dB

(a) EQrr) = —(mz)z

r dB

E = r< R
2%'( )
) EQan) =~(xR) =
2 i
E=-R4B SR i
2r dt E EIR 3IR &

The electric field is due exclusively to a changing B.

45



Example 7.8

A line charge A is glued onto the rim of a wheel of radius b,
which is then suspended horizontally as shown in the figure,
so that it is free to rotate. In the central region, out to radius «,
there is a uniform magnetic field B, pointing up. Now
someone turns the field off. What happens? B“)

Sol: Faraday’s law says

C.‘SE-dlz dd —ﬂazd—B <//::\\>E

dt dt NSz
The torque on a segment of length 4l Rouion
IS rxXdF or bAEd! direction

A

B
The total torque on the wheel is N =b/1<j5E-dl =—bAra’ daB

dt
The angular momentum £ = j; Ndt = jo —bAma*dB =bAna’B,

By
No matter how fast or slow you turn off the field, the ultimate
angular velocity of the wheel is the same regardless. 46



Example 7.8 Quasistatic

N =bADE - dl = -bAxa’ dB<——Ampere’s law
/‘ dt (magnetostatics)

Faraday’'s law (nonsteady)
KK:[r1 3im]
This regime, in which magnetostatic rules can be used to
calculate the magnetic field on the right hand side of the

Faraday’s law, is called quasistatic.

0B < Biot-Sarvart or
VXE — y
py Ampere’s laws

/

provided the field fluctuation
IS not extremely rapid

47



EM
/.2.3 Inductance Tsun-Hsu Chang

Loo
Suppose we have two loops of wire at rest. }%Yé "
A steady current /, around loop 1= B, B, B

Some B, passes through loop 2 = O,

—Loop 1

®,=[B,-da and B, = o', dl o
47[ a°
L00p2
U dl, X 4
(I)2 — [ﬁj(ﬁ 1/2 'da]ll — M21]1 Loop 1

/

The constant of proportionality:
mutual inductance of the two loops.

48



Neumann Formula for the Mutual Inductance

®, = [B,-da=[(VXA) -da=]A,-d,

A, = /Uo CJS_

o, <1t

M, = &C_M‘) 4, -dl, & Neumann formula
47 A

/

It involves a double line integral ---
one integration around loop 1, the
other around loop 2.

49



Important Things about Mutual Inductance

. It is not very useful for practical
M, = &4}4; L %2 calculation, but it reveals two
4z " important features.

1. M,, is purely geometrical quantity, having to do with the
size, shape, and relative position.

2. M,, = M,,, so we can drop the subscripts and call them M.

Whatever the shapes and positions of the loops, the flux
through 2 when we run current 7 around 1 is identical to the
flux through 1 when we send the same current / around 2.

Advantage of M,, = M,,, see the following examples.

50



Example (or Ex. 7.10)

A circular coil with a cross-sectional area of 4 cm?4 has 10 turns.

It is placed at the center of a long solenoid that has 15
turns/cm and a cross-sectional area of 10 cm?, as shown
below. The axis of the coil coincides with the axis of the
solenoid. What is their mutual inductance?

Solution:
(I)l — B2A1 — ﬂonzlel ((«{(«(«
N® l....‘__
M = } 1 =ﬂo”2N1A1 ------ _._‘____\ ......
2
= (477x107)(1500)(10)(0.0004)
=7.54 uH

Notice that although M., = M., it would have been much
difficult to find @, because the field due to the coll is quite
nonuniform.

51



Self-Inductance

It is convenient to express the induced emf in B
terms of a current rather than the magnetic flux +* /

through it.

l
The magnetic flux is directly proportional to the X
current flowing through it. fk

N® =L1

where L, Is a constant of proportionality called the self-
inductance of coil 1. The Sl unit of self-inductance is the
henry (H). The self-inductance of a circuit depends on its size

and Iits shape.

The self-induced emf in coil 1 due to changes in I, takes the
form
dl

=hy,

52



Example 7.11 (toroidal)

Find the self-inductance of a toroidal coil with rectangular
cross section (inner radius a, outer radius b, height /), which
carries a total N turns.

Sol: magnetic field B_ LU, NI
Inside a toroidal DTS

L = N(I)l and

U W NI
=/ lds — L In
I 27CS 27T ( )

2
op =N Py
27T

53



Example (coaxial, also see Ex. 7.13)

A coaxial cable consists of an inner wire of radius a that
carries a current / upward, and an outer cylindrical
conductor of radius b that carries the same current
downward. Find the self-inductance of a coaxial cable of
length 7. Ignore the magnetic flux within the inner wire.

Solution:

=t 4o = gag= !y,
27X 27X
b
@ = Mol e = Holly b _ )
a Qwx 27T a
L= ‘u—oglné
27T a

Hint1: The direction of the magnetic field.

Hint2: What happens when considers the inner flux? y



Example: LR Circuits

How does the current rise and fall as a function of time in a
circuit containing an inductor and a resistor in series?

Rise «_jp_; 4 _
dt
Let]:IOe_m+,B:>£=—0doe_m
dt
o R
e o =—
L
&
<O (g—Rﬁ:ODﬂ: E
&
kZL:O: ]O:_ﬂ:_E
& -
I=—(0—-e*
o ) .

(b)

The quantity 7= L/R is called the time constant.
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Example: LR Circuits

DeCay t<0S, closed and S, open
Al t> 0.5, open and S, closed
—]R — L E — O -——/—S-l- ’\/}\zf\/—
_ dl _ gL -y
Let/=/e " = —=—al,e” T { I
0 dt 0
- L =
o R i
e . O =—
< L (a)
((QD a
t=0: ]O — E z/R‘
R t
o] = © e L = © e’ 0'3””\1\
R R L/IR L

(b)
The quantity 7= L/R is called the time constant.
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EM

7.2.4 Energy in Magnetic Field Tsun-Hsu Chang

Inductance (like capacitance) is an intrinsically positive
quantity. Lenz's law dictates that the emf is in such a
direction as to oppose any change in current. = back emf.

It takes a certain amount of energy to start a current flowing
INn a circuit.

What we are concerned with are the work you must do
against the back emf to get the current going.

Is this a fixed amount? Is it recoverable?
Yes, you get it back when the current is turned off.

It represents energy latent in the circuit or it can be regard as
energy stored in the magnetic field.
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Energy Stored in an Inductor

The battery that establishes the current in an inductor has to
do work against the opposing induced emf. The energy
supplied by the battery is stored in the inductor.

In Kirchhoff's voltage law (KVL), we obtain

O = IR+L£

dt
[E=1" R+L]£

dt
|
16 =R+ , where U, =— LI’
/ \ : N\ |
power supplied power dissipated energy change rate
by the battery in the resistor in the inductor




The Power

The work done on a unit charge, against the back emf, In
one trip around the circuit is —&.

\ the work done by you
against the emf.

The total work done per unit time Is

AW _d(=¢Q) __ .. dl
dt dt dt

The total work is W = j(f’ LIdI = lug

2/
Depends only on the geometry of the

loop (in the form of L) and the final
current /.
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Energy Density of the Magnetic Field

We have expressed the total energy stored in the inductor In
terms of the current and we know the magnetic field is
proportional to the current. Can we express the total
magnetic energy in terms of the B-field? Yes.

Let’'s consider the case of solenoid.
N D

\.

o ) 2
nt ﬂon]A =L/ — L= Hol Al

1 5, 1 , B?
UL =— LI = (ﬂon]) Al = Al
2 214 214
B2
Up = (The energy density of a magnetic field 1n free space)

Although this relation has been obtained from a special case,

the expression is valid for any magnetic field. -



Generalized Total Energy
There Is a nicer way to write the total magnetic energy .

®=[B-da={(VxA)-da=§A-dl=LI
S P

S

/! AN
S surface bounded by P  P: perimeter of the loop

1 1

1
— 2— — ° s — °
W =—LI _—c1>1_21<£>A dl = <j>(A Ddl

1
2 2 2

P

generalize to the volume current

W:lc_[)(A-I)dl:lj(A-J)dr, where J =LV><B
2 2y Hy
]

W =—[(A-J)dr=——|[A-(VxB)lz
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Generalized Total Energy i
Productrule 6, V-(AXB)=B-(VXA)—A-(VXB)

1

2H, 5,
1

2H, 5,

/4

B*drt

A-(VXB) =B-£V><A2—V-(A><B)
B

j[A-(VxB)]dz': : I[B-B—V-(AxB)]dr

244,
%rgence theorem

<j5(A><B) da
2H,

1

V' — all space

21

qS(AxB)-da%O

W = IBdT

/u 0 all space
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Electric and Magnetic Field Energy

Electric field energy energy density
1 & [ 2 _ & 2
WeleC—EI(Vp)dT—ij dr,  up="1E

Magnetic field energy

|
Wmag — E

1 )
(A-J)d7 = B dr, up=
j 214 I 214

Magnetic fields themselves do no work. \Where does the
energy come from?

A changing magnetic field induces an electric field which can
do work.



Example

The breakdown electric field strength of air is 3x10° V/m. A

very large magnetic field strength is 20 T. Compare the energy
densities of the field.

Solution: 1
U, ZESOEz =(0.5)(8.85x107"*)(3%x10°)
=40 J/m’
2
. L 20

2w 2x4rx10”
=3.2x10° J/m’

Magnetic fields are an effective means of storing energy
without breakdown of the air. However, it is difficult to produce
such large fields over large regions.
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Example (toroidal, Ex. 7.11)

Use the expression for the energy density of the magnetic field
to calculate the self-inductance of a toroid with a rectangular
Cross section.

Solution: B
;UON] :%g//
B =
272«7/‘ 7 i o /Kt//\
B* B’ Lo h(NT)?
dUB =——dT=—"h2rrdr) = 0 dr . .
2o 2o i ] h
2 22 » A
b Y
a 4dxr 4 a 2
2
L= HoNF ln(é)
27T a

Can we use the concept of magnetic flux to derive the self-
inductance? See Ex. 7.11.
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Example 7.13 (coaxial)

A long coaxial cable carries current / (the current flows down
the surface of the inner cylinder, radius a, and back along the
outer cylinder, radius b) as shown in the figure. Find the
magnetic energy stored in a section of length ¢.

Sol: ,,[ - \ 1“':’ \

magnetic field B = ,u01¢?

27CS
. 1, ul’
enerqgy density u, = B =
gy y Up 24, Q72 o2

2

2
qurzjg‘qu] —A27wsds = Hol ﬁln(é)
) 8T°s a

magnetic energy W, =

—

47

DO | —

¢ b
self-inductance W, = LI = L=ﬂ0 In(—)
a

27T
06



Homework of Chap.7 (part Il)

Problem 7.18 A square loop, side a, resistance R, lies a distance s from an infinite

straight wire that carries current 7 (Fig. 7.29). Now someone cuts the wire, so /
drops to zero. In what direction does the induced current 1n the square loop flow,
and what total charge passes a given point in the loop during the time this current
flows? If you don't like the scissors model, turn the current down gradually:

_Jd=oat)l, for0<t<l1/e,
](t)_{(), for t < 1/c.

Problem 7.24 Find the self-inductance per unit length of a long solenoid, of radius

R, carrying n turns per unit length. o
Problem 7.27 A capacitor C 1s charged up to a voltage /' and connected to an L —_—C
inductor L, as shown schematically in Fig. 7.39. At time ¢ =0, the switch S 1s

closed. Find the current in the circuit as a function of time. How does your answer

change 1f a resistor R 1s included 1n series with C and L? FIGURE 7.39

Problem 7.28 Find the energy stored in a section of length / of a long solenoid
(radius R, current /, n turns per unit length), (a) using Eq. 7.30 (you found L 1n
Prob. 7.24); (b) using Eq. 7.31 (we worked out A 1n Ex. 5.12); (¢) using Eq. 7.35;
(d) using Eq. 7.34 (take as your volume the cylindrical tube from radius a < R out

to radius b > R).
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7.3 Maxwell’s Equations Fsun-Heu Chang
7.3.1 Electrodynamics before Maxwell

' V-E = 1 0 (Gauss's law)
E

0
V-B=0 (no name) electromagnetic theory

B over a century ago
VXE = Y (Faraday's law)

. VxB=yuJ (Ampere's law)
A fatal inconsistency in Ampere’'s law

V- (VXB)=u,V-J

| |

=0 #0
Ampere’s law is incorrect for the nonsteady current.
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The Electric and Magnetic Fields

Two distinct kinds of electric fields:

" E (in static case): attributed to electric charges, using
Coulomb’s law.

E (in nonsteady case): associated with changing
_ magnetic field, using Faraday’s law.

Two distinct kinds of magnetic fields:

" B (in static case): attributed to electric currents, using
Ampere’s law.

B (in nonsteady case): associated with changing electric
_ field, using?
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Another Inconsistency of Ampere’s Law

How do we determine the enclosed current 7.7

Amperian loop

“
CﬁB.dl:ﬂO]enc 2N O

A —_—

. Y
Capacitor l

Battery

" * The simplest surface---the wire puncture this surface
so /. .=1 € Ampere’s law is ok.

* A balloon-shaped surface---no current passes through
. this surface. so /., . =0 € Ampere'’s law is not valid!

For nonsteady current, “the current enclosed by a loop”
IS ill-defined.
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How Maxwell Fixed Ampere's Law

Applying the continuity equation and Gauss’s law,
the offending term can be rewritten:

v.y=_9__d&VE) =V-(-¢, a—E)
ot ot - ot
A new current J'=J+¢&, = < kills off the extra divergence

, oE
V'(VXB):;UO(V'J):ﬂov'(J'l'gog):O

When E is constant (electrostatic+tmagnetostatic), we
willhave VxB=u,J .

&, %—13 plays a crucial role in the EM wave propagation.
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Electric Analogy of Faraday's Law

Maxwell's term cures the defect in Ampere'’s law,
and moreover, it has a certain aesthetic appeal.

Faraday's law

A changing magnetic field induces an electric field.

A changing electric field induces a magnetic field.

Maxwell called this extra term “the displacement current”.

)

J = JE a misleading name,
=

" ot nothing to do with current
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The Displacement Current

How the displacement current resolves the paradox of the
Charglng CapaC|tOr @iﬁ&mperiam loop

_____

The electric field between ‘ -
the two capacitor plates Is it

Y/

||
.0 _ 10« thechargeontheplate ...

£, - g, A <— the area of the plate

LOE_190 1 _
"ot Aot A

J

o

=1J, |J | =0 at the flat surface

Yo =d+d, { =0, |J | =J at the balloon-shaped surface

o

/3



: EM
7.3.3 Maxwell's EquathnS Tsun-Hsu Chang

Maxwell’'s equations in the traditional way.
]

4 V.-E=—0p (Gauss's law)
80
V-B=0 (no name)
< VXE = %]: (Faraday's law)

JE (Ampere's law with
\- Hod T Ho&y ot Maxwell's correction)

Lorentz force law F =g(E+ vXxB)

Continuity equation V.J= %'0
t
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Maxwell's Equations (II)

Another expression of the Maxwell equations.

vV.E=£ VXE aB:O
£, ot
JE
V-B=0 VxB—yogogzﬂoJ

The fields (E and B) on the left
and the sources (p and J) on the right.

Maxwell’'s equations tell you how sources produce
fields; reciprocally, the Lorentz force law tells you how
flelds affect sources. € A nonlinear feedback
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Optional

7.3.4 Magnetic Charge

If there is a magnetic “charge” p, and the corresponding
current of the magnetic “current” J , the Maxwell's
equations read

V.E=Pe V % E 4 aB:_ﬂOJm A symmetric
& ot between E and B
%) O E—->B

V-B=y,p, VXB-ugE, o = U, B>—1,&E

Both charges would be conserved:

V-J, = 8,069 and V-J = 9P,
ot ot

Q: Has anyone ever found the magnetic charge?
No.
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7.3.5 Maxwell's Equations in Matter

When working with materials that are subject to electric and
magnetic polarization, there is a more convenient way to

write the Maxwell equations.
Static case:

An electric polarization produces a bound charge: P ==V P
A magnetic polarization results in a bound current: J, = VXM

Nonstatic case:

Any change In the electric polarization involves a flow of
bound charge.

dl = 9% da =8—Pda where o, =P-n
ot ot

_oP L polarization current

Jp = 2y (nothing to do with the bound current).
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Polarization and Bound Currents

Bound current J,: magnetization of the material involving
the spin and orbital motion of electrons.

Polarization current J : the linear motion of charge when
the electric polarization changes.

Now p:pf'l'pb:pf_V'P

oP
J=J,+J,+J, =3 +VXMH- 2y
Gauss's law: V.Ezi(pf—V-P) = V- (E+P)=p,
gO
, _ oE
Ampere's law: VxB:ﬂO(Jf+V><M, ) IR 0,

S VxX(—B-M)=1J, - st(80E+P)

M

/8



Maxwell's Equations in Matter

In terms of free charges and currents, Maxwell’'s equations

read
0B
V-D= V X E A =0
Pr ot
V-B=0 VxH oD =Jf
ot
The constitutive relations: P=¢&yx E
M=y H
SO D280E+P280(1+16)E:£E

H:LB—M = B=yy,(+y,,)H=uH

M
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[.3.0 BOundary Conditions (I) Tsun-HE,IL\J/IChang

Differential form Integral form
V-D=p, (1) fD.da:qf
> over any enclosed surface S.
V-B=0 <j>B -da=10
S J

@ 5 The edge of the wafer contributes nothing
@ in the limit as the thickness goes to zero.

@ &

D-a-D,;a=0,a = D -D,=0,4

wafer thin

Gaussian pillbox @ @

B -a-B,-a=0 — B —-B, =0 4
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Boundary Conditions (lI)

Differential form Integral form
a A
V X FE 4 BB_O @E‘dl:—gjﬂda for any surtace S
ot @ ! > 8 . bounded by the
VxH aD:J 4>H°dl=1f | jD-da closed loop P.
ot / P ot S )

The side of the very thin Amperian loop contributes nothing.
4 The flux vanishes in the limit as the area of the loop goes

@ \@\’wzero. @ : @
E;1-E, 1=——[B-da = E-E% =0
... or <

#

(9

; il
H1°1_H2.l:[fenc : atIDda :(H{/_H;).l:]fenc
S

very thin Amperian
loop straddling the
surface

Ip =K, (AxD)=(K,xf)1 =H -H) =(K/xh) .

® o -




Boundary Conditions in Linear Media
Di-—Dy =0 E’ —-E) =0
B —By =0 Hj —Hj =(K/XHh)
In case of linear media, D and H can be expressed in terms
of E and B.
e Ei —&,Ey =0 E/ —E) =0
I I

Bi- =By =0 ;B{/ p
1 2

If there is no free charge or free current at the interface,
then

B, =K ;x#

&E—&,E5 =0  E —E) =0

1 1
Bf-By =0 —B}

A Mo

L

B; =0 <
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Homework of Chap.7 (part lll)

Problem 7.31 Suppose the circuit in Fig. 7.41 has been connected for a long

time when suddenly, at time # = 0, switch S 1s thrown from 4 to B, bypassing A 4\;5

the battery. Bo

(a) What is the current at any subsequent time ¢ ? e - é L
(b) What 1s the total energy delivered to the resistor? i
(¢) Show that this 1s equal to the energy originally stored in the inductor. e

Problem 7.40 Sea water at frequency v = 4 x10° Hz has permittivity € = 81&,
permeability i = 4, and resistivity p = 0.23€2- m. What 1s the ratio of conduc-
tion current to displacement current? [Hint: Consider a parallel-plate capacitor
immersed 1n sea water and driven by a voltage V, cos(27zv?).]

FIGURE 7.41

Problem 7.42 A rare case in which the electrostatic field E for a circuit can

actually be calculated 1s the following .28 Imagine an infinitely long wnl N\,

cylindrical sheet, of uniform resistivity and radius a. A slot (corresponding %W
to the battery) is maintained at £ V,, /2, at ¢ =*x, and a steady current :

flows over the surface, as indicated 1n Fi1g.7.51. According to Ohm's law, then,é FGURE .51
V(a,9)=22, (~x<g<+m)
27T

(a) Use separation of variables 1n cylindrical coordinates to determine V(s,9) in-
side and outside the cylinder. [Answer: (V,y / ) tan_l[(s sin @)/(a+s cos @)],

(s <a); (Vo /! m)tan"[(a sin @)/(s+a cos @)],(s <a)]
(b) Find the surface charge density on the cylinder:[ Answer: (&)V, / a)tan[(¢/ 2)] 33



Homework of Chap.7 (part III)

Problem 7.53 The current in a long solenoid is increasing linearly with B
time, so the flux 1s proportional to ¢ : ® = a¢. Two voltmeters are
connected to diametrically opposite points (4 and B), together with b@’D R 3
resistors (R, and R, ),as shown 1n Fig. 7.55.What 1s the reading on each ¢
voltmeter? Assume that these are ideal voltmeters that draw negligible
current (they have huge internal resistance), and that a voltmeter registers

b , FIGURE 7.55
j E - dl between the terminals and through the meter. [Answer:Vi=aR,/
a

(Rj+Ry); Vo=—0R,/(Ry+R,). Notice that V] # V,,even though they are

connected to the same points 3 2]

Problem 7.57 Two coils are wrapped around a cylindrical form in such a way that

the same flux passes through every turn of both coils. (In practice this 1s achieved by
inscrting an 1ron core through the cylinder; this has he effect of coneentrating the
flux.) The primary coil has N; turns and the secondary the N, (Fig.7.57). If the
current / 1n the primary 1s changing, show that the emf in the secondary 1s given by

& _1MN (7.67)

&g M
where & 1s the (back) emf of the primary. [This 1s a primitive transformer-a
device for raising or lowering the emf of an alternating current source. By chossing
the appropriate number of turns, any desired secondary emf can be obtained. If you
think this violates the conservation of energy, study Prob. 7.58]
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Various Systems of Electromagnetic Units.

Table 2 Definitions of €, wy, D, H, Macroscopic Maxwell Equations, and Lorentz Force Equation in Various Systems of Units

Where necessary the dimensions of quantities are given in parentheses. The symbol ¢ stands for the velocity of light in vacuum with dimensions (/t™?).

Lorentz
Force per
System €o Mo D,H Macroscopic Maxwell Equations Unit Charge
. ., )] B
Electrostatic 1 C D =E + 47P VD =4mp VXH'—"—47TJ+¥ VXE+—5-[-=O V-B=0|E+vxB
(esu) (™) |H=cB - 4aM
: 5 1 oD B
Electromagnetic c 1 D==E+47P |[V-D =4mp VxH=47'rJ+-—é—t— VxE+—é7=O V.-B=0|E+vXxB
_ c
(emu) (#17) H=B - 4mM
_______________ I I ' P S I ) I ) : 2 B
Gaussian 1 1 D =E + 4P V:D =4mp VxH=-—J+=-2 VXE+—-——=0 V:B=0|E+-%XB
c c ot c ot c
H=B - 47mM
______ L i
1 oD 1B
Heaviside— 1 1 D=E+P V:-D=p Vtz—(J —a—t-) A% E+———5;=O V.B=0|E+-xB
Lorentz H=B-M ¢ ¢ ¢
_________ o e s o oow . B |
SI 4102 47X 107" |D = ¢E + P V-D=p VXH:J+-—5}- VXE+§=O V-B=0|E+vXxB
e
| 1
(CPt'm ') | (mll* )| H=—B - M
Mo

Jackson: Appendix on Units and Dimensions

35



