Chapter 6 Magnetic Fields in Matter 144 chang

6.1 Magnetization
6.1.1 Diamagnets, Paramagnets, Ferromagnets

All the magnetic phenomena are due to electric charges in
motion:
Electrons orbiting around nuclei

Electrons spinning about their axes} nagnelic dipoles

When a magnetic field is applied, a net alignment of these
magnetic dipoles occurs, and the medium becomes
magnetically polarized, or magnetized.

The magnetic polarization M, unlike electrical polarization P,
might be parallel to B (paramagnets) or opposite to B
(diamagnets).

A few substances (ferromagnets and ferrimagnets) retain thei
magnetization even after the external field has been removed.



6.1.2. Torques and Forces on Magnetic Dipoles

A magnetic dipole experiences a torque in a magnetic field,
just as an electric dipole does in an electric field.

Any current loop could be built up from infinitesimal
rectangles, with all the “internal” side canceling. There is
no actual loss of generality in using the shape.
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Let’s calculate the torque on a rectangular current loop in
a uniform magnetic field.



Torques and Forces on Magnetic Dipoles

Center the loop at the origin, and tilt it an angle 6 from the
z axis towards the y axis. Let B point in the z direction.

Z4 ZA

BT g m BT

F 0

L

1<\ \\(e : \\ 0 3
a \b ) a\—F> ,

(a) (b)
Sloping sides: the forces cancel.

Horizontal sides: the forces cancel but they generate a
torque. N=LxF=aFsinf &
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The magnitude of the force on each of these segments is:
F=1I1bB



Torques and Dipole Moment

N =labBsin@ x=mBsinf x=mxB
where m = lab 1s the magnetic dipole moment of the loop.

This equation is identical in form to the electrical analogy.
N=pXE

The torque is again in such a direction as to line the dipole
up parallel to the field (paramagnetism).

QM: The Pauli exclusion principle dictates that the
electrons within a given atom lock together in pairs with

opposite spins, and this effectively neutralizes the torgue
on the combination.



Forces in Nonuniform Magnetic Field

In a uniform field, the net force on a current loop is zero:
F=I(dxB)=I(M)xB=0

In a nonuniform field this is no longer the case, because
the magnetic field B could not come outside the integral.
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Forces on an Infinitesimal Current Loop and Model
F=V(m-B) (=-VU, whereU =—(m-B))

Identical to the electrical formula F=V(p-E)

Does the magnetic dipole consist of a pair of opposite
magnetic monopoles just like an electric dipole?
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(a) MaxuaetigAdipole (b) Electric dipole  (c) Magnetic dipole
(Gilb odel) (Ampere model)



6.1.3. Effect of a Magnetic Field on Atomic Orbits

Electrons not only spin; they also revolve around the nucleus.

Let’'s assume the orbit is a circle of radius R. The current
looks like steady (really?)
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Electron Speeds Up or Slows Down
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m, R without the magnetic field.

The centripetal force comes from two sources:

the electric force and the magnetic force.
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When B is turned on, the electron speeds up.



The Dipole Moment and The Diamagnetism

A change in the orbital speed means a change in the

dipole moment
1 e’R’
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The change in m is opposite to the direction of B.

In the presence of a magnetic field, each atom picks up a
little “extra” dipole moment, and the increments are all
antiparallel to the field. This is the mechanism responsible
for diamagnetism.

This is a universal phenomenon, affecting all atoms, but it is
typically much weaker than paramagnetism.



6.1.4 Magnetization

In the present of a magnetic field, matter becomes magnetized.
Upon microscopic examination, it contains many tiny dipoles,
with a net alignment along some direction.

Two mechanisms account for this magnetic polarization:

1.Paramagnetism: the dipoles associated with the spins of
unpaired electrons experience a torque tending to line them up
parallel to the field.

2. Diamagnetism: the orbital speed of the electrons is altered
In such a way as to change the orbital dipole moment in the
direction opposite to the field.

We describe the state of magnetic polarization by the vector
quantity:

M = magnetic dipole moment per unit volume



6.2 The Field of a Magnetized Object Tsun_Hi'l\fChang
6.2.1 Bound Currents

Suppose we have a piece of magnetized 2
material (i.e., M is given). \What field does
this object produce? "

dt
The vector potential of a single dipole m is

X 4,

,L[O m
A(r) =
(r) 41 /-,,2

In the magnetized object, each volume element carries a
dipole moment Md 7, so the total vector potential is

Uy ¢ M(r')x4

dt’
A /-,,2

A(r) =

1



Vector Potential and Bound Currents

Can the equation be expressed in a more illuminating form,
as in the electrical case? Yes!

By exploiting the identity, a . p 1
. (X’ —+7 —
yil_* ax ay K V=) +(-yy +(z-2Y
oo b2 _ X=X +Y-))+7(-2) _4

(x=xY +(y=y) +(z- z’) P
The vector potential is A(r)— Ho j M(r")x (V’ )dr
v
Using the product rule Vx(—M) V1><M+ 1 (VxM)

and mtegratmg by part, we have

A(r) = 2‘7'; J-lv[VxM(r d7 [ VX[

M(r)] Jr
'vl how? Prob

_,Ll() ( ’ ’ ’ ,u
_E<I;[V ><M(lf)]d’f} OCﬁ —[M(r’) xf']da’
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Problem 1.60 Although the gradient, divergence, and curl theorems are the fundamental in-

tegral theorems of vector calculus, it is possible to derive a number of corollaries from them.
Show that:

(a)fy(VT)dt = §gT da. [Hint: Let v = cT, where ¢ is a constant, in the divergence
theorem; use the product rules.]

(b) fv(V X v)dt = — 555 v x da. [Hint: Replace v by (v x ¢) in the divergence theorem.]

() fulTV2U +(VT)-(VU))dt = §5(TVU) - da. [Hint: Letv = T VU in the divergence
theorem. ]

(b) Gauss's law I(V -E)dt = (j)E -da
v S

Let E =vXxc, where ¢ 1s a constant vector. We have

[(V-(vxe)dr=e-[(Vxv)dr
<§B(vxc)-da:—c-c_f>vv><da = I(va)dfz—ci')vxda
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Vector Potential and Bound Currents

A(r) =0 j l[V’xM(r’)]dr'+ Ho <j> ! [M(r")x i')da’
47[ v l ] 47[ v\

J

| |

Jy =V xM(r) K, = M(r')xn’
volume current surface current
N /

bound currents
With these definitions,
K, .,

Ay =20 db gy o g Koy,
4 v A 4 *S 4

The electrical analogy
volume charge density p, =V -P

N

surface charge density o, =P-n
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Example 5.11 A spherical shell, of radius R, carrying a
uniform surface charge o, is set spinning at angular velocity
. Find the vector potential it produce at point r.
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Sol: First, let the observer is in the z axis and @ is tilted at an angle

Vector potential is A(r) =

M
4

I K(r) da’

v

The surface current density K(r") = ov’

’uolgwo-rsiné’qs r<R .
N B=VxA == y,cRwi

U, 3a)dsm2 b roR 3

| r
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Example 6.1 Find the magnetic field of a .

uniformly magnetized sphere of radius R. T 0
M

Sol: Choosing the z axis along the direction of M, |
J,=VxM=0
K, =Mx#i'=Msin6 ¢

The surface current density is analogous to that of a spinning
spherical shell with uniform surface current density.

we have {

K, =Mxi'=Msind ¢ & K =0V =cRwsind ¢

ORw— M ,
B= 5 UM (inside)

Can you find a more direct method?
16
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6.2.2 Physical Interpretation of Bound Currents

Bound surface current K;,: M

What is the current in terms of M?

a
In terms of the magnetization M, its dipole ;| —— } ’
moment is m = Mat=Ila. So, M =1/t=K,

Consider a thin slab of uniformly magnetized material, with
the dipoles represented by tiny current loops.

All the “internal” currents cancel. However, at the edge there
IS no adjacent loop to do the canceling.

M %%j;?j % DQJ‘M
T

1
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Physical Interpretation of Bound Current

Bound current density J,:
What if the magnetization is not uniform?

The adjacent current loops do not completely

cancel out.

Case (a) I, =[M. (y+dy) — M., (y)]dz = 934
v

oM

Z

= dydz

Case (b) I, =[M ,(z+dz)— M ,(2)ldy = —=dydz

oM _ aMy

(Jb)x = o

— Jb:VXM
dy 0z

dz
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6.3 The Auxiliary Field H
6.3.1 Ampere’s Law in Magnetized Materials
What is the difference between bound current and free
current? J = Jb +Jf

Ampere’s law can be written:

L(V)(B):J:Jf +Jb:Jf +VxM
Ho |
— VX(—B—M)ZJf

‘ILlO /
1

H
In terms of H, then the Ampere’s law reads

VxH=J, (differential form)
CﬁH -dl =1z, (integral form)

EM
Tsun-Hsu Chang
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The Role of H in Magnetostatics

H plays a role in magnetostatics analogous to D in the
electrostatics.

D allows us to write Gauss'’s law in terms of free charge alone.
D=¢E+P, V-D:pf

H permits us to express Ampere’s law in terms of free current

alone. H:LB—M, VxH:Jf /
Hy

What we can control directly.

Why can’t we turn the bound currents on or off
independently?

20



Example 6.2 A long copper rod of radius R carries a uniformly
distributed (free) current /. Find H inside and outside the rod.

Sol :

Use the Ampere's law in the integral form and
properly choose a suitable Amperian loop. =

2
SSR HQms)=1; =1"~

enc T R Amperian loop
so H= st 5 (13
27TR
I -

s>R:. HQ2rs)=1, so H=——¢

27Ts

How to choose a suitable Amperian loop? Symmetry.

How to determine the magnetic field B?
21



Hand B, D and E

V><H=Jf

Which equation is more useful?
V-D=p,

We can easily control the free current 1, but not the
free charge. So H can be determined accordingly.

On the other hand, the potential difference V can be
read from the voltmeter, which can be used to
determine E.

The name of H: Some author call H, not B, the “magnetic
field”, but it is not a good choice. Let’s just call it “H".



6.3.2 A Deceptive Parallel

Infree space  VxB =y J
V-B=0

In matters VxH = Jf

V-H=V (= —M)=—V-M 0

Hy

At what condition the divergence of H is equal to zero?

M /B 1e., M/ B/ H (for uniform material onlb

23



6.3.3 Boundary Conditions

The magnetostatic boundary conditions can be rewritten in
terms of H and the free surface current K,

_H!

below

VXH:Jf p— H||

above

:Kf X 1
1 1 1 1
V-H=-V-M = Habove _Hbelow — _(Mabove _Mbelow)

The corresponding boundary conditions in terms of B and
total surface current K.

VxB=yJ = B! _B!

above below

V.B=0 = B-t — Bt

above below

= 14, (Kxn)
=0

How to express the boundary conditions at metal «
dielectric interface?

24



Homework of Chap. 6 (part I)

Problem 6.4 Derive Eq. 6.3. [Here's one way to do it: Assume the dipole is an infinitesimal
square, of side & (if it's not, chop it up into squares, and apply the argument to each one).

Choose axes as shown in Fig. 6.8, and calculate F =7 I (dIxB) along each of the four

o

sides. Expand B in a Taylor series — on the right side, for instance, -3 I

B:B(O,e,Z)EB(O,O,Z)+8a—B :
dy (0,0,2) 2

For a more sophisticated method, see Prob. 6.22.] v,
Problem 6.10 An iron rod of length L and square cross section (side a) is
given a uniform longitudinal magnetization M, and then bent around into L
a circle with a narrow gap (width ), as shown in Fig. 6.14. Find the ”IKC_:;?
magnetic field at the center of the gap, assuming w < a < L. [Hint: treat el gl
it as the superposition of a complete torus plus a square loop with reversed
current. |

Problem 6.13 Suppose the field inside a large piece of magnetic material 1s By, so HeTe

that Hy = (1/4,)By —M, where M 1s a "frozen-in" magnetization.
(a) Now a small spherical cavity 1s hollowed out of the material (Fig. 6.21). Find
the field at the center of the cavity, in terms of B, and M. Also find H at the |
center of the cavity, in terms of Hy and M. |
(b) Do the same for a long needle-shaped cavity running parallel to M.

(¢) Do the same for a thin wafer-shaped cavity perpendicular to M. oy 25

IGURE 6.21



Homework of Chap. 6 (part I)

Problem 6.15 It J » = 0 everywhere, the curl of H vanishes (Eq. 6.19), and we can

express H as the gradient of a scalar potential W:
H=-VW.

According to Eq. 6.23, then,

VW =(V-M),
so W obeys Poisson's equation, with V- M as the "source." This opens up all the
machinery of Chapter 3. As an example, find the field inside a uniformly magnetized
sphere (Ex. 6.1) by separation of variables. [Hint: V-M = 0 everywhere except
at the surface (» = R), so W satisfies Laplace's equation in the regions » < R
and » > R; use Eq. 3.65, and from Eq. 6.24 figure out the appropriate boundary
condition on W]

Problem 6.17 A current / flows down a long straight wire of radius a. If the wire
1s made of linear material (copper, say, or aluminum) with susceptibility y,,, and
the current 1s distributed uniformly, what is the magnetic field a distance s from the
axis? Find all the bound currents. What is the net bound current flowing down the
wire?

26
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6.4 Linear and Nonlinear Media Tsun-Hsu Chang

6.4.1 Magnetic susceptibility and Permeability

The magnetization of paramagnetic and diamagnetic
materials is sustained by the field, i.e., when B is removed,
M disappears.

M=y H,
where the proportionality constant y,  1s called
the magnetic susceptibility.

Why not use M = ZnB9 Because M = YuHe< I,
Hy
Materials that obey M = y, H are called linear media.
B = 4o (H+M) = t(1+ , ) H = /H,
where 1 = uy(1+ y,,) 1s call the permeability of the material.

27



Material Susceptibility

Material Susceptibility Material Susceptibility

Diamagnetic: Paramagnetic:

Bismuth —1.7 x 100*  Oxygen (O5) 1.7 x 107°

Gold —3.4x 107  Sodium 8.5 x 107

Silver —2.4 x 107 Aluminum 2.2 x 107

Copper —9.7 x 107®  Tungsten 7.0 x 1077

Water —9.0 x 10°®  Platinum 2.7 x 10~

Carbon Dioxide —1.1 x 107®  Liquid Oxygen 3.9 x 1073
(—200° C)

Hydrogen (H,) —2.1 x 10™°  Gadolinium 4.8 x 107!
FLK Y (Gd)

Table 6.1 Magnetic Susceptibilities (unless otherwise specified, values are for
1 atm, 20° C). Source: Handbook of Chemistry and Physics, 67th ed.
(Boca Raton: CRC Press, Inc., 1986).
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Magnetic permeability & susceptibility for selected materials

Medium Susceptibility Permeability x10°
Mu-metal 20,000 1 25,000 N/A>
Permalloy 3000 1 10,000 N/A®
Transformer iron with p=0.01 pQ-m 4000 0] 5000 N/AZ
Steel 700 1 875 N/AZ
Nickel 100 1 125 N/A?
soft ferrite with p=0.1 Qm source, ferroxcube 5000 N/AZ
soft ferrite with p=10 Qm source, ferroxcube 2500 N/AZ
Platinum 2.65x%10°% 1.2569701 N/A®
Aluminum 222x10° 21 12566650 N/AZ
-9
8 % 10
Hydrogen oy 12566371 N/A®
or22x10 ~ +
Vacuum 0 1.2566371 N/A*
Sapphire 5§ TR 1.2566368 N/A?
o 6.4 %10 °
Copper

2
1 1.2566290 N/A
or—9.2 x 10 62

at 0.002 T
at 0.002 T
at 0.002 T
at 0.002 T
at0.002 T
<0.1mT

<0.1mT

29



Example 6.3 An infinite solenoid (» turns per unit i
length, current /) is filled with linear material of Z::§
susceptibility y,: Find the magnetic field inside the +——
solenoid. 7

0

Sol: The problem exhibits solenoidal symmetry. Thus, we can
employ the Ampere’s law.

cﬁH -dl =1, (integral form)
Hl=nll .. H=nlz

The enhancement of the magnetic field strength depends on
the susceptibility of the material.

Is there a material that the field is significantly enha

30



Divergence of the Magnetization

Does the linear media avoid the defect that the divergence
of M is zero? Nol!

Even though M, H, and B are parallel, the divergence of M
IS not zero at the boundary. Consider the following example.

@ M-da=z0 Gaussian pillbox

Gaussian pillbox \\ " Paramagnet
M - O |
I —»M

= V-M#0 e —

and J,=VxM=Vxy H=y,J,

31



6.4.2 Ferromagnetism

Ferromagnets---which are not linear---require no external
fields to sustain the magnetization unlike paramagnets and

diamagnets.
In a ferromagnet, each dipole “like” to point in the same

direction as its neighbors. All the spins point the same way.

Why isn’t every wrench and nail a powerful magnet?

Domains.

32



Ferromagnetic Domains

. " - ..L .‘.‘. bl ol

Domain boundaries: Domains parallel to the field grow, and
the others shrink.

If the field is strong enough, one domain takes over entirely,
and the iron is said to be “saturated”.

33



Hysteresis Loop

M A

(Permanent (Saturation)

Magnet)

8

e f (Permanent

Magnet)

(Saturation)

Hysteresis: The path we have traced out.
In the experiment, we adjust the current /, i.e., control H.

In practice M is huge compared to H.

34



Curie Temperature and Phase Transitions

Temperature effect. The dipoles within a given domain line
up parallel to one another. However, the random thermal
motions complete with this ordering.

Curie temperature: As the temperature increases, the
alignment is gradually destroyed. At certain temperature the

iIron completely turns into paramagnet. This temperature is

called the curie temperature.
A

phase transitions

/,
Te

Magnetic moment M

S

Temperature T
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Homework of Chap. 6 (part 1I)

(a) Show that the energy of a magnetic dipole in a magnetic field B is
U=-m-B. (6.34)
[Assume that the magnitude of the dipole moment is fixed, and all you have
to do is move it into place and rotate it into its final orientation. The energy required
to keep the current flowing is a different problem, which we will confront
in Chapter 7.] Compare Eq. 4.6.
(b) Show that the interaction energy of two magnetic dipoles separated by a displacement
r is given by

m; «

Ao x _%81

1 ~N ~
U= 5_0_3[“11 -my —3(my -r)(m; -r)] (6.35) -
T r

Compare Eq. 4.7.

(c) Express your answer to (b) in terms of the angles , and &, in Fig. 6.30, and use
the result to find the stable configuration two dipoles would adopt if held a fixed
distance apart, but left free to rotate.

(d) Suppose you had a large collection of compass needles, mounted on pins at
regular intervals along a straight line. How would they point (assuming the
earth's magnetic field can be neglected)? [A rectangular array of compass needles
aligns itself spontaneously, and this is sometimes used as a demonstration
of "ferromagnetic" behavior on a large scale. It's a bit of a fraud, however, since

the mechanism here is purely classical, and much weaker than the quantum mechanical
13
]

FIGURE 6.30

exchange forces that are actually responsible for ferromagnetism.
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Homework of Chap. 6 (part 1I)

Problem 6.25 Notice the following parallel:
V-D=0, VXE=0, &gE=D-P, (no free charge)
{V -B=0, VxH=0, yyH=B-1yM, (no free current)
Thus, the transcription D - B, E - H, P — yyM, £, = 4, turns an electrostatic
problem into an analogous magnetostatic one. Use this, together with your knowledge
of the electrostatic results, to rederive
(a) the magnetic field inside a uniformly magnetized sphere (Eq. 6.16);
(b) the magnetic field inside a sphere of linear magnetic material in an otherwise
uniform magnetic field (Prob. 6.18);
(c) the average magnetic field over a sphere, due to steady currents within the
sphere (Eq. 5.93).

Problem 6.27 At the interface between one linear magnetic material >‘j‘//
[

and another, the magnetic field lines bend (Fig. 6.32). Show that | o
tan 6,/ tan6, = 1, /4, assuming there 1s no free current at the boundary. q
Compare Eq. 4.68. By 0
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